初中数学教案《实际问题与一元一次方程》

时间:2019-05-15 01:28:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学教案《实际问题与一元一次方程》》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学教案《实际问题与一元一次方程》》。

第一篇:初中数学教案《实际问题与一元一次方程》

初中数学教案|《实际问题与一元一次方程》

欢迎来到福建教师招考信息网,福建中公教育考试网提供真实可靠的福建教师招聘、教师资格证考试最新资讯,包括招考公告、考录进程、考试培训、面试辅导、资料下载等。我们在福建教师招考信息网等着你回来。

小编推荐>>> 教师考试面试备考指导|13个学科教案【汇总篇】(按住ctrl点击即可查看)

一、教学目标

【知识与技能】能利用方程解决实际问题。

【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

二、教学重难点

重点:建立电话计费问题的方程模型。难点:建立电话计费问题的方程模型。

三、教学过程 1.导入新课

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2.对问题的初步认识

问题1:下面表格给出的是两种移动电话的计费方式:

你了解表格中这些数字的含义吗? 师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢? 师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。3.对问题的深入探究

问题3:通过大家的讨论,你对电话计费问题有什么新的认识? 师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为t min(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

师生活动:教师提出问题,学生思考并制作表格,教师巡视。教师请学生填写下面的表格,其他同学适当补充。

观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗? 师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。

教师追问:

(1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

(3)当主叫时间“大于150min且小于270min”或“大于270min且小于350min”时,分别选择哪种计费方式比较省钱?

对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

问题5:综合以上的分析,可以发现:

当?时,选择方式一省钱;当?时,选择方式二省钱。师生活动:教师提出问题,学生思考并回答。4.小结

请学生回顾电话计费问题的探究过程,回答以下问题:(1)探究解题的过程大致可以包含哪几个步骤?(2)电话计费问题的核心问题是什么?(3)在探究过程中用到了哪些方法?你又哪些收获? 5.巩固应用

利用我们在“电话计费问题”中学会的方法,探究下面的问题。

如何根据复印的页数选择复印的地点使总价比较便宜? 师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。6.布置作业 课本习题1,3。

四、板书设计

实际问题与一元一次方程 例题: 分类讨论: 总结:

五、教学反思 略

查看更多教案,推荐您阅读:面试备考指导|13个学科教案【汇总篇】(按住ctrl点击查看)

第二篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.选用课时作业设计

第一课时作业设计

一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价

⒋ 一件商品标价a元,打九折后售出为 a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a

三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?

答案:

一、1.148.5 38.5 2.1248

二、⒊ B ⒋ B •

三、⒌ 甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.

第三篇:实际问题与一元一次方程说课稿

实际问题与一元一次方程说课稿

实际问题与一元一次方程说课稿1

一、说教材的地位。

本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力.

教学重点和难点、关键:

重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力.

难点是正确地列方程。

关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系.

二、说教学方法。

在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

三、说学生的学法。

学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学.

四、设计思路。

我利用提纲中的几个简单的习题,充分发挥学生的合作交流的意识.让学生体会数学在实际生活中的应用.最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识.使他们能更了解市场运作.

五、教学过程

整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用.教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

实际问题与一元一次方程说课稿2

尊敬的各位评委:

大家好,我今天说课的课题是人教版数学七年级上册第三章第四节《实际问题与一元一次方程》。下面我将从教材分析、学情分析、教法与学法、教学过程和板书设计五个方面对本节课的设计进行说明。

首先我们来看教材分析,教材分析包括3部分。

一、教材分析

1、教材的地位和作用

本节课是在学习了解一元一次方程的基础上,进一步探究如何找出实际问题中的相等关系,学习如何用一元一次方程解决实际问题,是实际问题与一元一次方程的第一课时,示范性强,同时也为下节课探究问题做铺垫,在本章中起着承上启下的作用。

根据新课标素质培养的要求通过本节课的学习,我认为应该达到以下教学目标

2、教学目标

(1)知识目标:

分析实际问题,寻找相等关系,建立方程模型,并根据问题的实际背景进行检验。

(2)能力目标:

培养学生分析问题,解决实际问题,归纳整理的能力。

(3)情感目标:

培养学生勤于思考、乐于探究的学习习惯,体会数学的应用价值,激发学生学习兴趣,培养学生的爱国情怀和自强不息的精神。

3、教学的重点及难点

本着课程标准,在吃透教材的基础上,我认为本节课的重点为

重点:列出一元一次方程解决实际问题

在列方程解应用题的时候找出最正确的等量关系式十分重要,因此本节课的难点为

难点:找出问题中的相等关系

下面再从学情分析谈一谈

二、学情分析

七年级学生初学列方程解决实际问题时,往往弄不清解题步骤,不设未知数就直接进行列方程,我认为学生可能存在两方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

还可能存在分析问题思路不同,列出方程不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

(基于以上我对教材和学情的分析,我采用了以下教学方法,和学法指导)

三、教法与学法

教法:

教学过程中坚持启发式教学的原则,采用讲练结合、探索发现法进行教学,引导学生从实际生活中抽象出数学问题,充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。

学法:让学生经历由简单到复杂的学习过程,教师设疑提问,学生自己体会解决实际问题的过程并鼓励学生自己归纳总结。

通过以上我对教材、学情、教法与学法的分析,我设计了下面的教学过程:

四、教学过程

1、创设情境,引入新课

本节课开始我将讲解华罗庚的生平,引入新课,这样可以更好地激发学生的学习兴趣

国际数学家华罗庚,19出生于江苏金坛县,被誉为中国现代数学之父。初中毕业后因交不起学费而中途退学,但经过顽强自学完成了高中和大学的全部课程,20岁时进入清华大学工作,6年后前往剑桥大学,他一生的1/5的时间在国外学习。此后,他毅然放弃了美国的优厚待遇,将余生的34年献给了祖国。

(1)提出问题

你能算出华罗庚活了多少岁吗?

(2)探究问题

a.他的一生分为几个重要阶段?

b.如果设他活了x岁,各个阶段如何表示?

c.你能根据题意找出相等的关系吗?

(3)解决问题

他的一生分为了三个阶段:

国内求学工作+出国学习+归国工作=他的一生

学生经历提出问题、探究问题、解决问题的过程,体会用一元一次方程解决简单实际问题的步骤,让学生从大段文字中提取有用的数学信息,培养学生的分析问题、寻找相等关系、解决问题和提取信息的能力,并且我认为可以趁此机会对学生进行爱国主义和自强不息的精神教育,这样可以实现情感目标,更好的体现新课标的教学理念。这就是本节课要学习的实际问题与一元一次方程问题,接下来我将对例题进行讲解,例1是配套问题,

2、例题讲解

例1、某车间有22名工人,每人每天可以生产1200个螺钉或20xx个螺母。1个螺钉需要配2个螺母。为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人个多少名?分析:

每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套。

螺母的数量=螺钉数量的2倍是本题中特有的相等关系,是解决本例题的重点所在。

每天每人的工作效率x人数=每天的工作量(产品数量),是工作问题中的基本相等关系,上述两者结合起来就能列出方程。本题有两个未知数,在此可以鼓励学生勤于思考,设其中哪个为x都可以。

通过对例1的讲解学习,可以使学生自己寻找问题中的基本相等关系,引导学生体验用一元一次方程解决实际问题的基本过程,让学生突破找相等关系的难点。

为了加深学生对解题过程的理解及自我分析问题能力的`提高,下面安排了例2。我认为例2可以采取教师引导,学生为主体自己写出分析过程,从而师生共同解决实际问题。

例2、整理一批图书,由一个人做需要40 h完成。现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作?根据我对本课的理解,我认为此题关键在于以下三个问题

1、引导学生自己找出正确的基本相等关系两时段的工作量之和=总工作量

2、使学生理解在工程问题中把全部工作量简单表示为1,那么人均效率是个平均值,它

表示平均每人每单位时间完成的工作量

3、工作量=人均效率X人数X时间

解决了以上3个问题,题目自然迎刃而解,通过对稍微增加难度的例2的学习探究,可以更进一步提高学生寻找相等关系的能力以及分析解决问题的能力,再次经历设、列、解、检、答的过程,以便下一步的过程归纳

下面让学生由以上三道题的过程,自己试着总结出用一元一次方程解决实际问题的基本过程。

3、归纳总结

这样设计,可以让学生自己讨论,自己归纳,从而提高学生的归纳概括能力

4、巩固练习

接下来通过巩固练习,让学生自己练习两道问题,第一题是例1的配套问题,第二题是例2的工程问题,检查学生对本节课的掌握情况,以便我可以及时进行补充,也起到了加深理解,巩固知识的作用。(检查学生对本节课的掌握情况,对学生易错点进行纠正,并再次强调如何列一元一次方程,提高学生解题能力)

5、小结反思

通过以上的学习,我认为可以让学生自己总结本节课的学习内容,进一步提高学生的归纳概括能力。

6、布置作业

让学生举一反三,熟练掌握本节课的知识。

五、板书设计

下面是我的板书设计,呈现给大家的是本节课的主要内容,通过板书的直观形象可以再次加深学生对知识的理解和记忆

我的说课到此结束,谢谢大家!

使学生能在更加贴近实际生活的问题情境中运用所学数学知识,提高分析问题和解决问题的能力。

实际问题与一元一次方程说课稿3

尊敬的各位评委老师,大家好!

我今天说课的课题是“销售中的盈亏”,是人教版七年级数学第三章第四节《实际问题与一元一次方程》探究一的内容,这节课的重点就是利用一元一次方程解决商品销售中的实际问题。下面我分别从教材、教法、学法、教学过程四部分来说说我的备课设想。

一、教材分析

前面已经学过解一元一次方程和由实际问题列一元一次方程。本节课是在此基础上进一步学习如何用一元一次方程解决实际问题。由于涉及的知识较多,所以学生学习有一定的难度。通过本节课的学习,熟练掌握列一元一次方程解决实际问题的思维方法,为我们以后学习用二元一次方程组、分式方程以及一元二次方程解决实际问题打下良好的基础。针对本节课的重要性,结合初中数学现行课程标准和素质教育的要求,以及初一学生的认知规律和实际水平,确定教学目标。

(一)教学目标

知识与技能

1、理解商品销售中的进价、售价、利润、利润率的含义以及这些基本量之间关系。

2、能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。

3、能利用一元一次方程解决商品销售中的盈亏问题。

过程与方法

通过探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。

情感态度与价值观

让学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生学习数学的兴趣。

(二)重点、难点

对于初一学生来说,阅读理解能力和有关商品销售知识有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售问题列方程的重要依据,因此确定本节的重、难点如下:

重点:能利用一元一次方程解决商品销售中的实际问题。

难点:弄清商品销售中的“进价”、“售价”、“利润” 、“利润率”的含义以及这些基本量之间的关系。

突破本节课重、难点的方法 :弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系。

(三)、教具准备 多媒体课件

二、教学策略

根据这节课的特点,在教学策略上分为两步:

(一)问题——在生活中产生

根据初一学生活泼、好奇的性格特点,课程一开始就创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题、提出问题和解决问题。上一节课我提前给学生留了一个特殊的作业,让他们作一个市场调查,了解进价、售价、利润、利润率之间的关系,初步理解在销售中的盈亏问题,为本节课的学习奠定基础。

(二)问题——在探究中解决

考虑到本节课的特点,我准备充分发挥每个学生的主动性,让学生先认真分析各自的调查情况,再结合多媒体图片和老师出的问题,引导学生自主学习、合作学习和探究学习,以小组的形式讨论、归纳、总结出“进价”“售价”“利润”“利润率”之间的关系,进而利用关系探究新知,解决实际问题。

三、学情分析

1、学生社会知识有限,往往弄不清销售问题中的有关概念,理解不清概念之间的关系。

2、学生在列方程解应用题时,可能存在两个方面的困难:

(1)抓不准相等关系;

(2)习惯于用小学算术解法,不适应用方程解决应用题。

3、学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是。作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4、学生在学习过程中可能不完全理解概念之间的关系,而习惯于套题型,找解题模式。

四、教学过程

根据初一学生的认知规律和新课标教学理念,在课堂教学中分为七步:

(一)创设情境,导入新课

出示多媒体图片,创设问题情境。

(二)提出问题,归纳公式

学生以小组合作,讨论得出下面概念的含义。

进价:购进商品时的价格(有时也叫成本价)

售价:在销售商品时的价格(有时叫卖出价)

打折:卖货时,按照标价乘以十分之几或百分之几十。

利润:在销售过程中的纯收入。即:利润 = 售价 - 进价

利润率:在销售过程中,利润占进价的百分比 。即:利润率 = 利润÷进价×100%

(设计意图:为了解同学们的调查情况,设置几个概念性的小问题,由学生思考回答,教师再进行总结,既可以让学生知道销售中的一些日常用语,增长知识,又可以为新课的展开作好理论上的准备。)

请学生完成下面两道题:

①一双双星运动鞋打八折后是100元,则原价是多少元?

②进价为80元的一件上衣卖了120元,这件上衣的利润是多少?利润率是多少?

(设计意图:在已有理论经验的基础上,以小组的形式分析、讨论、交流完成,充分发挥学生的主体作用,学生会有获得新知的喜悦感。问题①讨论原价、售价、打折之间的关系;问题②探求进价、售价、利润、利润率之间的关系;通过解决这两个问题,进一步突出、强化本节的重点—利润率的计算公式以及它的变形公式。)

总结出公式:

利润率= ×100% = ×100% 售价=进价×(1+利润率)

(三)探究新知(学习新课)

例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。卖这两件衣服总的是盈利还是亏损,还是不盈不亏?

在学习这道例题时我设计了4个教学环节。

第一个环节:提出问题一

(1)你能从大体上估算卖这两件衣服的盈亏情况吗?

(2)如何说明你的估算是正确的呢?

(3)如何判断盈亏?

(设计意图:让学生体会先估算,后准确计算可减少判断错误,同时引出要利用方程模型来解决问题。)

第二个环节:提出问题二

(1)这一问题情境中哪些是已知量?

(2)哪些是未知量?

(3)如何设未知数?

(4)相等关系是什么?

(5)如何列方程?

(设计意图:为了引导学生突破难点,我采用提问的方式帮助他们逐步解决问题。)

第三个环节:提出问题三

盈利25%、亏损25%的意义?

(设计意图:更进一步让学生准确理解盈利和亏损的含义。)

第四个环节:展示实际问题转化为数学问题的方法步骤

设盈利25%的那件衣服的进价是x元,它的商品利润就是0.25x元,根据售价=进价×(1+利润率)这一相等关系列出方程x(1 + 0.25) = 60,解得x=48 。设另一件衣服的进价为y元,它的商品利润是 - 0.25y元,列出方程 y (1- 0.25) = 60 ,解得 y =80 。(亏损就是负盈利,即利润为-0.25y元)

两件衣服的进价是x + y = 48 + 80 = 128 元,而两件衣服的售价是60 + 60 = 120元,进价 大 于售价,可知卖这两件衣服总的盈亏情况是亏损8元。(将结论与先前的估算进行比较)

(设计意图:通过学习前面三个问题,学生掌握了一些销售知识,在此基础上,我针对例题又设计了这道填空题,使学生初步感受“数学建模”的方法,更好地培养学生有条理地进行思考和表达,从而突破本节课重点。)

(四)新知应用

1、巩固练习

新华书店出售A、B两种不同型号的学习机,每台售价为960元。A型一台盈利20%,B型一台亏损20%。该书店出售A、B型学习机各一台是盈利还是亏损,或是不盈不亏?

2、拓展延伸

商场将某款服装按标价打9折出售,仍可盈利10%,已知该款服装的标价是330元,那么该款服装的进价是多少元?

(设计意图: 为了及时检测学生掌握的情况,培养学生类比解决问题的能力,巩固所学方法,渗透数学建模思想,设计了两道练习题。)

(五)总结升华

让学生谈谈收获:

1、本节学了哪些知识?

2、商品销售中的盈亏是如何计算的?

3、用一元一次方程解决实际问题的关键是找出什么?

(设计意图:通过师生对话式交流,让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲。)

(六)布置作业

作业:课本习题3.4第3题、第4题

(七)板书设计

销售中的盈亏

1、基本概念: 2、公式

进价: 利润率= ×100% = ×100%

售价: 售价=进价×(1+利润率)

利润:

利润率:

(设计意图: 简洁美观的板书设计给学生以美感,同时可以使学生感到脉络清晰,对本节的重点有个整体认识。)

我的说课完毕,谢谢各位评委老师!

实际问题与一元一次方程说课稿4

下面是我对义务教育课程标准实验教材七年级第三章实际问题与一元一次方程的说课,主要从以下几个方面说起:

一、说教材的地位。

本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力。

教学重点和难点、关键:

重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力。

难点是正确地列方程。

关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系。

二、说教学方法。

在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

三、说学生的学法。

学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学。

四、设计思路。

我利用提纲中的几个简单的习题,充分发挥学生的合作交流的意识。让学生体会数学在实际生活中的应用。最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识。使他们能更了解市场运作。

五、教学过程

整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用。教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

实际问题与一元一次方程说课稿5

各位老师你们好!今天我要为大家讲的课题是人教版七年级(上)第三章第四节《实际问题与一元一次方程》的第三课时。首先,我对本节教材进行一些分析:

一、教材分析:

1、教材所处的地位和作用:

本节内容在全书及章节的地位是:《实际问题与一元一次方程》是数学教材七年级(上)第三章第三节内容。在此之前,在学生已学习了由实际问题抽象出一元一次方程模型和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高。可以说本节是一元一次方程应用的延伸与拓广。同时也为后继学习二元一次方程组埋下伏笔。

2、学情分析:

七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

二、教学目标:

1、知识目标:

(1)建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。

(2)根据问题的实际背景进行检验,利用方程进行简单推理判断。

2、能力目标:

在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力。

3、情感态度与价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值

三、教学重点、难点:

根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

重点:建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。

难点:正确地建立方程。

第四篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率= 商品利润÷商品进价.(3)打x折的售价=原售价×

x 10

二、新授课

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

小红以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.

第五篇:“实际问题与一元一次方程”教学设计

“实际问题与一元一次方程”教学设计

教材分析

本节是建立实际问题的方程模型,通过探究活动,可进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。由于问题背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,所以在探究过程中正确地建立方程是主要难点,突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。学情分析

七年级学生具有好奇心、求知欲较强,因此本课可引导学生以小组为单位开展合作学习,学会如何完整表达自己的见解和解题过程,让其学会倾听、学会有目的、有针对性的思考、讨论,让他们真正参与到课堂活动中来;探究问题时,先提问,了解学生的判断,然后再通过精确计算加以论证,突显方程的作用,培养学生用数学的意识。设计理念:

采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。教学目标:

1.能找出商品销售问题中的相等关系,列出方程,掌握商品盈亏的求法。2.培养学生分析问题,解决实际问题的能力。

3.在探索活动的学习过程中,形成良好的学习方式和学习态度,并感受数学的价值。

教学重点与难点:

①重点: 让学生知道商品销售中的盈亏的算法,并能运用方程解决生活中的一些简单销售问题。

②难点: 弄清商品销售中的“进价”“标价”“售价”及“利润””利润率”的含义和它们之间的等量关系。设未知数找相等关系,如何选择未知数。教学准备 多媒体课件 教学课时 1课时

教学过程(师生活动)

一、创设情景

引入课题 接触过商品销售的同学请举手!在商品销售过程中涉及到的量很多,你能举出一些来吗?在商品销售的过程中,生意人最关注的是什么?我们先来欣赏一组图片:(课件)出示街头打折图

问题:那么这些商家是不是真的不挣钱,做亏本买卖呢?这节课我们就来研究这个问题。

设计意图:数学源于生活,从学生比较熟悉的身边问题开始,唤起学生原有的认知,由此引入新课。明确本节内容。能给学生一种轻松的心理氛围,易于学生学习新知识。

二、明确概念,揭示关系 1.打折销售中的基本概念

(1)原价(有时称标价、定价):在销售时标出的价格;(2)售价(有时称现价、卖价):在销售商品时实际售出的价格;

(3)打折:卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折。(或理解为:售价占标价的百分率)

(4)进价(有时也叫成本):商家在购进商品时的价格;(5)利润:在销售商品时的纯收入。在教材中我们规定: 利润=售价-进价;

(6)利润率:利润占进价的百分率,即 利润率=利润进价 ×100%。2.相互关系

(1)利润=售价-进价;

(2)利润率=利润÷进价(或成本)×100%;

「练习」

⑴500元的9折价是_____元,x折价是_____元。⑵某商品的每件销售利润是72元,进价120元,则售价是 _____元。

⑶某商品利润13%,进价为50元,则利润是_____元。⑷某商品原标价为165元,降价10%后,售价为_____元 若成本为110元,则利润为______元。

⑸新华书店一天内销售甲种书籍共卖得1560元,其利润率 为25%,则这一天售出甲种书的总成本为______元。

设计意图:理解问题本身是解决问题的基础,先出示打折销售中的基本概念,引导学生找出数量关系,为下一步解决问题做好铺垫。之后,进行相应练习,有利于对其深刻理解、巩固及提高。

三、例题讲解,合作交流 ⒈明确盈利与亏损:

某商贩以2元/斤进回一批果子,后来,如他以2.3元/斤卖给顾客,则他每斤果子可_____元;如由于某些原因,如他以1.8元卖出去,则他每斤果子_____元。由此让学生分析,你发现了什么?

⑴当售价____进价时是盈利;当售价____进价时是亏损;

⑵指导学生计算两种情况下的利润与利润率,又得到什么样的结论?

当利润值为______(正)数时是盈利,此时利润率的值为______(正);当利润值是_________(负)数时是亏损,此时利润率的值是_____(负)。⒉例题:

某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

四、巩固练习,拓展提高

⒈南宁某文具店某次将进价不同的两个计算器以27元卖出,其中一个盈利35 %,另一个亏本10 %,问这次交易总的盈亏情况怎样?

⒉文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20 %,另一台亏本20 %,则这次出售中商场()A、不赠不赚 B、赚160元 C、赚80元 D、赔80元

⒊某商品进价1000元,标价为1500元,商店要求以利润率不低于5%的售价打折出售,最低可打几折售出此商品

⒋某商品的进价是1530元,标价为1955元,为盘活资金,加快流通,商家快定将该商品打折出售,但又要保证利润率不低于15 %,问该商品应最低打几折出售? ⒌某商人购某一商品的进货价比计划便宜8 %,而售价不变,那么他的利润率可由计划的x %,增加到(x +10)%,则x=()

A、12 B、15 C、30 D、50 ⒍选择题

(1)某人以八折地优惠价买一套服装省了25元,那么这套服装实际用了(D)A、31.25元 B、60元 C、125元 D、100元

(2)某彩电降价30%后,每台售价为a元,则该彩电每台原价应为()A、0.3 元 B、0.7元 C、0.3 a 元 D、0.7 a 元(3)某物品标价为132元,若以9折出售,任可获利10%,则该商品进价是()A、105元 B、106元 C、108元 D、118元

设计意图:让学生学会应用已有知识,学会分析解决实际问题,养成好动脑、动手的习惯,体验成功感,以突破重难点,达到教学目标。另一目的是及时反馈教学效果,查漏补缺,对学有困难的学生给予鼓励和帮助。

五、回顾与小结

1.回顾本节课,我们共同经历了哪几个学习过程? 2.你在本节课上有什么收获?体会? ⒊ 对老师说你有什么困惑?

⒋ 你对本节课上自己的表现是否满意? 回顾所学知识,学会梳理、概括、总结。

六、布置作业。1.108页,第4题

2.某件商品先涨价20%,再降价20%,最后以60元的价格卖出。问这次买卖是盈利还是亏损?盈亏多少?

3.拓展题:围绕某件商品的进价、标价、售价、折数、利润、利润率(利润百分比)编一道数学题,并用方程加以解答。

设计意图:此三个问题分别是基础题、提高题以及拓展题。不同的人在数学上有不同的收获,体现课标中“大众数学”之理念。

教学反思 ⑴有关销售中的一些概念不给严格定义,让学生根据生活经验自然而然地理解、接受和运用它们,而不感到学了没有。并不断巧妙创设情境问题,采用引导、启发、回归式教学方法,这样让学生感到接受容易,有兴趣、有目的学到知识,达到我们的教学目标。⑵在解决问题时,学生的层次各异,活动让中等以下和学习有困难的学生明显感觉信心不足,要注意多和他们交流,帮助他们把复杂的问题化为简单的问题。(2)通过两个问题的探究引导学生理解盈利与亏损决定于两个因素:(总售价与(总)进价。举出生活中一个活生生的例子让学生知道数学知识来源于现实生活,"两个问题中一个是盈利问题,另一个是亏损问题,设置意在将探究中的难点加以分解,为进入探究活动1作好铺垫。

下载初中数学教案《实际问题与一元一次方程》word格式文档
下载初中数学教案《实际问题与一元一次方程》.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程 ——《打折销售问题》教学反思 单位:李家学校 姓名:李新宇 时间:2008.11 实际问题与一元一次方程 ——《销售打折问题》教学反思 反思一:实际问题与一......

    七年级《实际问题与一元一次方程》教案

    七年级《实际问题与一元一次方程》教案 一、教学目标 【知识与技能】能利用方程解决实际问题。 【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程---教学反思 程爱珍 本节课主要通过教师层层设问,由浅入深,循序渐进,引导学生对问题的逐步探究,最终得到电话计费问题的解决. 首先从熟悉的校园生活入手,......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 实际问题与一元一次方程教学反思1 调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 姚坪中学李勇 在我校开展的“课内比教学”活动中,我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下; 一、成功方面 1......

    实际问题与一元一次方程优秀说课稿

    实际问题与一元一次方程 尊敬的各位评委老师,亲爱的同学们,大家好! 我是01号参赛选手,今天我说课的题目是“实际问题与一元一次方程”,本节课选自人教版初中数学七年级上册第三章......

    教案竞赛实际问题与一元一次方程教案

    探究(一)销售中的盈亏 大连世纪中学 初秀娟 教案背景:由于本节问题的背景和表达都比较贴近实际,有必要让学生了解,所以设计了此教案 教材分析:本课是3.4节《实际问题与一元一次方......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思赵凌宇本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本节课内容在知识结构上难度不是很大......