第一篇:自制《用比例解决问题》设计
六年级数学第十二册
《用比例解决问题》教学设计
毕家湾小学
柳萍
教学内容:教科书第59~60页中的例
5、例6,练习九3~7题。教学目标:
1、知识与技能:使学生掌握用比例知识解答以前学过的用归
一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、过程与方法:提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、情感态度与价值观:培养学生良好的解答应用题的习惯。教学重点:用比例知识解答比较容易的归
一、归总应用题。教学难点:分析题中的比例关系,列出方程 教学过程:
一、激发兴趣,回忆旧知
1.师:本节课是我们这个单元最后一节新课,希望大家用精彩的表现完成这节课,大家有没有信心!生:齐答:有!
师:同学们,我们以前学习了哪两种比例?生:正比例与反比例。师:好,下面我们就来回忆一下有关正、反比例的知识。(课件出示:)判断下面各题中的两个量成什么比例?(举手发言)
2.师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用哪个式子来表示?(板书:(一定))
3.师:如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用哪个式子来表示?(板书: x×y=k(一定))
4.师:看来同学们正比例和反比例的知识学得都很不错,下面我们就一起来学习今天的新知识吧!今天我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)
二、新授
1、教学例5(1)课件出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?学生先用学过的方法计算。
(2)导入用比例的方法思考和讨论下面的问题:① 问题中有哪两种量?② 它们成什么比例关系?你是根据什么判断的?③ 根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。(4)根据正比例的意义列出方程:(5)将答案代入到比例式中进行检验。
2、师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?课件出示修改题目(学生独立应用比例的知识来解答,并交流订正。)
3、教学例6(1)课件出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。(3)板演,全班评讲。4.提炼方法
师:解决了两个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?
三、巩固提高。(全班学生积极参与闯关活动。每闯一关奖一面小旗)
四、全课总结。
1.今天你们有什么收获?
2、鼓励学生勤奋学习。
五、布置作业。(见练习册33页1-4题。)
第二篇:用比例解决问题
《用比例解决问题》 教学设计
潘涂小学 叶海堤
【教学内容】:人教版六年级下册第59--60页的例
5、例6及一些相关练习。
【教材分析】: 这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。判断过程也是正反比例意义实际应用的过程。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。【学情分析】: 学生已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归
一、归总的实际问题。本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。同时,由于解决问题时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。【设计思路】
新课程理念非常重视数学应用意识的培养。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用,才能真正实现数学的价值。要培养学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的角度寻找一种新的解决这种特殊数量关系的方法。从而丰富学生解决问题的策略,加强数学应用意义的培养。在教学设计和实践上,能否真正有效的培养学生的应用意识,其关键重要的一环是,如何引导启发学生面对实际问题,能主动尝试着从数学的角度运用比例的知识去解决问题。要为学生运用比例知识解决实际问题创造条件和机会。【教学目标】:
1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。
2.引导学生利用已学知识,自主探索,培养学生解决问题的能力。
3.感受比例知识在现实生活中的广泛应用,体会数学与生活的联系。【教学重点】: 使学生能正确判断题中涉及的量是否成正、反比例关系,并能利用正、反比例的关系列出含有未知数的等式,运用比例知识正确解决问题。【教学难点】: 利用正反比例的关系列出含有未知数的等式。【教具准备】:多媒体课件
【教学过程】:
一、联系实际,复习迁移。(课件出示)
1、下列各题中的两个量成什么比例?为什么?
(1)、总价一定,单价和数量。
(2)、单价一定,总价和数量。
(3)、从A地到B地,摩托车的速度和所用时间。
(4)、摩托车的速度一定,所行驶的路程和所用时间。
2、联系生活,提出问题。
师:同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏着哪些数学问题呢?(1.用水的总量。2.应交的水费。3.每吨水的价格)
师:你能利用这3个量说一说它们之间存在着哪些数量关系吗?会构成什么样的比例关系?板书:水费/用水量=每吨水的价钱(一定)
【设计意图:通过复习生活中的具体例子,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。从学生熟悉的水问题切入,引出水问题中的数量关系,来揭题。】
二、探究新知,培养能力
1、师:看来同学们能正确判断两种量成什么比例关系了,这节课我们一起来运用比例知识来解决一些实际问题。
2、请看例5情境图。
师:题中告诉了我们哪些数学信息?你能提出什么数学问题?
生:李奶奶家上个月的水费是多少钱? 师:你有办法帮她算一算吗?
(1)学生尝试解答,然后交流解答方法。
汇报:12.8÷8×10
=1.6×10
=16(元)
(2)激励引新:
师:像这样的问题还可以用比例的知识解答。今天我们就来学习用比例的知识进行解答。(板书:用比例解决问题)
①师:问题中有哪两种量?它们成什么关系,你是根据什么判断的?依据这样的比例关系,你能列出等式吗?(学生独立思考,再小组讨论交流,并回答:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)【设计意图:教师提出自主探究,小组合作学习,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部点,用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。】
②根据比例的意义列出方程,并解方程。请一位学生上台板演。
解:设李奶奶家上个月的水费是X元.12.8∶8= X∶10 8X=12.8×10 8X=128 X=128÷8 X=16 答:设李奶奶家上个月的水费是16元。
(3)概括总结:像这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。3.变式练习。
师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?
(1)出示课件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?
(2)让学生用比例的知识解答改编后的题。
(3)指名板演,并说一说你是怎么想的?
(4)比较一下改编后的题和例5有什么联系和区别?
【设计意图:巩固练习、拓展应用,让学生通过自己的努力获得用正比例的知识解决问题的能力】
三、自主探究
1、教学例6 师:让我们一起到印刷厂看看那里会有哪些数学知识。
①出示情境图,读题,理解题意。
②学生尝试完成,指名板演,集体订正。③叙述解题思路:因为书的总数一定,所以包数和每包的本数成反比例,也就是说,每包的本数×包数=书的总本书(一定)。2.灵活应用。
师:如果要捆15包,每包多少本?
学生独立完成,集体订正。
3、想一想:怎样用比例解决问题?
小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。
【设计意图:有了例5用比例来解决问题的经验,放手让学生自主探究,在小组谈论交流,培养学生用比例的知识解决问题的方法,丰富解决问题的思路。】
四、巩固联系,拓展应用。(试一试你能不能用比例来解决下面这些问题)
1、王芳买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?
2、学校附近小商店有两种圆珠笔。小明带的钱 刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?
3、小明家到学校共1200米。今天早上上学3分钟共走了180米,照这样的速度,还要走多少分钟才能到学校?
4、一辆汽车从甲地开往乙地,每小时行50km,6小时可以到达乙地;如果每小时行60km,可提前几小时到达?
[设计意图] 通过不同层次的练习,循序渐进,围绕所学基础知识设计练习题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。
五、全课总结,回顾新知。
通过这节课的学习,谁能向大家讲讲,你有什么收获?
板书设计: 用比例解决问题
例5:12.8÷8×10 解:设李奶奶家上个月的水费是X元
=1.6×10 12.8 ∶8= X ∶10
=16(元)8X=12.8×10 8X=128 X=128÷8 X=16 答:李奶奶家上个月的水费是16元。
例6:解:设要捆X包。30X=20×18 X=360÷30 X=12 答:要捆12包。
第三篇:用比例解决问题
比例的应用
1、一条公路长25km,在一幅地图上长5cm,求这幅地图的比例尺。
2、一个手表的精密零件长5mm,画在设计图纸上是12cm,求这幅的纸的比例尺。
3、在一幅比例尺是1:30000000的地图上,量得北京到上海的距离是3.5km,北京到上海的实际距离是多少千米?
4、学校有一个长方形的操场,长是80米,宽是50米,把它画在一幅平面图上,长画了16cm,宽应当画多少厘米?
5、某实验小学的平面图的比例尺是1:30000,量得长是9cm,宽是5cm,学校的时间占地面积是多少公顷?
6、埃及金字塔是著名的景观,某科学家用测量影长的方法计算金字塔的高度。测量结果如下:竹竿长5m,它的影长是3m,这一时间段金字塔的影长是87.9m,这座金字塔的实际高度是多少米?
7、一颗人造卫星绕地球5周需要13小时,用同样的速度绕地球12周需要多少小时?
8、50千克花生仁可以榨油19千克,要榨200千克花生油需要多少千克花生仁?
9、修一条路,如果每天修180米,8天可以修完,如果每天修160米,几天可以修完?
10、一间大厅,用边长6分米的方砖铺地,需要324块,若改用边长4分米的方砖,需要这样的方砖多少块?
11、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需要多少天?
12、在一幅比例尺是1:6000000的地图上量得甲地到乙地的长是2cm,一辆汽车以每小时70km的速度匀速行驶,如果这辆小汽车上午8:30出发,10:00能到达吗?
13、一个车间装配一批电视,如果每天装50台,60天完成任务,如果要少用20天完成任务,每天应装多少台?
14、在一幅比例尺是1:3500000的地图上,量得甲乙两地之间的距离是2.4cm,在另一幅地图上,量得这两地间的距离是2.8cm,求另一幅地图的比例尺?
15、新兴小学的学生去旅游,用4辆同样的客车每次可以运送224名学生,如果用13辆这样的客车,每次可以运送多少名学生?
16、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?
17、小明家用收割机收割小麦。如果每小时收割0.3公顷,40小时可以完成任务。
(1)
现在想用30小时收割完,那么每小时应收割多少公顷?
(2)
每公顷产小麦8吨,这块地共产小麦多少吨?
18、(1)一个三角形的A点(1,1),B点(1,4),C点(4,8)请在方格图中画出这个三角形。
(2)如果把这个三角形按3:1放大,请画出放大后的三角形。
(3)请另一张在方格图中画一个和放大后图形大小相等的梯形。
18、奥运会一块金牌的黄金含量与金牌总重的比为6:412,一块金牌总重412g,302块金牌需要黄金多少克?
20、北京到济南的高速公路距离大约为430km,北京到天津大约为120km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按照这样的速度,从天津到济南需要多少小时?
第四篇:用比例解决问题教学设计
《用比例解决问题》例5教学设计
横道河子乡中心校 陈立强
教学目标:
1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。教学重点:
1.判断题中相对应的两个量和它们的比例关系。2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。教学难点:
1.掌握用比例知识解答解答应用题的步骤和方法。2.理解“用比例解决问题”的结构特点,从而构建知识结构。
教学准备:多媒体课件 教学过程:
一、激发兴趣,回忆旧知
1.师:本节课是我们这个单元最后的一个内容,今天我们运用所学的知识来解决问题,希望大家用精彩的表现完成这节课!我们先来回忆一下已经学过的知识吧!(课件出示:)判断下列每题中的两个量是不是成比例,成什么比例?为什么?
(1)购买的课本的单价一定,总价和数量。(2)路程一定,速度和时间。
2.师:看来同学们正比例和反比例的知识学得都很不错,下面我我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)
(设计意图:复习正、反比例的意义,为用比例知识解决问题做准备。)
二、揭示课题、探索新知。
(一)教学例5(课件出示:情境图)1.回顾旧知
师:从这幅图中你能知道哪些信息?你能提出什么数学问题?
(选择同学们提出的问题:李奶奶家上个月的水费是多少钱?)
(设计意图:这样设计是让学生感受到自己就是学习的主人,同学们探讨自己提出的问题,更能激发学生的学习兴趣。)(1)例5中的已知条件是:
张大妈家:用了()吨水,水费是()。李奶奶家:用了()吨水。所求的问题是:(选择同学们提出的问题:李奶奶家上个月的水费是多少钱?)师:要解决水费的问题,就要知道水的单价和用水量。根据我们的生活经验,水的单价虽然不知道,但它是一定的。(2)李奶奶家上个月的水费是多少钱?想请我们用我们以前学过的方法帮她算一算,你们能帮这个忙吗?(3)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)
(4)师:像这样的问题也可以用比例的知识来解决。
2、探究解法
师:用比例解决这个问题之前,我们先来思考:(1)这道题中涉及哪两种量?(2)哪种量是一定?(3)水费和用水的吨数成什么比例关系?你是根据什么判断的?
讨论分析:从信息可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成(正)比例。也就是说,两家的(水费)和(用水量)的(比值)相等。(4)根据这样的比例关系,你能列出等量关系式吗? 张大妈家水费:用水吨数 = 李奶奶家水费 :用水吨数(5)如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。解:设李奶奶家上个月的水费是X元钱。(板书)28 :8= x :10 8 x=28×10
x=35
答:李奶奶家上个月的水费是35元钱。
3、探究用比例解题的方法 师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)师:28:8和x:10 分别表示什么?(水费单价)同学们再思考,看看有没有出现其它比例的解法,如果有,教师也要进行评析。
4、检验
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
(设计意图:强调解题过程的完整性。)
三、变式练习
师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?
课件出示:“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”(让学生进行变式练习。)教师巡视,个别指导。
四、小结解题步骤:解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)
(1)找题目中两种相关联的量是成正比例还是反比例;(找)
(2)设未知量为x;(设)(3)根据题意列出比例式;(列)(4)解比例;(解)(5)验算,(验)(6)作答。(答)
五、巩固练习:
1、小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔,要用多少钱? 提示:你知道哪种量不变吗?你能试着用比例解决吗? 2.只列式不计算:
(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。
(2)小红8分钟走了500米,照这样的速度,他从家到学校用了14分钟,小红家离学校大约多少米?
3、小兰的身高1.5m,她的影长是2.4m,如果同一时间、同一地点测得一棵树的影子长4m,这棵树有多高? 提示:你知道吗?影长与身高的比是一个定值!试着用比例解决吧!
(设计意图:巩固所学知识,引导学生用比例知识灵活解决生活中的实际问题,体会数学就在自己身边,认识到只有努力学习并掌握解决问题的思想方法,才能去解决生活中的数学问题。)
六、课堂总结
解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)
(1)找题目中两种相关联的量是成正比例还是反比例;(找)
(2)设未知量为x,注意写明计量单位;(设)(3)根据题意列出比例式;(列)(4)解比例;(解)(5)验算,(验)(6)作答。(答)
(设计意图:让学生回顾这一节学习的知识点,梳理归纳,总结用比例解决问题的步骤,体验和感受收获。)
附板书设计: 用比例解决问题
张大妈家水费:用水吨数 = 李奶奶家水费: 用水吨数 解:设李奶奶家上个月的水费是X元。
28:8=X:10
8X=12.8×10 X=35 答:李奶奶家上个月的水费是35元。
第五篇:《用比例解决问题》教学设计
《用比例解决问题》导学案
白冬梅
学习目标:
1、使学生掌握用比例知识解答以前学过的用归
一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
学习重点:用比例知识解答比较容易的归
一、归总应用题。学习难点:正确分析题中的比例关系,列出方程。学习内容:
如何用比例知识解决问题? 学习过程: 一.铺垫练习
.根据题意用等式表示。
(1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
二、探究新知。
1、教学例5(1)学生读题,理解题意。(2)你想用什么方法解决这个问题?(3)独立思考,列式解答(指名板演)(4)交流订正,重点引导学生理解比例方法。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)
(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?(3)学生独立解答。(4)指名板演,全班交流。
三、课堂达标
1.用等式表示各题中的数量关系。
(1)3小时行180千米,照这样的速度,x小时行300千米。
(2)一批月饼,每盒装8块,可以装24盒。每盒装6块,可以装32盒。2.用比例知识解决应用题(1)60页做一做
(2)500千克的 海水中含盐25千克,120吨的海水含盐多少吨?
(3)一项工程派75人去做,40天可以完成。如果派60人去做,几天可以完成?
(4)修路队3天修150米,照这样速度,再修10天,又修了多少米?
四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?
五、课堂作业。
教科书P62练习九第3、5.6.7题。