第一篇:苏教版小学四年级下册数学第一单元《旋转》教案
旋转
教学内容
旋转。(教材第3、第4页)
教学目标
1.结合具体实例,在观察、判断、操作的活动中,经历认识简单图形旋转的过程。2.了解顺时针、逆时针旋转现象,能在方格纸上将简单的图形旋转90°。3.在探索图形旋转并用语言描述的过程中,进一步发展空间观念。
重点难点
重点:图形旋转的三要素为旋转中心、旋转方向、旋转角度。
难点:在方格纸上将图形按顺时针或逆时针旋转90°,并能将旋转后的图形画出来。
教具学具
课件、自制小风车。
教学过程
一、情境导入
师:这几天风大,看到好多小朋友在操场上玩这个(出示自制小风车),有风的时候它会怎么样?
生:有风的时候小风车会旋转。
师:在例2中,转杆的运动方式是平移还是旋转?(课件出示:教材第3页例2题)生:转杆的运动方式是旋转。
师:正确,转杆的打开和关闭是旋转。今天我们一起来研究旋转。
【设计意图:从学生最熟悉的玩风车的情境开始引入课题,能激发学生学习的兴趣】
二、探究过程
1.教学例2。
师:你们觉得转杆打开和关闭的过程是完全一样的运动吗?想想有哪些地方是相同的?哪些地方是不同的?小组内讨论,以小组为单位派代表回答。
学生进行小组讨论;教师巡视了解情况。师:谁愿意来说一说?
生:这两次运动旋转的方向不同。
师:那分别是什么方向呢?(课件出示:现实钟面上时针的运动)你能从转杆的打开和关闭中选出与时针转动方向一致的运动吗?
生:转杆打开的旋转方向与时针运动的方向是一致的。
师:因为和时针运动方向相同,所以我们把转杆打开的方向叫作顺时针方向。那么与时针转动方向相反的的运动叫什么呢?
生:逆时针方向。
·相同点:在转杆打开和关闭的过程中,转杆下方的点是固定不动的,这个点是旋转的中心点;转杆关闭和打开都旋转了90°。
师:刚才我们学了旋转重要的三个特点:点、方向、角度。谁能来完整地说说转杆是怎么运动的?
生:转杆打开,绕中心点顺时针旋转90°;转杆关闭,绕中心点逆时针旋转90°。
【设计意图:在学生讨论比较相同点和不同点之前,让学生多观察几遍课件上动态的转杆打开和关闭的简易图,学生通过自主观察比较发现顺时针和逆时针旋转这两个方向,自然地理解了旋转90°的含义】
2.教学例3。
师:刚才我们是把指针、转杆旋转90°。你们知道吗?图形也可以旋转,下面我们就一起来研究如何把一个图形旋转90°。(课件出示:教材第3页例3题)谁知道“绕点A旋转”是什么意思?
生:“绕点A旋转”就是说点A不动是定点。
师:怎么转呢?学生从课本第113页剪下和它同样大的三角形,在图上试一试。让学生尝试动手操作;教师巡视了解情况。
师:你能在方格纸上画出旋转后的图形吗?先画一画,再和同学交流画法。学生尝试画图并交流画法;教师巡视了解情况,指导个别学习有困难的学生。
组织学生交流展示,重点让学生说说画法。明确:先把一条直角边绕点A逆时针旋转90°,再把另一条直角边绕点A逆时针旋转90°,最后连接两条直角边的顶点画出三角形的斜边。
【设计意图:本着数学课堂中以学生为主体的理念,让学生有个人发挥的空间,自己说自己动手,拥有绝对的主动权,充分发挥学生学习的主动性和积极性】
三、课末总结
师:今天你有什么收获呢?
板书设计
旋
转 点、方向、角度
↓
顺时针、逆时针教学反思
1.旋转是学生在日常生活中经常看到的现象。从数学的意义上讲,旋转是一种基本的图形变换。图形的旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。教学伊始,借助学生已有的知识和经验,积极创设情境,激发学生学习的好奇心和求知欲。呈现三幅图通过“观察这些旋转你发现有什么相同点和不同点?”此环节的设计又使学生认识了顺时针和逆时针的旋转,为之后的用语言描述打下基础。
2.动手实践、让学生亲身经历新知识的掌握过程。整个数学课堂应留给学生较多的空间,让学生有更多的独立思考、动手实践、合作交流的机会,体现学生在教学中的主体地位。拓宽学生的思路,引导学生开展观察、操作、比较、概括、交流等多种形式的活动。在尊重教材的基础上,进行了二次处理,从生活实际入手,更有助于学生的认知,从而使学生在轻松的氛围中学习旋转的三要素:旋转的中心点、旋转的方向(可分为顺时针、逆时针两种)和旋转的角度,并通过这三要素来描述物体的旋转。
作业设计
A类
按要求在方格纸上画图。
(1)画出图形①绕点A逆时针方向旋转90°后的图形。(2)画出图形②绕点A顺时针方向旋转90°后的图形。
(考查知识点:旋转;能力要求:能够按要求在方格纸上画出旋转后的图形)
B类
照样子用、在方格纸上画一个自己喜欢的图案。
(考查知识点:旋转;能力要求:能够运用图形的旋转变换设计图案)
参考答案
课堂作业新设计
A类:
B类:
教材习题
教材第4页“练一练” 1.(1)90°(2)2(3)D C 2.
第二篇:人教新课标小学数学四年级下册教案(第一单元)
第一单元:四则运算
第一课时:
教学内容:
P4/例
1、例2(只含有同一级运算的混合运算)教学目标:
1.使学生进一步掌握含有同一级运算的运算顺序。2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学过程:
一、主题图 引入
观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决? 通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人? 等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
1.小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2.小组内互相说说你是怎样解答的? 教师巡视并对学生的叙述进行指导。
3.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+85 =27+85 =113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×6 6÷3×987 =329×6 =2×987 =1974(人)=1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。小组合作,减少重复练习。
(2)P5/做一做1、2
三、小结
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获? 教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)运算顺序为已有知识基础,让学生进行回忆概括。
四、作业 P8/1—4 板书设计:
四则运算
(一)1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。照这
又有85人到来。现在有多少人在滑冰? 样计算,6天预计接待多少人? 72-44+85(1)987÷3×6(2)6÷3×987 =27+85 =329×6 =2×987 =113(人)=1974(人)=1974(人)
运算顺序:在没有括号的算式里,如果只有加、减法 或者只有乘、除法,都要从左往右按顺序计算。
教学反思:
第二课时:
教学内容:
P6/例3 P10/例4(含有两级运算或有括号的混合运算)教学目标:
1.使学生进一步掌握含有两级运算的运算顺序。2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱? 学生在练习本上解答此问题。同桌两人说说自己是怎样解答的。汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2 =24+24+12 =48+12 =60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2 =48+12 =60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱? 等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的? 汇报。
(1)270÷30-180÷30 =9-6 =3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。(2)(270-180)÷30 =90÷30 =3(名)270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习P7/做一做1、2 P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业 P8—9/5—9 板书设计:
四则运算
(二)星期天,爸爸妈妈带着玲玲去“冰雪 上午冰雕区有游人180位,下午有270位。天地”游玩,购买门票需要花多少钱? 如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2(2)24×2+24÷2 比上午多派几名保洁员? =24+24+12 =48+12(1)270÷30-180÷30(2)(270-180)÷30 =48+12 =60(元)=9-6 =90÷30 =60(元)=3(名)=3(名)运算顺序:在没有括号的算式里,有乘、运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。面的。教学反思:
第三课时:
教学内容:
P11/例5(强化小括号的作用)、归纳运算顺序 教学目标; 1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?
根据学生的回答进行板书。
二、新授 出示例5(1)42+6×(12-4)(2)42+6×12-4
学生在练习本上独立解答。(画出顺序线)两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下? 学生自由回答。
三、巩固练习P12/做一做1、2 P14/4 教师巡视纠正。
四、作业
P14—15/2、3、5—7 板书设计:
四则运算
(三)(1)42+6×(12-4)(2)42+6×12-4 运算顺序:
=42+6×8 =42+72-4(1)在没有括号的算式里,如果
=42+48 =114-4 只有加、减法或者只有乘、除法,都
=90 =110 要从左往右按顺序计算。(2)在没有括号的算式里,有乘、除法。
要先算括
加法、减法、乘法和除法统称四则运算。教学反思:
第四课时:
教学内容:
P13/例6(0的运算)教学目的:
使学生掌握关于0的运算应该注意的问题。教学重、难点:
0不能做除数及原因。教学过程:
一、口算引入 快速口算 出示:
(1)100+0=(2)0+568=(3)0×78=(4)154-0=
除法和加、减法,要先算乘、(3)算式里有括号的,号里面的。(5)0÷23=(6)128-128=(7)0÷76=(8)235+0=(9)99-0=(10)49-49=(11)0+319=(12)0×29=
二、新授
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。小组讨论:0能否做除数?
全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结
学生小结关于0的运算应该注意的问题。教师引导学生小结。
四、作业
P15—16/8—13 板书设计:
关于“0”的运算 100+0=100 235+0=235 一个数加上0,还得原数。0能否做除数?
0+319=319 0+568=568 0不能做除数。99-0=99 154-0=154 一个数减去0,还得这个数。0×29=0 0×78=0 一个数乘0或0乘一个数,还得0。0÷76=0 0÷23=0 0除以一个非0的数,还得0。49-49=0 128-128=0 被减数等于减数,差是0。
教学反思:
第三篇:小学四年级数学下册教案人教版第一单元
第一单元: 四则运算
第一课时
课题:只含有同一级运算的混合运算 教学内容:P4/例
1、例2 教学目标:
1、使学生进一步掌握含有同一级运算的运算顺序。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学重难点: 含有同一级运算的运算顺序 教学过程:
一、主题图 引入观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?
你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决? 通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人? 先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
小组4人对黑板上的题目进行分配解答。引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计
1、小组内互相说说你是怎样解答的?教师巡视并对学生的叙述进行指导。
2、全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+8571-44表示中午44人离去后还剩多少人。=27+85 再加上到来的85人
=113(人)就是现在滑冰场有多少人。(2)987÷3×6 6÷3×987 =329×6 =2×987 =1974(人)=1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。引导学生进一步理解“照这样计算”的意思。强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。4.巩固练习
(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。小组合作,减少重复练习。(2)P5/做一做1、2
三、小结:学生就本节课的学习内容进行汇报。这节课我们解决了很多问题,你们都有什么收获? 教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)运算顺序为已有知识基础,让学生进行回忆概括。
四、作业: P8/1—4
板书设计:
四则运算
(一)1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。照这
又有85人到来。现在有多少人在滑冰? 样计算,6天预计接待多少人? 72-44+85(1)987÷3×6(2)6÷3×987 =27+85 =329×6 =2×987 =113(人)=1974(人)=1974(人)
运算顺序:在没有括号的算式里,如果只有加、减法 或者只有乘、除法,都要从左往右按顺序计算。
教学反思:通过学习学生进一步掌握含有同一级运算的运算顺序,能解决实际问题。
第二课时:
课题:含有两级运算或有括号的混合运算
教学内容: P6/例3 教学目标:
1、使学生进一步掌握含有两级运算的运算顺序。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学重难点: 含有两级运算的运算顺序
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱? 学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2(2)24×2+24÷2 =24+24+12 =48+12 =48+12 =60(元)=60(元)
(1)24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。再加上一张儿童票就是他们购买门票需要多少钱。(2)24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点? 这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么? 学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
三、巩固练习P7/做一做
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
板书设计:
四则运算
(二)星期天,爸爸妈妈带着玲玲去“冰雪 天地”游玩,购买门票需要花多少钱?(1)24+24+24÷2(2)24×2+24÷2 =24+24+12 =48+12 =48+12 =60(元)=60(元)
运算顺序:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
教学反思:学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。
第三课时:
课题:含有两级运算或有括号的混合运算 教学内容: P10/例4 教学目标:
1、使学生进一步掌握含有两级运算的运算顺序。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。教学重难点:含有两级运算的运算顺序。教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员? 小组讨论,独立完成。
小组内互相说说你是怎样解答的?(1)270÷30-180÷30(2)(270-180)÷30 =9-6教育 =90÷30 =3(名)=3(名)(1)270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业 板书设计:
上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要一名保洁员,比上午多派几名保洁员?(1)270÷30-180÷30(2)(270-180)÷30 =9-6 =90÷30 =3(名)=3(名)
运算顺序:算式里有括号,要先算括号里面的。教学反思:掌握含有两级运算的运算顺序。养成认真审题、独立思考等学习习惯。
第四课时:
课题:(强化小括号的作用)、归纳运算顺序 教学内容:P11/例5 教学目标;
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。
教学重难点:含有两级运算的运算顺序,正确计算三步式题。教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序? 根据学生的回答进行板书。
二、新授
出示例5(1)42+6×(12-4)(2)42+6×12-4 学生在练习本上独立解答。(画出顺序线)两名学生板演。全班学生进行检验。上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢? 学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下? 学生自由回答。
三、巩固练习P12/做一做1、2 P14/4 教师巡视纠正。【提高练习】
1、先估计每组算式中哪个算式得数大?再计算。
(1)450+30×6(2)850-60×6(3)720÷9×8 450-30×6 850-60÷6 720÷8×9
2、填上合适的数,列综合式子:
四、作业:P14—15/2、3、5—7
板书设计:四则运算
(三)(1)42+6×(12-4)(2)42+6×12-4 =42+6×8 =42+72-4 =42+48 =114-4 =90 =110
运算顺序(1)在没有括号的算式里,如果只有加、减法除法,都要从左往右按顺序计算。(2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。(3)算式里有括号的,要先算括号里面的。加法、减法、乘法和除法统称四则运算。
教学反思:通过学习学生能在练习中能总结归纳出四则混合运算的顺序。
第五课时:
课题:0的运算
教学内容: P13/例6 教学目的: 使学生掌握关于0的运算应该注意的问题。教学重、难点:0不能做除数及原因。教学过程:
一、口算引入 快速口算 出示:
(1)100+0=(2)0+568=(3)0×78=(4)154-0=(5)0÷23=(6)128-128=(7)0÷76=(8)235+0=(9)99-0=(10)49-49=(11)0+319=(12)0×29=
二、新授
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。学生分类后进行概括总结关于0的运算。教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗? 学生提出0是否可以做除数。小组讨论:0能否做除数?
全班辩论。各自讲明自己的理由。教师小结:
0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结
学生小结关于0的运算应该注意的问题。教师引导学生小结。
四、作业P15—16/8—13
板书设计: 关于“0”的运算
100+0=100 235+0=235 一个数加上0,还得原数。0能否做除数?
0+319=319 0+568=568 0不能做除数。
99-0=99 154-0=154 一个数减去0,还得这个数。
0×29=0 0×78=0 一个数乘0或0乘一个数,还得0。0÷76=0 0÷23=0 0除以一个非0的数,还得0。49-49=0 128-128=0 被减数等于减数,差是0。
教学反思:通过学习学生能总结关于0的运算应该注意的问题。
第四篇:四年级数学下册第一单元四则运算教案
四年级数学下册第一单元四则运算教案
第一单元、四则运算
第一课时:
教学内容:
P4/例
1、例2
教学目标:
1.使学生进一步掌握含有同一级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题。
说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
1.小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
1.小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
1.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
71-44+85
=27+85
=113
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
987÷3×66÷3×987
=329×6=2×987
=1974=1974
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
P5/做一做1、2
三、小结
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业
P8/1—4
板书设计:
四则运算
1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。照这
又有85人到来。现在有多少人在滑冰?样计算,6天预计接待多少人?72-44+85987÷3×66÷3×987
=27+85=329×6=2×987
=113=1974=1974
运算顺序:在没有括号的算式里,如果只有加、减法
或者只有乘、除法,都要从左往右按顺序计算。
课后小结:
第二课时:
教学内容:
P6/例3P10/例4
教学目标:
1.使学生进一步掌握含有两级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
24+24+24÷2
=24+24+12
=48+12
=60
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
24×2+24÷2
=48+12
=60
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
270÷30-180÷30
=9-6
=3
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
÷30
=90÷30
=3
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P7/做一做1、2
P11/做一做
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
P8—9/5—9
板书设计:
四则运算
星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱?如果每30位游人需要一名保洁员,下午要
24+24+24÷224×2+24÷2比上午多派几名保洁员?
=24+24+12=48+12270÷30-180÷30÷30
=48+12=60=9-6=90÷30
=60=3=3
运算顺序:在没有括号的算式里,有乘、运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。面的。
课后小结:
第三课时:
教学内容:
P11/例
5、归纳运算顺序
教学目标;
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?
根据学生的回答进行板书。
二、新授
出示例5
42+6×
42+6×12-4
学生在练习本上独立解答。
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习
P12/做一做1、2
P14/4
教师巡视纠正。
四、作业
P14—15/2、3、5—7
板书设计:
四则运算
42+6×42+6×12-4运算顺序:
=42+6×8=42+72-4在没有括号的算式里,如果
=42+48=114-4只有加、减法或者只有乘、除法,都
=90=110要从左往右按顺序计算。
在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
算式里有括号的,要先算括
号里面的。
加法、减法、乘法和除法统称四则运算。
课后小结:
第四课时:
教学内容:
P13/例6
教学目的:
使学生掌握关于0的运算应该注意的问题。
教学重、难点:
0不能做除数及原因。
教学过程:
一、口算引入
快速口算
出示:
100+0=
0+568=
0×78=
154-0=
0÷23=
128-128=
0÷76=
235+0=
99-0=
49-49=
0+319=
0×29=
二、新授
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:0能否做除数?全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结
学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业
P15—16/8—13
板书设计:
关于“0”的运算
100+0=100235+0=235一个数加上0,还得原数。0能否做除数?
0+319=3190+568=5680不能做除数。
99-0=99154-0=154一个数减去0,还得这个数。
0×29=00×78=0一个数乘0或0乘一个数,还得0。
0÷76=00÷23=00除以一个非0的数,还得0。
49-49=0128-128=0被减数等于减数,差是0。
四年级下册数学第一单元四则运算教案
四则运算
教学内容:人教版四年级数学下册2——5页
一、教学目标:
1、熟练掌握一、二级运算单列式从左到右的运算顺序。
2、培养学生列综合算式解决实际问题的能力。
3、感受教学与生活的紧密联系。
二、教学重点、难点:
1、同级运算的运算顺序。
2、发现并总结概括出没有括号的混合运算顺序。
三、教具、学具准备:主题图练习本
四、教学过程
创设情境,导入新课
冬天你最喜欢什么运动?这节课我们就来了解认识有关滑冰场情况。让学生认真观察图。
根据主题图和提示提出问题。
1、肯定学生的积极表现,引导学生回顾和本节内容相关的旧知识。
2、出示信息,多媒体展示问题。
结合情境,探究新知。
天山滑雪场上午有72人,中午有44人离去,又有85人到来,现在有多少人在滑雪?
a:师:根据信息你能提出什么数学问题?
生:下午有多少人?
生:滑雪场一共有多少人?
师:你能有什么解决办法?
师:引导学生交流,鼓励学生发表自己的看法。
b:给学生一定的思考时间,鼓励学生独立列算式,然后求解,师生共同总结。
c:表扬表现积极的学生,多媒体展示问题二:“冰天雪地”3天接待987人,照这样计算,6天预计接待多少人?
d:请学生先进行独立思考,然后相互讨论。
e:强调算式的多样化,帮助学生理解。例如:问题二中算式987÷3表示6天总共接待的人数,再乘以6表示6天总共接待的人数,他们的现实意义是相同的,所以两种算法都是正确的。
3、结运算规律,在没有括号的算式里,如果只有加减法或者只有除法,都要从左往右按顺序计算。
4、请学生做书中的小练习。
总结与反思,布置思考题
1、检查学生练习情况,请同学总结本节课的主要内容,教师再做适当补充。
2、教师进一步强调本节课的重点、难点和关键点。请学生反思自己本节课的学习情况,并谈谈收获和体会。
3、布置思考题及课后作业。
思考题:如果一个算式里有加减法,又有乘法,应如何计算?
课后作业:练习一第1、2、5题
第五篇:苏教版小学四年级下册数学第一单元《轴对称》教案
轴对称
教学内容
轴对称。(教材第5、第6页)
教学目标
1.结合欣赏民间艺术的剪纸图案,以及服饰、工艺品与建筑等图案,感知现实世界中普遍存在的对称现象。
2.通过折纸、剪纸、画图、图形分类等操作活动,体会对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
3.培养学生的动手操作能力。
重点难点
重点:感知现实世界中普遍存在的对称现象,掌握轴对称图形的特征。难点:掌握轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
教具学具
课件、长方形纸、正方形纸、平行四边形纸。
教学过程
一、创设情境激情导入
师:同学们,你们看看这些图片画的是什么?(课件出示天安门、蜻蜓、蝴蝶、树叶图片)生:天安门、蜻蜓、蝴蝶、树叶。
师:你们看这些图形漂亮吗?你发现这些图形有什么特点呢?
生:这些图形如果沿着中间的一条线对折,两边的部分能够完全重合。师:什么叫“完全重合”呢?
生:就是一模一样的两部分能够纹丝合缝地对折在一起。
师:像这样的图形我们就说是轴对称图形,在生活中有很多这样的图形,今天我们来研究这些图形。
【设计意图:引导学生观察具有轴对称特点的图片,吸引学生注意力,激发学生的探究兴趣,为新课教学营造良好的氛围】
二、探究体验经历过程
1.教学例4。
师:请同学们从课本第113页剪下长方形、正方形和平行四边形,折一折,哪些是轴对称图形?
学生动手操作;教师巡视了解情况。师:把你的发现跟大家说一说吧。生1:长方形是轴对称图形。生2:正方形是轴对称图形。
生3:平行四边形不是轴对称图形。
师:把长方形纸对折,使折痕两边完全重合,有几种不同的折法?试一试。学生尝试动手操作并交流;教师巡视了解情况。组织学生展示交流不同的折法,明确有两种不同的折法。
师:像这样对折,折痕所在的直线叫作轴对称图形的对称轴。长方形有两种不同的对折方法,可见长方形有两条对称轴。正方形有几条对称轴?你能折一折、画一画吗?
学生尝试折一折,画一画;教师巡视了解情况。
组织学生交流汇报并小结:正方形有4条对称轴。明确:画对称轴要用虚线。2.教学例5。
师:你能把下面的图形补全,使它成为一个轴对称图形吗?说说你是怎样想的。(课件出示:教材第6页例5题)
学生可能会说:
·在对称轴右边依次画出与左边对称的另一半。
·先数格子,找出对应的顶点,再连接这些点,画出图形的另一半。
【设计意图:结合具体实例,引导学生动手操作,充分感知轴对称图形的特点。在此基础上引导学生学习在方格纸上画轴对称图形,加深学生对轴对称图形的认识】
三、课末总结梳理提升
师:今天你有什么收获呢?
学生自由交流各自的收获或体会。
【设计意图:梳理所学知识,将所学知识系统化】
板书设计
轴 对 称
像这样对折,折痕所在的直线叫作轴对称图形的对称轴。
长方形有2条对称轴。正方形有4条对称轴。
平行四边形不是轴对称图形。
教学反思
1.本课从学生感兴趣的具体的物体中,让学生自己发现问题、提出问题,体验探索成功的快乐;通过动手操作、小组讨论来解决自己提出的问题;通过有层次的练习,提高学生解决问题的能力,巩固所学知识。本堂课我借助多媒体技术从学生熟悉的生活入手,以折纸活动入手,让同学们能直观地感受和认识轴对称图形的特点。同时让学生体会关于数学的美。
2.教学时首先为学生展示彩色图片,为学生创设优美的学习情境,根据学生好动、好奇、好问的心理特征,设置悬念,激发学生的求知欲望,让每个学生都能进行积极的思考。在引入课题的基础上,讲授新知识,让每个同学都动手操作,通过实验、观察,引导学生发现轴对称图形定义中的两点:一,它是一个能沿某一直线折叠的图形。二,直线两旁的部分互相重合,并把这两个特征作为判断轴对称图形的标准。在强化学生对轴对称图形定义理解的基础上,引导学生复习轴对称定义中的两点:①有两个图形,能够完全重合即形状大小都相同;②对重合的方式有限制,也就是它们的位置关系必须满足一个条件:把它们沿某一直线对折后,能够完全重合。最后通过小结,使知识成为“体系”,帮助学生全面地理解,掌握所学知识。
课堂作业设计
A类
请你认一认下面的图形哪些不是轴对称图形,把不是轴对称图形的圈出来。
(考查知识点:轴对称;能力要求:正确识别轴对称图形)
B类
下面的图形是轴对称图形吗?请你说一说自己的想法。如果是轴对称图形,请画出对称轴。
(考查知识点:轴对称;能力要求:正确辨别轴对称图形并能画出轴对称图形的对称轴)
参考答案
课堂作业新设计
A类:
不是轴对称图形:② ③ ④ B类:
(不是轴对称图形)
教材习题
教材第6页“练一练”
1.2.