第一篇:梯形面积计算教案
瓦窑镇双庙小学公开课教案
执教者:
执教班级:
执教时间: 学
科:
教学内容:梯形面积计算 教学目标:
1.使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。
2.使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。教学重点:理解并掌握梯形面积的计算公式。
教学难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。教学过程:
一、复习导入:
⒈回顾三角形面积公式的推导过程
⒉导入:今天我们继续运用这种方法来研究梯形面积的计算。(板书课题:梯形面积的计算)
二、自主学习,合作探究:
1、教学例6:
你想怎么做?与同学交流。学生上台介绍自己的想法。
2、教学例7:(1)出示例7:
师:用117页中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。(2)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?
学生独立思考,全班汇报结果。
得出以下结论:这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。
这个平行四边形的底等于 梯形的上底 +下底 这个平行四边形的高等于 梯形的高
因为每个梯形的面积等于拼成的平行四边形面积的 一半 所以梯形的面积 =(上底 + 下底)×高÷2(3)如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高。尝试用公式表示。(学生独立尝试,指名板演:字母公式:s=(a+b)×h÷2,教师再次强调公式中的“÷2”,这儿的“÷2”能少吗?为什么?
3.完成15页“试一试 ”。
学生独立完成,再交流思考过程与计算结果。
三、巩固练习
⒈完成P15练一练 第1题
学生独立完成后,同桌交流,再集体评析,加深理解。⒉完成P18页练习三 第1、2题:
⑴提问:你能准确说出每个图形的上底、下底和高吗? ⑵再计算它们的面积。⒊完成练习三 第3题
结合题意,使学生先读懂题目,并理解“横截面”的含义: ⑴说一说,你是怎样理解“横截面”的?
⑵指一指,图中的物体的“横截面”具体在哪里? ⑶再应用公式进行计算。
四、小结反思:
今天我们学习了梯形面积的计算,回想一下,我们是如何推导出它的面积计算公式的?想一想,通过剪、拼能把一个梯形转化成平行四边形吗?有兴趣的同学可以课后去试一试。
教师公开课教案
新沂市瓦窑镇双庙小学
2015——2016学年度第一学期
第二篇:梯形面积计算(定稿)
梯形面积计算
教学内容:小学数学第九册80页
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学思想,培养学生初步的创新思维能力。教学重点:发现、理解和应用梯形面积计算公式。
教学难点:理解公式的推导过程
教具准备:计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。教学过程:
一、迁移诱导,激发参与兴趣
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
二、实验操作,引导参与探究
1、转化
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
2、观察
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
板书如下:梯形面积拼成的平行四边形面积的一半
平行四边形的底梯形是上底+下底平行四边形的高梯形的高
3、推导
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
板书如下:
平行四边形面积=底×高
梯形的面积=(上底+下底)×高÷2
S=(a+b)×h÷2
提问:计算梯形的面积为什么除以2?
三、反馈调节,巩固参与成果
1、引导实际应用,巩固梯形面积公式
2、分层训练,培养能力
3、发展提高,深化知识
第三篇:梯形面积的计算教案
梯形面积的计算--秀萍
一、教学课题:梯形面积的计算(小学五年级上册88-91页)
二、教学目标: 1.知识目标:在平行四边形、三角形面积推导的基础上,引导学生采用合作
探究的形式,概括出梯形面积计算公式。
2.能力目标:了解梯形面积计算公式的推导过程,会正确、熟练地运用公式
计算梯形面积,并能解决一些生活中的实际问题,提高学生发 现问题、分析问题的能力。
3.德育目标:通过动手操作、观察和比较,发展学生的空间观念,培养学生
观察操作、推理的能力以及解决问题的能力。
三、教材分析(重点、难点、关键): 1.重点:梯形面积的计算公式。2.难点:梯形面积计算公式的推导过程。
3.关键:通过操作实践,将梯形转化为平行四边形和三角形,探索梯形与平
行四边形、三角形的关系。
四、课型与教法: 课型:新授课。
教法:讲练结合法、教具演示法
五、教具:模型、直尺、课本
六、教学过程: 1.复习引入: a、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:模型出示。
b、引入:
出示梯形模型,问:这是什么图形?它的面积是多少?同学们还不会
计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计 算方法。2.讲解新课
同学们,你们能否用以前学过的知识求下面梯形的面积
AhD下面就跟老师一起讨论吧!
aBbAhDbaBC
(一)、C我们把梯形ABCD分成三角形ABD和三角形BCD,梯形ABCD的面积等于ΔABD的面积加上ΔBCD的面积
即:S梯形ABCD=SΔABD+SΔBCD
=a×h÷2+b×h÷2
=(a+b)×h÷2(二)、我们可把梯形ABCD看成是平行四边形ABED加上三角形BCE 梯形ABCD的面积等于平行四边形ABED的面积加上三角形BCE的面积
即:S梯形ABCD=S□ABED+S△BCE AhDbaBEC= a×h+(b-a)×h÷2 = a×h+b×h÷2-a×h÷2 = a×h÷2+b×h÷2 =(a+b)×h÷2
(三)、AhDaBbhFbCaE
我们可以把梯形ABCD再复制出一个一样的梯形,如图所示
梯形ABCD的面积等于平行四边形的面积除以二
即:S梯形ABCD=S□ADDA÷2
=(a+b)×h÷2
结论:梯形的面积=(上底+下底)×高÷2
表示为S梯形ABCD=(a+b)×h÷2
例1.我国三峡水电站大坝的横截面的一部分是梯形(如图所示),求它的面积.(P89)
36m135m120m梯形的面积是:S=(a+b)×h÷2
=(36+120)×135÷2
=10530m
答:梯形的面积是10530m。
3.练习巩固
1.一个梯形,它的上底6厘米,下底10厘米,高5厘米,求它的面积
2.一辆汽车侧面的两块玻璃是梯形(如图所示),它们的面积分别是多少(P89)
40cm45cm40cm71cm65cm
4.小结:梯形面积的计算公式为: 梯形的面积=(上底+下底)×高÷2
表示为S梯形ABCD=(a+b)×h÷2
5.布置作业:
一条新挖的水渠,横截面是梯形。渠口宽2.8m,渠底宽1.4m,渠深1.2m。它的截面积的面积是多少平方米?(P91 第5题)
第四篇:《梯形面积的计算》教案
人教新课标五上:《梯形面积的计算》教案
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点:正确地进行梯形面积的计算。
教学难点:梯形面积公式的推导。
教学准备:投影、小黑板、若干个梯形图片(其中有两个完全一样的。
教学过程:
一、导入新课
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
3、创设情境:
投影显示:
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
二、新课展开
1、操作探索
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
提问:你拼成了什么图形,怎样拼的?演示一遍。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
⑶想一想:梯形的面积怎样计算?
学生讨论,指名回答,师板书。
梯形的面积=(上底+下底)×高÷2
师:(上底+下底)表示什么?为什么要除以2?
⑷做一做:计算“前面出示的梯形”的面积。
2、扩散思维 师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
3、抽象概括
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
生:S=(a + b)h ÷2
4、反馈练习
完成课本P81做一做(一人板演)
三、应用深化
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
解释:举例说明“横截面”的含义。学生尝试计算:
(2.8 + 1.4)×1.2÷2
= 4.2×1.2÷2
=5.04÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
2、反馈练习:完成P82第1题
四、巩固练习:P82第2题
五、全课小结
六、作业:P82第3、4题
教学后记:实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
第五篇:梯形的面积计算
“梯形面积的计算”说课稿
各位老师大家好,我今天的说课题目是“梯形面积的计算”,下面我将从说
教材、说教学目标、说教学重难点、说教学方法、说教学过程、说板书设计、说作业布置这七个方面展开我今天的说课。
一、说教材
“梯形面积计算”是苏教版九年义务教育六年制小学数学第九册第二单元多边形面积计算中的一部分内容,梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。学生已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。
二、说教学目标
基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,特拟定如下教学目标:
(1)知识与技能:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
(2)过程与方法:在公式的推导活动中,培养学生的推理能力、分析能力和实践能力。(3)情感态度价值观:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。
三、说教学重难点
本课的教学重点:梯形面积算公式的推导过程;应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
教学难点:理解在计算梯形面积时,为什么要“除以2”
四、说教学方法
(一)教法
根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现 问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。
直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系; 运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括,获得结论。组织变式,有层次练习,增加体验,应用知识解决问题。
(二)学法
教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。
小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发。
采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。
五、说教学过程
为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下六个环节来组织学生开展探究活动。
(一)巩固复习,导入新课
复习求平行四边形和三角形的面积。要求学生回忆平行四边形形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。(复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)
给出一般梯形(上底,下底,高)。老师提出疑问:你们如何去求梯形面积。学生用自己的模型拼图,小组讨论学习。(引起学生求知欲,激发学生探索,自主学习)
(二)动手操作,探究新知
在学生说出三角形、平行四边形的推导过程的基础上,安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。
为贯彻“学习是学习者主体主动建构的过程”这一理念,在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。自主探究学习,出示例题,引导学生动手操作,在拼拼剪剪中实现转换,使学生感受两个完全 一样的梯形都可以拼成一个平行四边形,同时并叙述梯形与转化后图形之间的关系、探究、讨论,用拼图的方法,推导梯形面积的计算公式。让学生在小组间相互交流,展示不同的思考方法。学生汇报时要充分肯定他们的推理与计算。
平行四边形的底=梯形的上底+下底
平行四边形的高=梯形的 高
(学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展。在这的同时借助多媒体的演示课件,和教师准备的教具动手操作,帮助学生理解图形的转化,数形结合,使抽象的知识变得直观形象,给学生一个创新的空间。)
(三)推导公式,字母表示
学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,这时就要我们教师点拨。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,结合板书与平行四边形的面积计算方法,应用演绎推理,师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。孩子理解了梯形的面积计算公式,就让他说一说,既是巩固新知,又在帮助孩子深化理解。
师生共同总结梯形面积的计算公式:梯形面积=(上底+下底)×高÷2 字母表示:S=(a+b)h÷2(通过拼组活动,培养学生的动手操作能力,合作意识,及归纳总结能力。)
(四)、公式应用、强化练习
练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下两个层次的练习: 1.巩固练习(直接用公式求面积):
书第20页,练一练1、2、3 2.发展与综合性练习
书第21页,练习四4、5、6(学生尝试解答,充分认识梯型与平行四边形的面积关系,通过多方面练习让学生掌公式、运用公式,提高学生运用公式解决问题的能力)
(五)、小结 今天我们学习了梯形面积的计算,回想一下,这节课学了什么?我们是如何推导出它的面积计算公式的?想一想,通过剪、拼能把一个梯形转化成平行四边形吗? 要计算梯形的面积,必须要知道几个条件?还要注意什么?为什么?(通过结课让学生对整节课内容进行回顾,形成知识整合)
(六)、布置作业,课外延伸
1.书P21第1、2、3 2.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.它的横截面的面积是多少平方米?
3.一块梯形地,上底是30米,下底减少10米变成一个平行四边形,它的面积就是1500平方米,原来梯形的面积是多少?
六、说板书设计
在教学的过程中逐步形成,这样的设计体现了教学内容的系统性和完整性,又做到了重点突出,板书的结构便于演绎推理得出计算公式。
梯形面积的计算
平行四边形的底=梯形的平行四边形的高=梯形的 梯形面积=(上底+下底)×高÷2 字母表示:S=(a+b)h÷2
七、说作业布置
在本课的学习中,我紧扣生活实际,从学生已有的知识基础出发,让学生感受到学习的现实意义,有效开展探究活动,引导学生主动沟通已有知识内在联系,帮助学生更好地掌握知识,形成技能,培养素质。因而在作业布置这一块安排了书中的基础题,以巩固基础知识,同时设计了两道与生活有关的题目,将课堂上所学的知识真正运用到生活中。