第一篇:七年级数学上册第三章整式及其加减1字母表示数用字母表示数五注意素材北师大版解析
用字母表示数五注意
1.注意字母具有一般性
用字母可以表示我们已经学过的任意一个有理数,同时随着我们所学知识的深入与需要,数的范围将进一步扩大,字母可以表示今后我们所学到的任何一个数,初学用字母表示数时,同学们一定要深刻理解用字母表示数的这种一般性.比如,字母a可以表示正数、负数、零,同学们不要见到a就认为是正数,见到–a就认为是负数,见到2a就认为一定比a大,这是对字母表示数的一种极为错误的认识,实际上,a不一定就是正数,–a不一定就是负数,2a不一定就比a大,这要看字母a具体代表什么数,当a=-2时,-a=2,2a=-4,即a是一个负数,–a就是正数,2a反而比a要小.
2.注意字母的确定性
它表现在两个方面:一方面是指在同一个问题中,同一个字母只能表示同一个量,不同数量要用不同的字母来表示.比如在同分母分数的加法法则
bcbc中,虽然a、b、aaac均表示任意数,但在此等式中,等式两边的a、b、c必须是分别表示同一个数量,即a表示相同的分母,b、c分别表示两个同分母分数的分子,同样的道理,我们也不能把相同的分母和两个分子用同一个字母来表示;另一方面,在用字母表示数时,一旦式子中的字母的取值确定了,式子的值也就随之确定了,如在圆的周长公式l2r中,如果r3,那么这个圆的周长就是6了.
3.注意字母的不确定性
同一个式子可以表示多种实际问题中的数量关系,如:式子3a可以表示:“每斤苹果a元,买3斤苹果共需3a元”,也可以表示:“每枝铅笔a元,买3枝铅笔共需3a元”等.
4.注意字母的限制性
用字母表示实际问题中的某一个数量时,字母的取值必须使这个问题有意义且符合实际,如“若某型号计算机的单价为a元/台,则买m台共需ma元”,这里a只能表示正数,m只能表示0和正整数.
5.注意字母的抽象性
要逐步理解和接受有些问题的结果可能就是一个用字母表示的式子,如,我们已经习惯于计算“若每小时行30千米,则2小时就会行30×2=60千米”这样的具体结果,因为我们可以想象的到60千米大概有多远.如果换成“若每小时行30千米,则t小时就会行30t千米”,这样的抽象结果,初学时,有的同学很难接受,因为我们想象不到30t千米大概有多 远.其实,学习了用字母表示数以后,像30t或a5等这些用字母表示的数,完全可以作为一个结果.
第二篇:七年级数学上册第三章整式及其加减31字母表示数北师大版
课题:字母表示数
教学目标:
一、知识与技能目标:
1.能用字母表示以前学过的运算律、计算公式以及实际问题中的量.2.体会字母表示数的意义,能分析简单问题的数量关系,并用代数式表示
二、过程与方法目标:
经历探索事物之间的数量关系,并用字母与代数式表示,初步建立符号感,发展抽象思维。
三、情感态度与价值观目标:
在学习活动中,使学生获得热爱数学知识的积极情感,沟通算数知识与代数知识之间的联系,培养学生的抽象思维能力。 重点:
理解用字母表示数的意义和作用 难点
能正确进行乘号的简写,略写。 教学流程:
一、情景导入
上课开始之前呢,我们先来玩一个游戏。看谁答的又快又准。1只青蛙,____张嘴,_____只眼睛,______条腿,扑通一声跳下水 2只青蛙,____张嘴,_____只眼睛,______条腿,扑通一声跳下水 3只青蛙,____张嘴,_____只眼睛,______条腿,扑通一声跳下水 50只青蛙,____张嘴,_____只眼睛,______条腿,扑通一声跳下水 ……
a只青蛙,____张嘴,_____只眼睛,______条腿,扑通一声跳下水
同学们想一下,这里的字母表示什么呢? 字母表示数。
二、活动探究
(1)搭1个正方形需要____根火柴棒,搭2个正方形需要____根火柴棒,搭3个正方形需要____根火柴棒.(2)搭10个正方形需要____根火柴棒?
(3)搭100个正方形需要____根火柴棒?你是怎么得到的?
(4)如果用x表示所搭正方形的个数,那么搭x个正方形需要____根火柴棒,与同伴进行交流。
A:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒【4+3(x-1)】根。
B:上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了【x+x+(x+1)】根火柴棒 做一做
(1)根据你的计算方法,搭200个正方形需要____根火柴棒
(2)用小明的计算方法,我们用200代替4+3(x-1)中的x,可以得到
4+3×(200-1)=601 你的结果与小明的结果一样吗?
搭1000个正方形需要_____根火柴棒,搭1500个正方形需要_____根火柴棒 用数字代入字母表示的式子中,叫数字代入法。议一议
在上面的活动中,我们借助字母描述了正方形的个数和火柴棒的根数之间的关系。你在以前的学习中有哪些地方用到了字母?这些字母都表示什么?
三、讲授新知
1.用字母表示数的运算律
加法交换律 a+b=b+a
加法结合律(a+b)+c=a+(b+c)乘法交换律 ab=ba 乘法结合律(ab)c=a(bc)乘法分配律(a+b)c=ac+bc 乘号用小圆点表示或省略不写如ab=ab 2.用字母表示图形的面积公式
S=a² S=ab S=ah 字母可以表示任何数
四、实例演练 深化认识
1.保温杯单价为a元,10个保温杯的价格是_____元。(10a)
数和字母相乘,省略乘号,并把数字写在字母前面。2.保温杯单价为a元,c个保温杯的价格是______元。(ac)字母和字母相乘时,乘号可以省略不写。
3.保温杯单价为a元,毛巾的单价是b元,买6个保温杯和4块毛巾的价格是______元。(6a+4b)元
后面接单位的相加、减式子要用括号括起来。
4.自行车车速vkm/s,从小镇到县城共15km,需要_______小时()除法运算写成分数形式。
5.小英去超市买了 斤水果,每斤k元,则共花了______元()带分数与字母相乘时,带分数要写成假分数的形式。
五、达标检测
下面的写法是否正确,如果不正确,请改正。
1.2.3.4.5.6.b6 × 6a
c+d千克 ×(c+d)千克 a×b × ab 5×(y+3)× 5(y+3)2km × km s/3 ×
2.今年五月份,由于禽流感影响,我市鸡肉价格下降了10%,设鸡肉原来价格是a元/千克,则五月份的价格为________元/千克。90%a
3.买单价为a元的体温计n个,付了b元,应找回的钱数是(A)A.(b-na)元 B.(b-n)元 C.(na-b)元 D.(b-a)元 4.如图,是变压器中的L型硅钢片,其面积为__________
解:(2a+b-b)b+b(2a-b)=2ab+2ab-b²=4ab-b².
5.电影院第一排有a个座位,后面每排都比前一排多1个座位,则第n排的座位数是()个
A.a+n B.a+n+1 C.a+n-1 D.an 6.某食堂有煤m t,计划每天用煤n t,实际每天节约用煤b t,节约后可多用()A.()天 B.()天 C.()天 D.()天
7.一个三位数,个位数字是a,十位数字是b,百位数字是c,这个三位数是______________(100c+10b+a)
六、拓展提升
观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()
解:图①:1+8=9=(2×1+1)²; 图②:1+8+16=25=(2×2+1)²; 图③:1+8+16+24=49=(3×2+1)²; …;
那么图(n):1+8+16+24+…+8n=(2n+1)². 故答案为:(2n+1)².
七、体验收获
今天我们学习了哪些知识? 1.字母可以表示任何数 2.字母表示数的规则
八、布置作业
课本第79页第1题
第三篇:小学数学《用字母表示数》
《用字母表示数》教学设计
山东省潍坊市临朐县朐阳小学 马永芳
一、教案背景
1,面向学生: 小学 2,学科:数学 2,课时:1 3,学生课前准备:
搜集生活中的字母所表示的意义。
二、教学内容:
教科书五年级上册P44-46页的例
1、例
2、例3。
三、教材分析
1、内容分析:《用字母表示数》是人教版五年级上册,第四单元《简易方程》中第一课时的内容。主要内容是用字母表示数、表示运算定律、计算公式和数量关系。
2、教材的作用与地位:本单元是在学生学习了了一定的算术知识(如整数、小数的四则运算及其应用),已初步接触了一点代数知识的基础上,进行学习的,它是今后进一步学习代数知识的基础。
四、教学目标: 1.知识与技能
(1)使学生懂得可以用符号或字母表示数,体会用字母表示数的优越性。(2)使学生初步认识用字母表示数的意义和作用,知道字母可以像数一样参与运算。学会用简便写法表示含有字母的乘法的运算式。
2.过程与方法:应用观察和比较的方法,使学生掌握用字母表示数和计算公式的方法。
3.情感态度与价值观: 学会解决问题的方法,培养学生抽象思维能力,渗透求未知数的思想。
五、教学重点
根据教材特点和学生的认知规律,我确立本节课的教学重点是:会用一个含有字母的式子表示简单的数和数量关系。
六、教学难点
体会用字母表示数的作用,感受字母的不同取值范围。
七、教学方法
为了突出教学重难点,在教学中我采用了:
(一)情境教学法
上课伊始,先以学生熟悉的字母歌引入,继而告诉学生今天老师也带来了一些含有字母的图片考考大家,从学生们爱吃的“好多鱼”、地点等,到科学家爱因斯坦的成功秘诀,让学生感受到字母的无处不在,意义广泛,激发学生学好本节课的欲望,并积极地投入思考。
(二)合作讨论法
教学中我让学生分两部分编青蛙儿歌,通过学生在小组合作,编出几只青蛙几张嘴,几只眼睛几条腿,利用共享资源初步解决不懂的问题,通过生生互助思维的碰撞,牢牢掌握用字母表示数的意义。
(三)自学法 字母与字母、数字相乘还有更简洁的方法吗?让学生自己看书,加深学生的印象。
八、教学过程
一、生活导入,激趣引疑。
师: 哪位同学愿意给大家表演一个节目(一位学生唱了一首歌)
来而不往非礼也,我也唱一首,ABCDEFG……,会唱的跟我一起唱,大家唱的 真好听,大家知道咱们唱的什么歌呀?(字母歌)
师:真巧,今天老师还带了一些含有字母知识,想考考你们,敢接受吗?(敢)好,看谁既认得字母又懂得意思。出示图片:CCTV 麦当劳 SOS 师:同学们懂得真多,没难住你们,像这样用字母表示事物的例子,在生活中也无处不在。请看:
1、一包“好多鱼”重 33 g,一根跳绳长 2 m。这里的g、m分别表示什么?
2、A、B 两地相距500米。A、B又表示什么?
3、扑克牌中的字母又表示那个数字?
师:看来字母在生活中应用的还挺广泛,就连伟大的科学家爱因斯坦的成功的秘诀中也蕴藏着字母,这个A的意思就是成功。X+Y+Z=A
那么X、Y、Z分别代表什么呢?希望同学们在今后的学习生活中能付出艰辛的劳动,运用正确的方法,再加上少说空话,一起走上成功的道路。希望同学们这节课的表现都是A.。
那么为什么这么多的事物都选择用字母来表示呢?(方便,简便,还记,易懂,没有国界限制。。。)
师:既然用字母这么好的方法,为什么不运用到数学学习当中来呢?同意我这个想法的请鼓掌,全体通过,今天我们就把字母请进数学课堂,用字母来表示数。(板书课题)
二、小组合作,新知探索。
1、用字母表示数
师:看着这可爱的青蛙,让我想起了一首儿歌——《数青蛙》,大家会唱儿歌吗?一起重温儿时的《数青蛙》咱们能不能打着拍子唱,把你最灿烂的笑容露出来,满心欢喜的唱,准备好了吗?
1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴,师:你会接着往下编吗?
……感觉怎么样?还能再数吗?
师:要是15只青蛙呢?青蛙只数再多我们也能唱的出来吗? 师:别太骄傲,100只呢?1000只呢?(生答)
师:我也相信你们能,照这样说,不管青蛙只数再多你们都行?全世界的青蛙全来了(出示层层叠叠的青蛙图)
师:是不是不好数了,按照以往的方式还能唱吗? 师:要是这样说下去能不能说完?
师:是啊,要是这样说下去肯定说不完,你们能不能想个办法,用一句话就能
表示这首儿歌?
师:刚才同学们都是用文字表述的。既然是数学的课堂,那么有没有一种数学的表示方法呢?
师:这个方法真好,还能说吗?
师:看来方法挺多的。当我们不知道有几只青蛙时候,不能用具体的数表示青蛙的只数时,在数学上一般可以用字母来表示任意数,如果用字母n表示青蛙的只数,那就是n只青蛙多少张嘴呢?(出示)n只青蛙n张嘴。
师:为什么青蛙嘴的张数也用字母n来表示呢?
师:对了,在同一个式子中,相同的字母表示的数相同。(出示:在同一个式子中,相同的字母表示的数相同。
师:你觉得这里的n可以是哪些数?
师:对这里的n可以表示我们通常所说的自然数。(板书:自然数)如果n等于1就是1只青蛙1张嘴,如果n等于32就是32只青蛙32张嘴,如果n等于900,那就是…..师:同学们用一个小小的字母就把青蛙的只数和青蛙嘴的张数表示的清清楚楚,看来这个字母的作用实在是很大呀。你感受到字母给学习带来的方便了吗?(概括、简明)
2、用字母表示倍数关系
我们接下来看儿歌的后半部分。师:n只青蛙n张嘴。()只眼睛()条腿。我们不要急于说出结果,静心思考,从简单入手。从一只青蛙开始唱唱吧。
(出示)1只青蛙1张嘴,2只眼睛4条腿,2只青蛙2张嘴,()只眼睛()条腿,3只青蛙3张嘴,()只眼睛()条腿,……师:容易吗?你们的小眼睛告诉我,你们在唱时,心里想什么呢?说说看。(青蛙眼睛数是只数的2倍,腿数是只数的4倍)
师:你们小小年纪就知道按规律办事,找规律来想,真了不起!
先让学生自己说说,提问数字是怎样算出来的。能不能试着把四只、五只青蛙的填一填。
小组合作:眼睛的只数与青蛙的只数是什么关系?腿的条数与青蛙的只数是什么关系?完成n只青蛙n张嘴。()只眼睛()条腿。小组内同学共同解决。
师:眼睛的只数与青蛙的只数是什么关系?(眼睛只数是青蛙只数的2倍。)师:腿的条数与青蛙的只数是什么关系?(腿的条数是青蛙只数的4倍。)师:哦,原来是这样。看来我们用青蛙只数×2就是眼睛的只数,用青蛙的只数×4就可以求出腿的条数。
那n只青蛙的你能用含有字母的式子表示吗?学生回答后板书:n只青蛙n张嘴。(n×2)只眼睛(n×4)条腿。
师:看来,字母不但可以表示数,含有字母的式子还可以表示一定的数量关系。师:其实还有更简洁的方法呢?
3、自学课本,学习更简洁的方法。(书本45、46页)。
当字母与数字相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:ɑ×2通常可以写成2.ɑ或2ɑ。
当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号,如:ɑ×b写作ɑ.b或ɑb。要想省略乘符号,前提是:必须是乘法,必须含有字母。让学生读一读,重要的部分要重读!
学生看完后及时纠正黑板上写法。这种写法还是第一次见到,能再给大家说说它表示什么意思吗?
验证:如果现在n等于9,有九只青蛙,你能很快说出儿歌吗?
通过简短的学习,我们在不知不觉中找到了一种新的表示方法——用字母表示数。用字母表示数在我们今天看来这个再寻常不过的例子在它的诞生之初却是一个伟大的创造。它经历了一个漫长的求索过程,提到了用字母表示数我们就必须提到一位伟大的数学家——韦达。
三、追根溯源,提升素养。
最早使用字母来表示数的人是法国数学家韦达,韦达一生致力于对数学的研究,作出很多重要贡献,成为那个时代最伟大的数学家,被誉为代数学之父。自从韦达系统使用字母表示数后,引出了大量的数学发现,解决很多古代的复杂问题。上了初中后我们就会接触到数学学科的一个重要内容——代数学,今天的用字母表示数就是启蒙篇。
师:同学们真棒,现在我们不但认识了,而且真的把字母带进了数学课堂,你们还想让小小字母发挥更大的作用吗?(想)好,老师给你们一个机会,让你们自己去发掘,四、学以致用,巩固拓展。
1、基础练习:牛刀小试
练一练
1、省略乘号用简便记法表示下列各式 3×t写作: X×7写作:
a×b写作: 1×a写作: n×n写作: 试一试
2、正方形的面积和周长公式。
师:字母不但可以表示具体的数、运算定律,还可以表示一些图形的计算公式。我们先来复习一下,(正方形面积= 周长= 板书)
人们习惯用一个固定的字母来表示某个量,如正方形的面积用 s 来表示,周长用c来表示,边长a用来表示,你能用字母表示出正方形面积和周长公式吗? 咱们结合黑板上这两个公式在小组里说一说。这里的a×a 还可以怎么表示?(小组交流后一生说师板书)
特别强调:a2读作a的平方,表示2个a相乘。
师:同学们太出色了!如果a=6cm,那么正方形的面积和周长各是多少?(一生说师板书)
2、深化练习:拓展思维 老师比同学们大20岁。
同学1岁时,老师()岁。同学2岁时,老师()岁
同学3岁时,老师()岁 … …
同学a岁时,老师()岁。师:这里的a可以使那些数字?
3、综合练习:开心农场
你想从去哪里?从门口出发,要走多远? 为什么要用3个不同的字母来表示呢?
五、总结提升,延展思维。
今天我们一起研究了用字母表示数,学到这儿对字母你有了哪些新的认识呢?字母给我们的生活带来了方便,给学习带来了方便,字母可以让复杂的问题变简单,体现了一种最优化的思想,这就是数学的魅力呀。字母有这么多的好处,你们就不想对字母说点什么?
师:这节课你对自己的表现满意吗?(生)我认为大家表现的都很棒,在老师心中你们都是A,让我们为今天的精彩表现鼓鼓掌吧!我想同学们的感慨还有很多,请把你的想法写在数学日记本上吧。短短的40分钟我们的探索才刚刚开始,关于用字母表示数一定还有更多的知识等待着我们去研究。
九、教学反思,自我提升。
用字母表示数是老课了,它有四个例题,我在开始反复研读教材后,觉得这几个例题如果单纯的按照顺序来讲,学生也许会学的很好,但为了让学生有个深刻的印象,我打破教材的常规编排方法,把前三个例题融合在学生熟悉的数青蛙的儿歌上,通过编青蛙儿歌来突破教学重难点。
教学时考虑到学生开始接触这些代数知识,毕竟有个适应的过程,我把儿歌分为前后两段,先编几只青蛙几张嘴,后编几只眼睛几条腿,给学生搭建思维的坡度。并通过小组合作学生间思维的碰撞,把难以掌握的知识轻松地融入囊中。习题的设计凸现层次性和延展性,通过基础练习、深化练习、综合练习,让学生在轻松梳理知识脉络时,又有意犹未尽的感觉。
总的来说,这一课的教学,我积极引导了学生,创设了学生熟悉感兴趣的情景,让学生获得了积极地情感体验,课堂内容开阔,学生积极探索,目标达成率高,收到了良好的教学效果。
第四篇:用字母表示数说课稿1
《用字母表示数》说课稿
五年级2班 王琛芳
一、说教材:
本节课是人教版教材五年级上册《用字母表示数》的第一课时。用字母表示数,对小学生来说比较抽象,在学生的思维过程中,由具体的数和用运算符号组成的式子过渡到用字母和含有字母的式子表示数,是从个别上升到一般的抽象化过程。学生在近四年的学习中大量接触到的是有关具体的数的认识和运算,对字母表示数虽有一些生活经验和接触,但对字母表示数的意义并不理解。基于学生已有的学习生活经验,我们力图让学生经历数学化的过程,形成数学模型,从而体验到数学学习的乐趣。对这节课的设计我们有这样的几点思考: 《用字母表示数》这一课的知识对今后的学习有着极为重要的作用。《用字母表示数》,它不但对后面的数学学习有着重要意义,而且在生活和实际中有着广泛的应用。这一课的教学中渗透着“转化”思想,遵循主体性原则,通过教学引导学生进行观察、比较和分析的,概括出用字母表示数的规律。然后教学运用这个表示常见的数量关系。
二、说教学目标:
1、让学生在现实情境中理解用字母表示数的意义,初步掌握用字母表示数的方法,会用含字母的式子表示数量。体会到用字母表示数具有简单,明了,快捷等优越性。
2、让学生在探索现实生活中的数量关系过程中,逐步建立用各种符号来表示数的意识,提高抽象思维的能力。
三、说重点、难点
1、重点:理解用字母表示数的意义,会用含有字母的式子表示数量之间的关系。
2、难点:理解用字母表示数的意义。
四、教学方法的设计意图
1、创设生活化的数学问题情境。
在问题情境中,我们充分挖掘了教材中呈现的主题图情境,注重引导学生从数学的视角观察事物、思考问题。初步体会可以用字母来表示很多数。
2、调动儿童已有的生活学习经验,构建数学模型。
尽管学生没有进行过有关代数知识的学习,但孩子们已具备一定的用字母表示数的经验和用数量关系解决问题的能力,让学生在熟悉和喜爱的活动中分析问题、解决问题。进而理解既能用字母直接表示一个数,同时又能用含有字母的式子表示另一个数,从而建立字母式子的模型。初步学会用含有字母的式子表示数量的方法;促进学生体会用字母和含有字母式子表示数的意义及优越性。同时也使学生学会用字母和式子表示乘法数量关系,以及含有字母的乘法式子的简写。从而自然的促进学生由算术思维到代数思维的过渡。
3、生成新的学习经验,用数学的方式认识生活。
通过经历一系列的数学活动,数学模型逐步构建。这时我们设计了拓展练习,让孩子在具体情境中体会含有字母的式子的意思,从只有一个字母的式子到含有两个字母的式子,从只有一步的简单数量关系到两、三步的数量关系,孩子们的认知在逐步走向深入。
五、说教学流程:
一、情境导入
1.导入:从生活中的字母引入。
2.质疑:这里的n表示的是什么?(一个数)
3.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)
二、互动新授
(一)教学用含字母的式子表示数量关系。1.出示教材第52页例1。
引导:图中小红和爸爸也在探讨年龄的问题,从中你了解了哪些信息?
学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。2.让学生尝试用算式表示爸爸的年龄。
出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。
3.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?
通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄 追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便?
小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。4.重点引导学生用字母来代替。
引导学生说一说你是怎么写的?为什么这样写?
学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a„„都表示什么?(都表示小红的年龄。)(板书:小红的年龄)
追问:是不是只能用这些字母表示?还能用其他字母表示吗? 引导学生理解:可以用任意字母来表示小红的年龄。质疑:这些字母可以表示哪些数呢?能表示200吗?
先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。5.质疑:这些含有字母的式子都表示什么呢?(表示爸爸的年龄,也表示小红比爸爸小30岁。)
归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)
6.提问:如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少?
学生自主计算,汇报:a+30=11+30=41(岁)当a=12时呢?学生汇报:a+30=12+30=42(岁)
(二)教学教材第53页例2。
1.引导:同学们想不想知道月球上到底有什么秘密呢?让我们一起来瞧瞧。
(出示教材第53页例2):观察情境图,说一说你知道哪些数学信息。
学生汇报:在月球上,人能举起物体的质量是地球上的6倍;在地球上我只能举起l5kg。
你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?
拓展:是月亮的质量小的原因,月球引力是地球的六分之一。2.探索:在地球上能举起l千克的物体,那么在月球上能举起多少千克?在地球上能举起2千克的物体、3千克的物体,在月球上能举起多少千克呢?
出示:教材第53页的表格。
通过刚才的列式,你能用含有字母的式子表示出入在月球上能举起的质量吗?
学生自主思考,集体交流。
引导学生把人在地球上能举起的质量用字母表示(以用x 表示为例):
人在月球上能举起的质量就是x ×6千克。3.简写乘号。
直接教学:x ×6,我们可以写成6x,中间的乘号省略不用写。在省略乘号时,一般要把数字写在字母的前面。想一想:式子中的字母可以表示哪些数?
引导学生小结:人能举起的质量是有限的,因此字母表示的数也是有一定范围的,不能过大。
4.(出示教材第53页情境图)图中小朋友在月球上能举起的质量是多少?
学生自主解答,集体交流:6x =6×15=90(千克)
三、巩固拓展
1.完成教材第53页“做一做”。先让学生说一说长方形纸条的面积公式:长×宽。引导:此题的宽是3cm,怎样用含有字母的式子表示长方形纸条的面积?
放手让学生自主完成,列式汇报:3x。教师提示乘号简写的注意事项。
2.完成教材第55页“练习十二”第1题。
先让学生回忆厘米、千克用什么字母表示(厘米:cm;千克:kg),再自主完成。
四、课堂小结
这节课你学会了什么知识?有哪些收获? 引导总结:
1.含有字母的式子,不但可以用字母表示数,还可以表示一个结果以及两个数量之间的关系。在特殊情况下,字母的取值是有一定范围的。
2.在省略乘号时,一般要把数字写在字母前面。
五、课后探究:
1只青蛙1张嘴,两只眼睛四条腿。2只青蛙2张嘴,(课件演示)
大家接着唱„„提问:这首儿歌能唱完吗?
2.青蛙的只数发生变化了.这时你能怎样表示青蛙的只数呢?(很多只,无数只)除了这样表示,也可以用一个你喜欢的字母表示青蛙的只数,大家课后探究。板书设计:
用字母表示数
表示数 优越性 表示两个数量之间的关系 简单,明了 乘法简写:省略乘号,数字在字母前面。
第五篇:五上数学《用字母表示数》说课稿
五上数学《用字母表示数》说课稿
一、说教材:
《用字母表示数》是苏教版小学数学五年级上册第八单元的教学内容。在学习本单元之前,学生已经接触过一些用字母表示数的计算公式和运算律,对简单实际问题中的基本数量关系也已经比较熟悉,这些都是学生理解本单元所学知识的重要基础。同时本单元知识又是学生进入代数知识学习的入门知识,是学习方程的基础。
用字母表示数的内涵有3点:
1、用字母表示的数是已经学过的所有类别的数;
2、字母在具体的问题中所表示的数往往是有一定范围的;
3、字母和数一样可以进行运算。
其中前两点应该在第一课时让学生明白。因此在本课中我突出让学生在不同情境中反复体验、感悟。从“用学母表示数”到“用字母表示数量,数量关系”,再到“用字母表示计算公式”,这三个不同层次作为教学核心。
用字母表示数这一内容,看似浅显,平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃。因此,我设立了如下的教学目标: 知识技能目标:
使学生初步理解用字母表示数的方法,会用含有字母的式子表示简单的数量关系和计算公式,会根据字母所取得值口答出相关式子的值。过程方法目标:
使学生经历用含有字母的式子表示简单数量关系和计算公式的过程,进一步体会数学的抽象性,发展符号意识。情感态度目标:
使学生初步形成用字母表示数的意识,感受数学学习的多样性和挑战性。教学重点:感悟用字母表示数的意义,能用含有字母的式子表示简单的数量关系。教学难点:正确用含有字母的式子表示两个数量之间的关系。
二、说教法和学法:
教法:
1、感悟字母表示数的意义,是属于“程序性知识”,依据学生的认知特点,采用建构主义教学策略,具体实施方法是情境体验法。即让学生在不同的情境中去感受,去探索,去应用,从而发现知识,理解知识,掌握知识。
2、含有字母的乘法式子的简写方法属于“陈述性知识”,依据行为主义学习理论,采用有意义接受学习的方式,由学生自学简写规则,然后在运用中加强理解与认识。
学习方式多样:观察,比较,思考,交流,概括,应用与反思等加深对字母表示数的方法的理解。
三、说教学过程:
本节课分为4个环节组织教学。环节一:让学生初步感悟字母可以表示数。
课堂上我是这样组织教学的,先通过扑克牌玩24点,和按规律填数,引导学生自主发现字母可以表示数,并在一定的情境中,字母表示的是特定的数。(出示6、10、7、A和2、4、6、m、10„„)
接着让学生回忆在以前的数学学习中,碰到过字母表示数的例子吗?根据学生的学习经验能说出一些运算定律来,追问学生运算定律所表示的意思,引导学生体会用字母表示数的简明性。环节二:师生互动,探索新知。
感悟用字母表示数的意义,知道字母表示数的不同取值范围,是本课的重点。新课标指出:数学是数学活动的教学,是师生之间,学生之间交往互动和共同发展的过程,在这一环节,要学习三个例题,这三个例题,层层推进,一个例题就是一个不同层次的体验。
例一:出示:摆1个三角形要用3根小棒。
提问:摆这样的2个三角形要用小棒的根数该怎样表示? 思考:摆这样的3个、4个三角形要用小棒的根数该怎样表示? 提问:算是中的2、3、4表示什么?3表示什么?三角形的个数与一个三角形用的小棒根数有什么关系?
继续这样依次摆三角形,(„„)如果摆了a个三角形,那么摆a个三角形所用小棒的根数可以怎样表示?(摆a个三角形所用小棒的根数是a×3)
思考:这里的a可以表示哪些数?可以表示5、6、7吗?可以表示10、100、1000吗?可以表示1或0吗?可以表示某一个小数吗?
指出:这里的a可以表示任意的自然数,但是不能表示小数。
(3)追问:如果用字母b表示摆出的三角形个数,那么摆b个三角形所用小棒的根数可以怎样表示?这里的b可以表示哪些数?由此你还能想到什么?(相同的数量可以用不同的字母来表示)
(4)追问:那三角形的个数是几就是几个,为什么又要用字母a表示呢?和上面这些用数表示的式子比一比,你觉得有什么好处?
说明:用数表示三角形个数,每次只能表示一种摆法的结果;要表示许多摆法就要写出许多式子,这就既麻烦又复杂;而用字母表示变化的数,只要用一个式子就可以表示任何摆法所用的小棒根数,让我们看出摆的个数和用的小棒根数之间的关系。所以用字母表示数,可以概括所有摆法,既简洁又清楚。(板书:概括 简洁 清楚)(5)出示:摆a个正方形。
提问:摆a个正方形用小棒的根数怎样表示?
【设计说明:由于这是学生第一次学习用字母表示数,因此教学的着力点应放在两个问题上:一是为什么要用字母表示数?二是怎样用字母表示数?前者涉及用字母表示数的意义和价值,后者涉及用字母表示数的过程和方法。上述教学过程,先让学生用具体的乘法算式表示摆几个三角形所用小棒的根数,再顺势提出“摆a个三角形要用多少根小棒”这一问题,既凸显了字母表示数所具有的高度抽象性、概括性的特征,又有利于学生在由具体到抽象的演变过程中自主领悟方法。此外,对字母所表示的数的范围的讨论,以及用不同字母表示三角形个数的尝试,都有利于学生进一步体会意义,领悟方法。】
例三:
(1)提问:大家还记得正方形周长和面积的计算方法吗?如果用字母a表示正方形的边长,用大写字母C表示周长,用大写字母S表示面积,你能写出正方形的周长和面积公式吗?
先试着让学生写一写,在组织交流,明确:写出的公式应是C=a×4和S=a×a。
(2)进一步指出:具体的数字与字母相乘,通常应采用简便写法。如 a×4或4×a都可以把“×”简写成“·”,写成4·a;或者省略乘号,写成4a。在省略乘号时,一定要把数字写在字母的前面。两个相同的字母相乘时,通常也采用简便写法。如a×a,也可以写成a2,a2读作a的平方。
提出要求:用简便写法重新写出正方形周长和面积的字母公式,并在小组里读一读。提醒学生要把a2写规范。
指出:刚才大家写出的正方形周长和面积公式中使用的字母都是约定的,因此不能随意用其他字母替换。今后我们还要学习用字母表示其他的计算公式。一般情况下,公式中的字母都是约定的,都不能用其他字母替换。
【设计说明:学习用含有字母的式子表示计算公式,有利于学生进一步完善对字母表示数的意义和方法的认识。考虑到学生对正方形的周长和面积计算方法比较熟悉,所以上述教学过程先让他们试着写出公式,再通过对相关式子简便写法的介绍,帮助他们获得规范的字母公式。这样的过程既为学生提供了必要的自主学习机会,又不失时机地介绍了含有字母的乘式的简便写法,有利于优化教学结构,提高教学效率。】
(3)练习“想想做做”第3题。
指出:刚才大家写出的正方形和长方形的周长和面积公式中使用的字母都是已经约定的,因此不能随意用其他字母替换。今后我们还要学习用字母表示其他的计算公式。一般情况下,公式中的字母都是约定的,都不能用其他字母替换。例二:
(1)出示例题,要求依次表示行驶50千米、74.5千米、b千米后所剩的千米数。
追问:这里的b可以表示哪些数?b能是大于280的数吗?(b不仅可以表示整数,也可以表示小数,但都应是不大于280的数。)(2)引导:根据280—b,你能确定剩下的路程吗?
明确:如果知道“280—b”中b的数值,也就是可以求出“280—b”所表示的路程。
(3)出示:如果b=120,剩下的路程是多少千米?
通过交流明确:b=120,说明已经行驶了120千米,将“280—b”中的b替换成120,就可以算出剩下的路程。追问:如果b=200呢?
(4)小结:根据题意,用字母表示行驶的千米数后,就可以用含有字母的式子表示剩下的千米数;而只要知道字母的具体数值,就可以求出剩下的千米数。
【设计说明:上述教学过程,重点仍是引导学生体会用字母表示数的意义和方法。与例1的教学所不同的是,这里侧重于引导他们根据给出的字母数值计算相应式子的数值。显然,这一活动能使学生进一步认识到字母所表示的既可以是一个具体的数,也可以是某个范围里所有的数。另一方面,学生从上述过程中也能进一步积累用含有字母的式子表示数量及其关系的经验。】
环节三:巩固提高。1.“练习十八”第1题。先请学生独立完成,集体核对。2.“练习十八”第2题。
拓展第3小题,认识用含有两个字母的式子来表示数。
在解答第3小题的基础上,出示小丽家(在学校的另一端)到学校的路程是y米。请学生根据线段图提问。
3.“练习十八”第3题。先请学生独立完成,集体核对。
在这个环节中我注重练习设计的趣味性与层次性。激起学生更深层次的思考,达到巩固深化的目的,环节四:介绍先驱,传承文化。
介绍数学家韦达的生平事迹,渗透数学文化。
最后用字母表示数谈话点题,结束全课。