实际问题与一元一次方程油菜种植的计算_教案人教版

时间:2019-05-12 17:18:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《实际问题与一元一次方程油菜种植的计算_教案人教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《实际问题与一元一次方程油菜种植的计算_教案人教版》。

第一篇:实际问题与一元一次方程油菜种植的计算_教案人教版

油菜种植的计算

教学内容

课本第105页内容.

教学目标

1.知识与技能

进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力. 2.过程与方法

经历“探究2”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法.

3.情感态度与价值观

发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值.

重、难点与关键

1.重点:理解和掌握基本的数学知识、技能、数学思想方法,•会用一元一次方程解决实际问题.

2.难点:列一元一次方程表示问题中的数量关系. 3.关键:明确问题中的数量关系,找出等量关系.

教具准备

投影仪.

教学过程

一、引入新课

上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题.

二、共同探究

某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点.

(1)今年与去年相比,这个村的油菜种植面积减少了44亩,•而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?

(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、•今两年油菜种植成本与将菜油全部售出所获收入.

教师提出问题后,组织学生分四人小组讨论、探究.

首先让学生明确“含油率”、“10个百分点”、“产油量”等词的含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法.

分析:问题中有基本等量关系.

产油量=油菜籽亩产量×含油率×种植面积

解:(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.由上面基本等量关系,得,去年产油量=160×40%×(x+44);

今年产油量=(160+20)×(40%+10%)x;

根据今年比去年产油量提高20%,列方程:

(160+20)×(40%+10%)x=(1+20%)×160×40%×(x+44)90x=76.8(x+44)13.2x=3379.2 x=256 因此今年油菜种植面积是256亩.

(2)去年油菜种植成本为210(x+44)=210×300=63000(元)

售油收入为 6×160×40%×300=115200(元).

售油收入与油菜种植成本差为115200-63000=52200(元)

今年油菜种植成本为210x=210×256=53760(元)

售油收入为

6×180%×50%x=6×180×50%×256=138240(元)138240-53760=9240(元)

今年比去年售油收入增加了 138240-115200=23040(元)

今年比去年种植油菜纯收入增加了32280元.

三、巩固练习

课本第108页第5题.

由学生独立思考,求出解,若学生有困难,教师加以引导分析.

解:设每箱有x个产品,则8箱可装8x个产品,5台A型机器,一天生产8x+4个产品,•每台A型机器一天生产8x45个产品.

11x17 同样,可知每台B型机器一天生产个产品.

相等关系是每台A型机器比B型机器一天多生产1个产品.

由此可列方程:8x45-11x17=1 去分母,得 7(8x+4)-5(11x+1)=35 去括号,得 56x+28-55x-5=35 移项,合并,得 x=12 答:每箱有12个产品.

四、课堂小结

本节课是利用一元一次方程来解决商品销售中所涉及的一些概念公式来解决实际问题.

五、作业布置

1.课本第108页习题3.4第6、7题.

2.选用课时作业设计.

第二篇:七年级数学3.4.2 实际问题与一元一次方程油菜种植的计算 教案人教版

亿库教育网

http://www.xiexiebang.com 3.4.2 油菜种植的计算(探究2)

教学内容

课本第105页内容.

教学目标 1.知识与技能

进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力. 2.过程与方法

经历“探究2”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法.

3.情感态度与价值观

发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值.

重、难点与关键

1.重点:理解和掌握基本的数学知识、技能、数学思想方法,•会用一元一次方程解决实际问题.

2.难点:列一元一次方程表示问题中的数量关系.

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com 3.关键:明确问题中的数量关系,找出等量关系.

教具准备

投影仪.

教学过程

一、引入新课

上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题.

二、共同探究

某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点.

(1)今年与去年相比,这个村的油菜种植面积减少了44亩,•而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?

(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、•今两年油菜种植成本与将菜油全部售出所获收入.

教师提出问题后,组织学生分四人小组讨论、探究.

首先让学生明确“含油率”、“10个百分点”、“产油量”等词的亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com 含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法.

分析:问题中有基本等量关系.

产油量=油菜籽亩产量×含油率×种植面积

解:(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.

由上面基本等量关系,得,去年产油量=160×40%×(x+44);

今年产油量=(160+20)×(40%+10%)x;

根据今年比去年产油量提高20%,列方程:

(160+20)×(40%+10%)x=(1+20%)×160×40%×(x+44)90x=76.8(x+44)13.2x=3379.2 x=256 因此今年油菜种植面积是256亩.

(2)去年油菜种植成本为210(x+44)=210×300=63000(元)

售油收入为 6×160×40%×300=115200(元).

售油收入与油菜种植成本差为115200-63000=52200(元)

今年油菜种植成本为210x=210×256=53760(元)

售油收入为

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com 6×180%×50%x=6×180×50%×256=138240(元)138240-53760=9240(元)

今年比去年售油收入增加了 138240-115200=23040(元)

今年比去年种植油菜纯收入增加了32280元.

三、巩固练习

课本第108页第5题.

由学生独立思考,求出解,若学生有困难,教师加以引导分析.

解:设每箱有x个产品,则8箱可装8x个产品,5台A型机器,一天生产8x+4个产品,•每台A型机器一天生产 同样,可知每台B型机器一天生产

11x178x45个产品.

个产品.

相等关系是每台A型机器比B型机器一天多生产1个产品.

由此可列方程:8x45-

11x17=1 去分母,得 7(8x+4)-5(11x+1)=35 去括号,得 56x+28-55x-5=35 移项,合并,得 x=12 答:每箱有12个产品.

四、课堂小结

本节课是利用一元一次方程来解决商品销售中所涉及的一些概

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com 念公式来解决实际问题.

五、作业布置

1.课本第108页习题3.4第6、7题. 2.选用课时作业设计.

第二课时作业设计

解答题: 1.已知某年某月共有四个星期六,这四天的号数之和为50,你知道这四个星期六分别是几号吗?

2.据了解,个体服装店销售只要高出进价的20%便可盈利,•但老板们常以高出进价的50%~100%标价,假如你准备买一件标价为200元的服装,应在什么范围内还价?

3.小丁编制了一个计算程序,当输入任何一个有理数,显示屏的结果总等于所输入有理数的2倍与1的和.如果小丁先输入一个数,再将所显示的结果重新输入,•这时显示的结果为11,试求小丁原来输入的数是多少?像这样连续输入多少次后,•所得结果为95?

4.聪聪到希望书店帮同学们买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com 中,聪聪在什么情况下,办会员卡与不办会员卡一样?当聪聪买标价为200元的书时,怎么做合算,能省多少钱?

答案: 1.2号,9号,16号,23号,设这个月的第一个星期六为x号,则x+(x+7)+(x+14)+(x+21)=50 2.还价范围可定在120元~160元.

设这件服装进价为x元,若老板以高出进价的50%标价,则(1+50%)x=200,x≈133,若老板以高出进价的100%标价,则(1+•100%)x=200,x=100,可见进价为100元~133元之间.

3.设小丁输入的数为x,则2(2x+1)+1=11,x=2;5次 4.设聪聪买标价共计x元的书时,办卡与不办卡一样,则20+0.8x=x,x=100,200+200×0.8=180(元),200-180=20(元),所以当买标价共计100元的书时,•办卡与不办卡一样,当买标价共计200元时,办卡合算,能省20元.

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com

http://www.xiexiebang.com

第三篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.选用课时作业设计

第一课时作业设计

一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价

⒋ 一件商品标价a元,打九折后售出为 a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a

三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?

答案:

一、1.148.5 38.5 2.1248

二、⒊ B ⒋ B •

三、⒌ 甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.

第四篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率= 商品利润÷商品进价.(3)打x折的售价=原售价×

x 10

二、新授课

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

小红以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.

第五篇:七年级《实际问题与一元一次方程》教案

七年级《实际问题与一元一次方程》教

一、教学目标

【知识与技能】能利用方程解决实际问题。

【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

二、教学重难点

【重点】建立电话计费问题的方程模型。

【难点】建立电话计费问题的方程模型。

三、教学过程

导入新

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2对问题的初步认识

问题1:下面表格给出的是两种移动电话的计费方式:

黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》

你了解表格中这些数字的含义吗?

师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢?

师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;

若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。

3对问题的深入探究

问题3:通过大家的讨论,你对电话计费问题有什么新的认识?

师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;

若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为tin。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

下载实际问题与一元一次方程油菜种植的计算_教案人教版word格式文档
下载实际问题与一元一次方程油菜种植的计算_教案人教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    教案竞赛实际问题与一元一次方程教案

    探究(一)销售中的盈亏 大连世纪中学 初秀娟 教案背景:由于本节问题的背景和表达都比较贴近实际,有必要让学生了解,所以设计了此教案 教材分析:本课是3.4节《实际问题与一元一次方......

    实际问题与一元一次方程教案(五篇模版)

    3.4实际问题与一元一次方程探究(2) --销售中的盈亏 2、某服装店为了清仓,某件成本为90元的衣服亏损了10%,则这件衣服卖了_ _元 3、一件衬衣进价为100元,利润率为20% 这件衬衣售价......

    实际问题与一元一次方程说课稿

    实际问题与一元一次方程说课稿 实际问题与一元一次方程说课稿1 一、说教材的地位。本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进......

    实际问题与一元一次方程教学反思[精选合集]

    实际问题与一元一次方程是由实际问题列一元一次方程和解一元一次方程的基础上,进一步以“探讨”的形式讨论如何解决实际问题,下面给大家分享实际问题与一元一次方程的教学反思......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 实际问题与一元一次方程教学反思1 调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程 ——《打折销售问题》教学反思 单位:李家学校 姓名:李新宇 时间:2008.11 实际问题与一元一次方程 ——《销售打折问题》教学反思 反思一:实际问题与一......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 姚坪中学李勇 在我校开展的“课内比教学”活动中,我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下; 一、成功方面 1......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程---教学反思 程爱珍 本节课主要通过教师层层设问,由浅入深,循序渐进,引导学生对问题的逐步探究,最终得到电话计费问题的解决. 首先从熟悉的校园生活入手,......