三角形任意两边之和大于第三边教学案例(推荐5篇)

时间:2019-05-12 17:11:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角形任意两边之和大于第三边教学案例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角形任意两边之和大于第三边教学案例》。

第一篇:三角形任意两边之和大于第三边教学案例

教学案例:三角形任意两边的和大于第三边

通伏小学 张永恒

教学内容:人教版八册P82 教学目标:

1、通过动手操作和观察比较,使学生知道三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括的能力以及动手操作的能力;

3、让学生积极参与探究活动,获得成功体验,产生学习数学的兴趣。重点:三角形三边之间的关系

难点:探索发现三角形三边之间的关系。教学准备:小棒、课件 教学过程:

一、引入

1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗? 生:由三条线段围成的图形叫做三角形。

师:不错,那么三条线段就一定能围成三角形吗?能(不能)

师:那我们就来围围看吧。谁愿意上来围?(两生上台演示——评析)

2、师:看来,有的三条线段能围成三角形,有的三条线段不能围成三角形。那下面我们大家都来围围三角形,好不好? 二、三角形三边关系的探究

(一)围三角形,创建研究素材

1、师:(1)同桌两人合作,每次从5根小棒中任取3根来围三角形,将围的情况记录在白纸上。要求分工合作:一人围,一人记录。

2、学生操作(教师指导)

3、反馈:学生汇报能和不能围成的情况(教师板书记录)师:还有吗?情况不少,我们就用省略号来表示吧!

[检测错误情况——对同学们汇报上来的能和不能围成三角形的各种情况,对照自己的记录,看看谁还有意见?]

(二)思考讨论,发现规律

1、师:同学们,能不能围成三角形看来跟三条线段的什么有关?(长度),那么究竟怎么样的三条线段不能围成三角形?怎么样的三条线段又能围成三角形,下面我们先通过自己观察、思考,再与同桌进行讨论来发现其中的奥秘。

2、学生讨论(教师参与)

3、反馈 层次1:

师:下面我们先来看怎样的三条线段不能围成三角形?

(1)生:我们发现两边的和小于(等于)第三边就不能围成三角形。比如2+2小于5,就不能围成三角形。(师板书:2+2<5,)

师:真的吗?来围给我们看看?(生上台围,展示)(2)师:是不是所有的情况都是小于呢?

生:我们发现两边的和等于第三边也不能围成三角形。3+3等于6,就不能围成三角形。(师板书:3+3=6)

师:也请你围给我们看看?(生展示)

检验其余记录下来的情况。(师生齐算,板书算式)层次2:(1)列举发现

师指着板书:这些能围成三角形的三条边又有怎样的关系呢?

生:我们发现两条边的和大于第三条边就能围成三角形。如2+3>4,这样就能围成三角形。(师板书)

师:谁有不同发现?

生:我们认为必须每两条边相加和大于第三条边才能围成三角形。比如2+3>4、2+4>3、4+3>2(师板书)

哪些组还有不同发现?

生:我们认为最短的两边的和大于第三条边就能围成三角形。如只要2+3>4,就能围成三角形。

师:还有吗?(2)辨析

师:各自说说理由吧!生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。

师:举个例子呢?引导学生引用“不能”的情况来反证。

生:比如在刚才不能围成的情况中:3+4<8、8+4>3、8+3>4,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。所以只考虑一种情况是不行的。

师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢? 生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。

(师用实物在黑板上演示)

小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。所以你们两组的观点实际上是一致的。这也就是三角形三边关系的一个

重要结论:三角形任意两边的和大于第三边

三、应用

1、下面哪几组的三条线段能围成三角形?(3、4、5)(2、3、7)(3、3、3)(3、3、6)

2、根据3、3、6这题延伸。要求:拿掉一根3厘米的线段,再重新配一根其它长度的线段,使它们能围成三角形。(取整厘米数)

如果拿掉的是6分米,那么配上的一根最短应该是几?最长可以是几?

3、机动:16分米长的小棒如果要围成一个三角形,我们必须将它截成3段,其中最长的一边最多可以截几分米?为什么?具体可以怎样截,你有没有方法可以将所有的情况不遗漏也不重复的列举出来?(要求边取整分米数)

四、总结

师:这节课你有哪些收获?关于三角形三边关系还有值得我们探索的地方,比如三角形任意两边的差与第三边有怎样的关系?有兴趣的同学课外可以自己进行探索。

(另外还有一种思路:先告诉学生结论,然后通过验证来检查结论是否正确)

六、案例反思

这节课,我始终在教学活动中,以培养学生的自主探讨学习为主,在新授课的过程中能充分发挥学生自主学习的作用。因为教学内容相对简单,我在课上只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,我仅仅起了组织和引导的作用。一节课下来,学生在动手操作、主动探索、交流辩论的过程中,进行自主的归纳、总结,他们在自主学习中获取知识的能力,在操作中感悟数学的能力,均得到较好的发展。

第二篇:三角形两边和大于第三边教学反思

《认识三角形两边之和大于第三边》教学反思

“动手操作”是学生学习的重要方式之一。研究表明:人们在学习时,如果仅靠看和听,最多只能掌握30%的新知,如果做的话,可以达到90%以上。随着新课改的不断深入,动手操作已在课堂教学中得到广泛的运用,学生的积极性提高了,课堂气氛也活跃了。那么,动手操作果真那样神奇,是数学课堂上一切问题的灵丹妙药吗?结合一位教师的案例剖析,我对动手操作产生了新的思考。

教学片段:

师:请四人小组合作,拿出准备好的四捆小棒首尾相接的摆一摆三角形。(小棒的长度是①10cm、6cm、5cm;②6cm、5cm、4cm;③10cm、6cm、4cm;④10cm、5cm、4cm)在摆的过程中如果遇到了问题可以在小组内讨论。

学生操作、讨论。交流。

师:你们在摆三角形的过程中遇到了什么问题?

生:我们小组在摆三角形的过程中,发现第一、二、三捆的小棒都能摆出三角形,但第四捆的三根小棒摆不出三角形。师:其他小组摆的同他们一样吗? 生:一样(齐答)。

师:就是说,用第一、二、三捆的小棒都能摆成三角形,第四捆小棒摆不出三角形。有不同意见吗? 生:没有。

师:那我们就请一组同学在投影仪上摆摆看。

一组同学到讲台上用小棒摆三角形。学生摆出了以下图形:

师:下面的同学,你们也用的第三捆小棒摆出了三角形吗? 生:是的。

教师的头上开始冒汗了。反思:

学生用10厘米、6厘米、4厘米的小棒围出了三角形,原因出在哪?我仔细观察了我旁边学生用的小棒,这些小棒是用饮料、牙签、还有塑料棒做的。都有一定的直径,如果学生在截取时再多截那么一点儿,摆时两根小棒接头的位置摆放不准,摆出一个三角形也就不足为奇了。看来问题不在学生这里,因为学生想方设法围出老师要求的三角形的心情,是可以理解的。看来问题出在实验本身。教师让学生用10厘米、6厘米、5厘米的三根小棒摆一个三角形,这样的三角形是能够摆出的。用10厘米、5厘米、4厘米的三根小棒摆一个三角形,这种三角形是明显摆不成的。但是,让学生用4厘米、6厘米、10厘米的小棒摆一个三角形,的确是难为学生了。除非是学生已经知道了结论。

那么,怎样解决这个问题呢?我们应从学生的角度来思考。可以这样来处理教材:准备四捆小棒,两组能围成三角形的,两组围不成三角形的。小组合作后,让学生说说在刚才的活动中有什么发现,引导学生得出两根长度之和大于第三根的能围成三角形,两根长度之和小于第三根的则围不成三角形的规律。最后让学生讨论:如果两根长度之和等于第三根的长度,能否围成一个三角形?在学生充分讨论的基础上,教师可以用课件演示或在黑板上面画线段的方法来验证,让学生发现两根长度之和等于第三根长度的也不能围成三角形,进而得出数学结论:三角形的任意两边之和大于第三边。

从上面的案例中,我们不难看出,无论是知识的讲授还是学生的动手操作,我们都要从学生的角度来思考,对具体操作方面的每个细节都要精心设计,因为这些细节影响着课堂效果,同时也展示了教师的智慧。

第三篇:由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办

由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办?

在三角形三边关系的教学中,许多老师设计了探索什么样的小棒可以搭成三角形的活动。在这个活动中,由于操作中存在着误差(比如小棒的粗细,学生的实验结果可能会出现两边之和等于第三边的情况,也就是用类似4,5,9的小棒“搭成”了三角形。这时,教师可以引发学生进行讨论,并引导学生进行简单地推理。虽然小学阶段不要求学生进行严格的证明,但是不代表孩子没有推理的意识。在出现两边之和等于第三边时,我有的学生可以用非常形象的语言推理出其不合理性,比如有学生会说:4+5=9,9与9都平行(重合)了,所以,拼不成了三角形。进一步,教师可以鼓励学生由“两边之间线段最短”推导出“两边之和大于第三边”。

有专家曾提供过这样一个教学“两边之和大于第三边”的思路:首先通过具体情境使学生认识到“两点之间线段最短”,然后画出两个点,两点之间画一条线段和若干条折线。实际上,折线与两点之间的线段就形成了一个一个的三角形。接着鼓励学生思考,如果把它们看成一个个三角形的话,你能发现什么?即“两边之和大于第三边”。

当然,这个推导过程不作为基本要求,但是鼓励学生将操作与推理相结合的思路是重要的。当然,有的老师利用课件来动态地演示当两边之和等于第三边时,就重合搭不成三角形的过程,也是非常好的。

由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办?(来自:新世纪小学数学下册主要问题与解答3终)

在三角形三边关系的教学中,许多老师设计了探索什么样的小棒可以搭成三角形的活动。在这个活动中,由于操作中存在着误差(比如小棒的粗细,学生的实验结果可能会出现两边之和等于第三边的情况,也就是用类似4,5,9的小棒“搭成”了三角形。这时,教师可以引发学生进行讨论,并引导学生进行简单地推理。虽然小学阶段不要求学生进行严格的证明,但是不代表孩子没有推理的意识。在出现两边之和等于第三边时,有的学生可以用非常形象的语言推理出其不合理性,比如有学生会说:4+5=9,9与9都平行(重合)了,所以,拼不成了三角形。进一步,教师可以鼓励学生由“两边之间线段最短”推导出“两边之和大于第三边”。

有专家曾提供过这样一个教学“两边之和大于第三边”的思路:首先通过具体情境使学生认识到“两点之间线段最短”,然后画出两个点,两点之间画一条线段和若干条折线。实际上,折线与两点之间的线段就形成了一个一个的三角形。接着鼓励学生思考,如果把它们看成一个个三角形的话,你能发现什么?即“两边之和大于第三边”。

当然,这个推导过程不作为基本要求,但是鼓励学生将操作与推理相结合的思路是重要的。当然,有的老师利用课件来动态地演示当两边之和等于第三边时,就重合搭不成三角形的过程,也是非常好的。

第四篇:三角形三边关系教学反思

让数学课既“有营养”又“好吃”

字数:2592 字号: 【大 中小】

《三角形三边关系》是苏教版数学四年级下册的教学内容,“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。教材在例题之后编排了以下几道习题。

【教材呈现】

原题1:下面哪组线段可以围成一个三角形?为什么?

面画“√”。

原题2:一个三角形,两边的长分别是12厘米和18厘米,第三条边的长可能是多少厘米?在合适的答案下

原题3:先量出下面两根小棒的长度,再想一想,能和它们围成三角形的第三根小棒的长可能是多少厘米?

原题4:从学校到少年宫有几条路线?走哪一条路最近?

在实际教学中,逐一解决以上习题固然能巩固“三角形任意三边之和大于第三边”这一知识点,加深对三角形三边关系的理解。但是,总是以小棒为载体,运用结论进行判断和选择,学生始终感觉在进行数学训练,兴趣淡然,体会不到这一知识内涵的丰富性以及在生活中的广泛应用。为此,我对练习进行了重新设计。

【教学片段】

师:这节课我们一起研究了三角形的三边关系,知道了三角形任意两边之和都是大于第三边的。这个知识在生活中用处可大着呢!不信,你看!

第一组:

师:木匠王师傅要找三根木料做一个三角形,他挑出了这样三根,能做出来吗?出示:

生:不能,因为第二根加第三根小于第一根。

师:只判断这两根就确定啦?

生:我觉得只要有两条边的和小于第三边就肯定不行了。

师:那你为什么不先判断第一根加第二根,或者第一根加第三根呢?

生:第一根最长,再加一根更长,肯定大于第三根。

师:那能不能围成,最关键是看什么?

生:两条短一些的边加起来大于最长的边。

师:哦!难怪你们这么快,原来还有这个窍门啊!

第二组:

师:王师傅试了试,果然做不成三角形。无奈之下,换了一根。这回,能做起来吗?

出示:

生:还是不能,因为第二根加第三根的和等于第一根,还是围不成。

师:为什么选7+3来判断?

生:因为7和3是较短的。这一组如果符合要求,其余的也一定符合要求!

师:说得真棒!

第三组:

师:王师傅两次都没做起来,有些不高兴了,他拿起锯子,把最长的一根锯掉了一段!这回,他成功了吗?

出示:

生(很失望):还是没有!

师:怎么又失败了呢?这最长的一根已经被锯短了呀!

生:不对,因为这一锯,让第二根成为最长的了,3厘米加3厘米小于7厘米,两条短边加起来小于最长的边,还是做不成!

第四组:

师:王师傅一气之下,把这根锯短的扔掉了,他决心重新寻找!你们能给王师傅一些建议?(取整数)

出示4:

生:5厘米。

师:可以吗?

生判断:3厘米+5厘米>7厘米,能围成三角形。

生:8厘米也可以。

师:行吗?其他学生判断。

……

师:大家你一言我一语,都有道理!王师傅想,你们要是能给我个范围就好了!

生交流,汇报。

生:我认为只要大于4厘米小于10厘米都可以。

师:为什么?

生:如果正好是4厘米,那么3+4=7,围不成,所以要比4厘米多;如果正好是10厘米,那么3+7=10,也围不成,所以要比10厘米少。

师:看来,第三根的长度除了要比两根之和短,还有什么要求?

生:两边之和大于第三边,两边之差小于第三边。

师:有了大家的建议,王师傅终于找到了合适的木料!

生不禁欢呼……

第五组:

师:王师傅完成了任务!一看时间,不早了,得赶紧回家!

出示:

师:王师傅从木料场回家,有几条路可走?他会选择哪一条路呢?

生:中间一条。

师:为什么?

生:两边的路是弯曲的,中间的是直的,两点之间线段最短。

师:用我们今天学的知识能解释吗?

生:中间一条路和两边的路合在一起,可以看作两个三角形。每个三角形中,两边之和又是大于第三边的,所以中间的路最近。

【设计思考】

特级教师吴正宪提出,要让孩子享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合孩子的美味?本节课,主要做了以下思考:

有“营养”,要有明确的目标定位。课前,我首先对教材中安排的4道习题进行了研究。题1是根据每组中3条线段的长度判断它们是否能围成三角形,巩固对三角形三边关系的认识,强化对三角形特征的认知。题2引导学生根据给定的三角形的两条边,讨论第三边的长度所在的区间,并选择合适的第三边的长度,使学生更深刻地理解三角形的三边关系,培养思维的条理性和严密性,发展空间观念。题3要求先测量长度,再判断能与之围成三角形的第三根小棒的长度。促使学生在寻求第三根小棒长度的过程中,初步形成三角形两边长度的差小于第三边的认识,进而加深对三角形三边关系的认识与理解。题4则是让学生应用三角形的三边关系解决简单的实际问题,使学生在解决问题的过程中不断加深对三角形三边关系的理解。

以上习题的训练目标成为我练习设计的首要定位,即:无论以何种形式呈现,内在的达成目标应该是既定不变予以落实的。

有“营养”,要有助于提升思维能力。

教材习题是通过不同的要求,达成学习目标的,但每道题在独立练习时,目标指向性比较单一,一道题解决一个问题。而关于三边关系的知识,内在联系是非常紧密的,三条边中任意一条边长度的改变都有可能引起整体的变化。是否可以通过“变式”来沟通知识的联系,让学生在不断的思维转换中加深对三边关系的理解?这一想法成为练习设计的落脚点。于是梳理不同类型三角形的特点并有机串联,第一组是两边之和小于第三边的类型,通过追问,引导学生得出判断的简便方法,只要判断两条短边之和大于第三边即可。第二组呈现两边之和等于第三边的情形,用于巩固。第三组则在第二组的基础上,将最长的变为最短的,此举,从形式上来看,只是改变了一根小棒的长度,但从本质上讲,此时三角形三边的长短关系则发生了变化,较短边不再是前两组的7和3,而是3和3,这就促使学生重新审视三边长度整体把握后再作判断。第四组只给定两根小棒的长度,思考第三根小棒的长度区间,不仅考虑两根之和大于第三边,还要考虑两边之差小于第三边。最后一组将知识应用于生活。此环节没有出示过多的习题与要求,只是在一组练习的基础上通过不断地变式,由浅入深,逐步提升思维含量,培养学生的思维能力。

“好吃”,要能激发儿童兴趣。

很多学生抱怨数学冰冷、枯燥、无趣,那往往是因为我们将原本鲜活的内容生硬地呈现在了学生面前。课堂上,学生为了做题而做题,数学与生活成了两张皮,学生丝毫体会不到所学的数学知识离开了课本在生活中能有何应用?儿童的心理特征决定了只有有趣的,才是他们愿意学的。激发学习兴趣,理应成为教师课堂教学的重要任务。上述案例中,笔者反复思量,寻找与三边关系紧密结合的生活原型,创造性地设置出木匠王师傅做三角形的情境,学生在帮助王师傅寻找合适木料的过程中,积极性被充分调动起来,体会到了问题解决后的愉悦之情。

“好吃”,要站在儿童立场解决问题。

所谓儿童立场,简单地说,就是教师要能够换位思考,把自己当作儿童,以儿童的眼光看待事物,以儿童的视角考虑问题。我们常常以成人的眼光审视严谨系统的数学,并以自己习惯了的教学方式将数学“成人化”地呈现在学生面前。课堂上,常常忽视了童年期学生心理、特点和学习规律,失去了儿童的情趣。上述案例中,教者就抓住了儿童爱听故事的年龄特点,为数学问题创设生活情境,在情境中生动地讲述故事,王师傅找木料,换木料,锯木料,扔木料,一波三折,环环相扣。当王师傅总是找不到合适的木料时,学生们不禁发出一阵阵叹息,继而迅速投入到紧张的思考中。当王师傅在大家的帮助下终于完成任务,学生们竟不约而同地发出“耶……”的欢呼声!课堂上,既有人物情感的相互交融,又有学生思维的深度撞击,师生互动,生生互动,在分析、讨论、质疑、归纳过程中,学生对于三角形三边关系的认识不断丰富,理解更加深刻。有位老师听课后不觉感叹:数学课上成了“故事课”,不要说学生,连我们也意犹未尽啊!

作为教师,我们要读懂教材、读懂学生、读懂课堂,用心研究,尽可能地丰富习题内涵,让习题承载多重训练目标。同时用智慧创造,让学生在兴趣的指引下,思维不断得到提升。唯有“营养”与“好吃”兼而有之,才能烹饪出学生喜欢的数学课堂。

第五篇:《三角形三边关系》教学设计

《三角形三边关系》教学设计

教学内容:人教版小学数学四年级下册P82例3的内容及练习十四第4题。教学目标:

1、通过摆一摆等操作活动,探索并发现三角形任意两边的和大于第三边,并应用这一性质判定指定的三条线段能否组成三角形。

2、引导学生参与探究和发现活动,经历操作、发现、验证的探索过程,培养自主探索、合作交流的能力。

3、激发学生探究的愿望和兴趣,培养学生参与数学活动的积极性和严谨的科学态度。

教学重点:探索发现三角形任意两边的和大于第三边。

教学难点:能应用发现的结论,来判断指定长度的三条线段能否组成三角形,并能灵活实际运用生活。

教学准备: 直尺,小棒,统计表,课件、实物投影等 教学过程:

活动一:实践操作,问题引入。1、游戏导入

[出示两根小棒]请看,我这里有两根小棒,猜一猜,这是干什么用的?可是今天我想用这两根小棒围成一个三角形,能围成吗?为什么?围成一个三角形最少需要几根小棒?那谁能说一说什么叫做三角形?(三角形是由三条线段首尾相接围成的平面图形。)那我们就再加一根,围一个三角形,好吗?这个盒子里面有很多根长度不同的小棒,是不是随便取出一根就能和这两根小棒围成三角形呢?(谁愿意来试一试:围两个三角形)问题的提出:是不是任意三根小棒都能够围成一个三角形呢?你想亲自动手试一试吗?要想操作得开心、顺利,我们要先读懂规则,读懂规则是顺利进行探索与发现的关键。请看屏幕(试验表格,默读)

二、合理猜想,探究发现。〈一〉初步体验,提出猜想

1、学生小组合作活动

活动工具:四根小棒,其长度分别是3厘米、4厘米、7厘米、9厘米。活动要求:(课件出示)

①每次实验选出3根小棒来围三角形,实验完毕后放回原处,以便下次实验。②4人为一组,组长负责组织成员合作完成实验,并指派一名同学为记录员,填写实验报告。

③全部实验完毕后,小组内同学说一说哪三根小棒能围成一个三角形。师巡视,参与小组活动,并给予适当指导。

2、全班讨论交流:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)谁愿意把你们摆的情况给大家介绍一下?

(1)[实物投影]展示实验报告,还有不同的吗?(学生上台选小棒,拼摆出三角形)摆的情况有:① 3、4、7 ②3、4、9 ③3、7、9 ④ 4、7、9 [电脑动画演示四种围三角形的情况](2)讨论: 这四组小棒,有的围成了三角形,有的没有围成三角形,这是怎么回事呢?能否围成一个三角形和什么有直接的关系?(板书课题)(先小组交流,然后共同分享)大胆猜想一下,这三条边之间存在着什么样的关系?

(3)提出猜想:三角形的三条边,一定要有任意两条边的长度加起来比第三条边长,否则不能围成三角形。(板贴:三角形 两边的和大于第三边 任意说不出来,教师就要引导,举例子:如果这三条边的长度我们用a/b/c三个字母来代替,怎么样来表示他们的关系呢?怎么样用一句话代替他们之间的关系呢?这仅仅是我们在探索过程中的一个猜想,到底三角形三边之间是不是有这样的关系呢?我们还要进行验证。你想怎样验证?(课件出示一个三角形,完成板书 字母代替)

〈二〉验证猜想

1、小组验证猜想活动:三角形任意两边长度的和一定比第三条边大吗? 活动要求:

①小组内每一名同学任意画一个三角形,量出三条边的长度,进行比较。

②小组交流讨论,你发现了什么?

3、教师小结:三角形任意两边的和大于第三边。师问:同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!(加强对“三角形任意两边的和大于第三边”中的“任意”理解)

4、练习:(1)书上31页第一题。

师问:如果我给你3根小棒,你能很快判断能否摆成三角形吗?

(2)一组线段:3厘米、3厘米、3厘米、4厘米、6厘米,如果请你选其中三条围成一个三角形,你会怎么选?

师:刚才这几个判断题太简单了,提高一点难度,好不好?

5、课堂小结:

够厉害,不仅做得好,而且说得更好。刚才我们通过猜想、验证知道了三角形任意两边的和大于第三边,我们学习数学不仅仅是为了发现规律,掌握方法,如果要这样学习数学就很肤浅了,学习数学更重要的是应用于现实生活,现在让我们走进生活,看看生活中有哪些问题需要我们用今天的知识去解决,好吗?

三、实践应用,强化认知。

1、建筑工人打算制作一个三角形的钢架,其中有两根钢管长分别是5米和8米,那么第三根钢管的长可能是几米?

思考题:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

四、自我小结,学习反思。

这节课你有哪些收获?关于三角形三边的关系还有值得我们探讨的地方,比如三角形任意两边的差与第三边有什么样的关系?有兴趣的同学课后可以自己探索。

板书设计:

三角形三边关系

猜想 发现 三角形任意两边的和大于第三边。验证 应用

《三角形三边关系》教学反思:

《三角形三边关系》是人教版小学数学四年级下册P82例3的内容。教学中通过摆三角形,引出研究三角形三边之间关系的数学问题。通过在小组内画一画,量一量,比一比等活动,探索并发现三角形任意两边的和大于第三边。学生能应用发现的结论,来判断指定长度的三条线段,能否组成三角形。我在设计这节课的时候,主要注重了以下几点:

一、创设民主,宽松,自由的学习氛围,激发学生的学习兴趣。通过摆小棒活动制造矛盾冲突,唤醒学生“探究”的需要,课中有效地引导学生自主探索、合作研究,通过汇报、讨论、相互启发,结合学生的想法和实际适时点拨,适当地评价,关注课堂的生成,让学生在真正的探究、发现和创新中建构知识、体验成功、建立自信。

二、活用教材,丰富学生的探索材料,激发学生参与“做数学”的过程。小学生的认知规律是“感知—表象—抽象”。突破教材的束缚,使用小棒开展探究实验,然后从学生已有的经验和基础出发,补充、调整优化学习材料,为学生提供或学生自己准备了充分的实验材料和感知材料,如利用多媒体、小棒等,让学生充分动手,即突破了教学难点,又有助于培养学生做数学的意识和勇于探索的科学精神。

三、让学生真正经历数学探究的过程。本节课我是按照游戏操作引入——激趣产生问题——操作进行猜想——需要进行验证——推广运用这一主线组织教学的。学生在行动中产生问题,由问题产生猜想,由猜想产生价值。由于课堂教学每一次生成的情况都会不同,根据几次试教情况,我把教案定为预设,同时根据课堂教学可能生成的情况设计了几种执行方案。这对我来说是一种挑战。不管怎样,我都牢牢地把握住教师的主导地位和学生的主体地位,给学生充分的时间和空间去亲自摆一摆、画一画、算一算。虽然学生自主探索的过程花的时间比较多,一些课后的练习不能在这课堂上解决,但我认为这是很值得的。教学不能是仅仅把知识结果传授给学生,而应该尊重学生知识的形成过程,让学生经历疑问、探究、收获的过程,从而培养学生科学的探究态度和初步的探究能力,让学生的思维得到充分的发展。

通过本节课的教学,既让我感受到了成功的喜悦,但是同时在课堂中还是暴露了一些存在的实际问题。如过于关注教学设计,忽视了学生的回答。课堂上,生怕落下教学环节,所以过于关注教学设计,导致有的学生的不规范的语言也没能及时的指出来。

下载三角形任意两边之和大于第三边教学案例(推荐5篇)word格式文档
下载三角形任意两边之和大于第三边教学案例(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形三边关系教学设计

    三角形的三边关系 教学内容 《义务教育课程标准实验教科书 数学》(人教版)四年级下册第82页。 学情与教材分析 通过第一学段以及四年级上册对空间与图形内容的学习,学生对三角......

    三角形三边关系教学设计

    三角形三边关系教学设计 三角形三边关系教学设计1 [片断一]:动手操作,产生问题师:前面我们已经认识了三角形,知道三角形是由三条线段首尾相连围成的封闭图形,今天,老师想让同学们......

    三角形三边关系教学设计

    三角形三边关系 [教学内容]《义务教育教科书(五·四学制)·数学(四年级上册)》34~35页。 [教学目标] 1.知道“三角形任意两边的和大于第三边”;能判断给定长度的三条线段是否能围......

    三角形三边关系教学设计

    《三角形三边关系》教学设计 教学内容: 苏教版四年级下册第77、78页例3、练一练. 教学目标: 1.通过观察、操作、分析、讨论等数学活动,探索发现三角形的三边关系。 2.经历三角形......

    《三角形三边关系教学设计》

    人教新课标版四年级下册第五单元 《三角形的三边关系》教学设计 教学内容:人教版小学数学四年级下册教科书第82页例2 教学目标:1、通过动手操作,探究三角形三边的关系,知道三角......

    三角形三边关系教学设计

    《三角形三边的关系》教学设计 【教学内容】人教版四年级下册第五单元【教学目标】 1.理解三角形三边的关系:三角形的任意两边之和大于第三边;会用该结论解决生活中的问题。 2.......

    《三角形三边的关系》教学反思

    三角形三边关系教学反思《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学......

    三角形三边的关系教学设计

    《三角形三边的关系》教学设计 【教材分析】本节教学的《三角形三边的关系》是人教版课程标准实验教材四年级下册第82页的内容。三角形三边关系是在学生已经初步认识角,认识......