第一篇:三角形任意两边之和大于第三边教学案例
教学案例:三角形任意两边的和大于第三边
通伏小学 张永恒
教学内容:人教版八册P82 教学目标:
1、通过动手操作和观察比较,使学生知道三角形任意两边的和大于第三边;
2、能根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括的能力以及动手操作的能力;
3、让学生积极参与探究活动,获得成功体验,产生学习数学的兴趣。重点:三角形三边之间的关系
难点:探索发现三角形三边之间的关系。教学准备:小棒、课件 教学过程:
一、引入
1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗? 生:由三条线段围成的图形叫做三角形。
师:不错,那么三条线段就一定能围成三角形吗?能(不能)
师:那我们就来围围看吧。谁愿意上来围?(两生上台演示——评析)
2、师:看来,有的三条线段能围成三角形,有的三条线段不能围成三角形。那下面我们大家都来围围三角形,好不好? 二、三角形三边关系的探究
(一)围三角形,创建研究素材
1、师:(1)同桌两人合作,每次从5根小棒中任取3根来围三角形,将围的情况记录在白纸上。要求分工合作:一人围,一人记录。
2、学生操作(教师指导)
3、反馈:学生汇报能和不能围成的情况(教师板书记录)师:还有吗?情况不少,我们就用省略号来表示吧!
[检测错误情况——对同学们汇报上来的能和不能围成三角形的各种情况,对照自己的记录,看看谁还有意见?]
(二)思考讨论,发现规律
1、师:同学们,能不能围成三角形看来跟三条线段的什么有关?(长度),那么究竟怎么样的三条线段不能围成三角形?怎么样的三条线段又能围成三角形,下面我们先通过自己观察、思考,再与同桌进行讨论来发现其中的奥秘。
2、学生讨论(教师参与)
3、反馈 层次1:
师:下面我们先来看怎样的三条线段不能围成三角形?
(1)生:我们发现两边的和小于(等于)第三边就不能围成三角形。比如2+2小于5,就不能围成三角形。(师板书:2+2<5,)
师:真的吗?来围给我们看看?(生上台围,展示)(2)师:是不是所有的情况都是小于呢?
生:我们发现两边的和等于第三边也不能围成三角形。3+3等于6,就不能围成三角形。(师板书:3+3=6)
师:也请你围给我们看看?(生展示)
检验其余记录下来的情况。(师生齐算,板书算式)层次2:(1)列举发现
师指着板书:这些能围成三角形的三条边又有怎样的关系呢?
生:我们发现两条边的和大于第三条边就能围成三角形。如2+3>4,这样就能围成三角形。(师板书)
师:谁有不同发现?
生:我们认为必须每两条边相加和大于第三条边才能围成三角形。比如2+3>4、2+4>3、4+3>2(师板书)
哪些组还有不同发现?
生:我们认为最短的两边的和大于第三条边就能围成三角形。如只要2+3>4,就能围成三角形。
师:还有吗?(2)辨析
师:各自说说理由吧!生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。
师:举个例子呢?引导学生引用“不能”的情况来反证。
生:比如在刚才不能围成的情况中:3+4<8、8+4>3、8+3>4,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。所以只考虑一种情况是不行的。
师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢? 生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。
(师用实物在黑板上演示)
小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。所以你们两组的观点实际上是一致的。这也就是三角形三边关系的一个
重要结论:三角形任意两边的和大于第三边
三、应用
1、下面哪几组的三条线段能围成三角形?(3、4、5)(2、3、7)(3、3、3)(3、3、6)
2、根据3、3、6这题延伸。要求:拿掉一根3厘米的线段,再重新配一根其它长度的线段,使它们能围成三角形。(取整厘米数)
如果拿掉的是6分米,那么配上的一根最短应该是几?最长可以是几?
3、机动:16分米长的小棒如果要围成一个三角形,我们必须将它截成3段,其中最长的一边最多可以截几分米?为什么?具体可以怎样截,你有没有方法可以将所有的情况不遗漏也不重复的列举出来?(要求边取整分米数)
四、总结
师:这节课你有哪些收获?关于三角形三边关系还有值得我们探索的地方,比如三角形任意两边的差与第三边有怎样的关系?有兴趣的同学课外可以自己进行探索。
(另外还有一种思路:先告诉学生结论,然后通过验证来检查结论是否正确)
六、案例反思
这节课,我始终在教学活动中,以培养学生的自主探讨学习为主,在新授课的过程中能充分发挥学生自主学习的作用。因为教学内容相对简单,我在课上只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,我仅仅起了组织和引导的作用。一节课下来,学生在动手操作、主动探索、交流辩论的过程中,进行自主的归纳、总结,他们在自主学习中获取知识的能力,在操作中感悟数学的能力,均得到较好的发展。
第二篇:三角形两边和大于第三边教学反思
《认识三角形两边之和大于第三边》教学反思
“动手操作”是学生学习的重要方式之一。研究表明:人们在学习时,如果仅靠看和听,最多只能掌握30%的新知,如果做的话,可以达到90%以上。随着新课改的不断深入,动手操作已在课堂教学中得到广泛的运用,学生的积极性提高了,课堂气氛也活跃了。那么,动手操作果真那样神奇,是数学课堂上一切问题的灵丹妙药吗?结合一位教师的案例剖析,我对动手操作产生了新的思考。
教学片段:
师:请四人小组合作,拿出准备好的四捆小棒首尾相接的摆一摆三角形。(小棒的长度是①10cm、6cm、5cm;②6cm、5cm、4cm;③10cm、6cm、4cm;④10cm、5cm、4cm)在摆的过程中如果遇到了问题可以在小组内讨论。
学生操作、讨论。交流。
师:你们在摆三角形的过程中遇到了什么问题?
生:我们小组在摆三角形的过程中,发现第一、二、三捆的小棒都能摆出三角形,但第四捆的三根小棒摆不出三角形。师:其他小组摆的同他们一样吗? 生:一样(齐答)。
师:就是说,用第一、二、三捆的小棒都能摆成三角形,第四捆小棒摆不出三角形。有不同意见吗? 生:没有。
师:那我们就请一组同学在投影仪上摆摆看。
一组同学到讲台上用小棒摆三角形。学生摆出了以下图形:
师:下面的同学,你们也用的第三捆小棒摆出了三角形吗? 生:是的。
教师的头上开始冒汗了。反思:
学生用10厘米、6厘米、4厘米的小棒围出了三角形,原因出在哪?我仔细观察了我旁边学生用的小棒,这些小棒是用饮料、牙签、还有塑料棒做的。都有一定的直径,如果学生在截取时再多截那么一点儿,摆时两根小棒接头的位置摆放不准,摆出一个三角形也就不足为奇了。看来问题不在学生这里,因为学生想方设法围出老师要求的三角形的心情,是可以理解的。看来问题出在实验本身。教师让学生用10厘米、6厘米、5厘米的三根小棒摆一个三角形,这样的三角形是能够摆出的。用10厘米、5厘米、4厘米的三根小棒摆一个三角形,这种三角形是明显摆不成的。但是,让学生用4厘米、6厘米、10厘米的小棒摆一个三角形,的确是难为学生了。除非是学生已经知道了结论。
那么,怎样解决这个问题呢?我们应从学生的角度来思考。可以这样来处理教材:准备四捆小棒,两组能围成三角形的,两组围不成三角形的。小组合作后,让学生说说在刚才的活动中有什么发现,引导学生得出两根长度之和大于第三根的能围成三角形,两根长度之和小于第三根的则围不成三角形的规律。最后让学生讨论:如果两根长度之和等于第三根的长度,能否围成一个三角形?在学生充分讨论的基础上,教师可以用课件演示或在黑板上面画线段的方法来验证,让学生发现两根长度之和等于第三根长度的也不能围成三角形,进而得出数学结论:三角形的任意两边之和大于第三边。
从上面的案例中,我们不难看出,无论是知识的讲授还是学生的动手操作,我们都要从学生的角度来思考,对具体操作方面的每个细节都要精心设计,因为这些细节影响着课堂效果,同时也展示了教师的智慧。
第三篇:由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办
由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办?
在三角形三边关系的教学中,许多老师设计了探索什么样的小棒可以搭成三角形的活动。在这个活动中,由于操作中存在着误差(比如小棒的粗细,学生的实验结果可能会出现两边之和等于第三边的情况,也就是用类似4,5,9的小棒“搭成”了三角形。这时,教师可以引发学生进行讨论,并引导学生进行简单地推理。虽然小学阶段不要求学生进行严格的证明,但是不代表孩子没有推理的意识。在出现两边之和等于第三边时,我有的学生可以用非常形象的语言推理出其不合理性,比如有学生会说:4+5=9,9与9都平行(重合)了,所以,拼不成了三角形。进一步,教师可以鼓励学生由“两边之间线段最短”推导出“两边之和大于第三边”。
有专家曾提供过这样一个教学“两边之和大于第三边”的思路:首先通过具体情境使学生认识到“两点之间线段最短”,然后画出两个点,两点之间画一条线段和若干条折线。实际上,折线与两点之间的线段就形成了一个一个的三角形。接着鼓励学生思考,如果把它们看成一个个三角形的话,你能发现什么?即“两边之和大于第三边”。
当然,这个推导过程不作为基本要求,但是鼓励学生将操作与推理相结合的思路是重要的。当然,有的老师利用课件来动态地演示当两边之和等于第三边时,就重合搭不成三角形的过程,也是非常好的。
由于操作误差,学生在实验结果中出现“三角形两边之和等于第三边”怎么办?(来自:新世纪小学数学下册主要问题与解答3终)
在三角形三边关系的教学中,许多老师设计了探索什么样的小棒可以搭成三角形的活动。在这个活动中,由于操作中存在着误差(比如小棒的粗细,学生的实验结果可能会出现两边之和等于第三边的情况,也就是用类似4,5,9的小棒“搭成”了三角形。这时,教师可以引发学生进行讨论,并引导学生进行简单地推理。虽然小学阶段不要求学生进行严格的证明,但是不代表孩子没有推理的意识。在出现两边之和等于第三边时,有的学生可以用非常形象的语言推理出其不合理性,比如有学生会说:4+5=9,9与9都平行(重合)了,所以,拼不成了三角形。进一步,教师可以鼓励学生由“两边之间线段最短”推导出“两边之和大于第三边”。
有专家曾提供过这样一个教学“两边之和大于第三边”的思路:首先通过具体情境使学生认识到“两点之间线段最短”,然后画出两个点,两点之间画一条线段和若干条折线。实际上,折线与两点之间的线段就形成了一个一个的三角形。接着鼓励学生思考,如果把它们看成一个个三角形的话,你能发现什么?即“两边之和大于第三边”。
当然,这个推导过程不作为基本要求,但是鼓励学生将操作与推理相结合的思路是重要的。当然,有的老师利用课件来动态地演示当两边之和等于第三边时,就重合搭不成三角形的过程,也是非常好的。
第四篇:三角形三边关系教学反思
让数学课既“有营养”又“好吃”
字数:2592 字号: 【大 中小】
《三角形三边关系》是苏教版数学四年级下册的教学内容,“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。教材在例题之后编排了以下几道习题。
【教材呈现】
原题1:下面哪组线段可以围成一个三角形?为什么?
面画“√”。
原题2:一个三角形,两边的长分别是12厘米和18厘米,第三条边的长可能是多少厘米?在合适的答案下
原题3:先量出下面两根小棒的长度,再想一想,能和它们围成三角形的第三根小棒的长可能是多少厘米?
原题4:从学校到少年宫有几条路线?走哪一条路最近?
在实际教学中,逐一解决以上习题固然能巩固“三角形任意三边之和大于第三边”这一知识点,加深对三角形三边关系的理解。但是,总是以小棒为载体,运用结论进行判断和选择,学生始终感觉在进行数学训练,兴趣淡然,体会不到这一知识内涵的丰富性以及在生活中的广泛应用。为此,我对练习进行了重新设计。
【教学片段】
师:这节课我们一起研究了三角形的三边关系,知道了三角形任意两边之和都是大于第三边的。这个知识在生活中用处可大着呢!不信,你看!
第一组:
师:木匠王师傅要找三根木料做一个三角形,他挑出了这样三根,能做出来吗?出示:
生:不能,因为第二根加第三根小于第一根。
师:只判断这两根就确定啦?
生:我觉得只要有两条边的和小于第三边就肯定不行了。
师:那你为什么不先判断第一根加第二根,或者第一根加第三根呢?
生:第一根最长,再加一根更长,肯定大于第三根。
师:那能不能围成,最关键是看什么?
生:两条短一些的边加起来大于最长的边。
师:哦!难怪你们这么快,原来还有这个窍门啊!
第二组:
师:王师傅试了试,果然做不成三角形。无奈之下,换了一根。这回,能做起来吗?
出示:
生:还是不能,因为第二根加第三根的和等于第一根,还是围不成。
师:为什么选7+3来判断?
生:因为7和3是较短的。这一组如果符合要求,其余的也一定符合要求!
师:说得真棒!
第三组:
师:王师傅两次都没做起来,有些不高兴了,他拿起锯子,把最长的一根锯掉了一段!这回,他成功了吗?
出示:
生(很失望):还是没有!
师:怎么又失败了呢?这最长的一根已经被锯短了呀!
生:不对,因为这一锯,让第二根成为最长的了,3厘米加3厘米小于7厘米,两条短边加起来小于最长的边,还是做不成!
第四组:
师:王师傅一气之下,把这根锯短的扔掉了,他决心重新寻找!你们能给王师傅一些建议?(取整数)
出示4:
生:5厘米。
师:可以吗?
生判断:3厘米+5厘米>7厘米,能围成三角形。
生:8厘米也可以。
师:行吗?其他学生判断。
……
师:大家你一言我一语,都有道理!王师傅想,你们要是能给我个范围就好了!
生交流,汇报。
生:我认为只要大于4厘米小于10厘米都可以。
师:为什么?
生:如果正好是4厘米,那么3+4=7,围不成,所以要比4厘米多;如果正好是10厘米,那么3+7=10,也围不成,所以要比10厘米少。
师:看来,第三根的长度除了要比两根之和短,还有什么要求?
生:两边之和大于第三边,两边之差小于第三边。
师:有了大家的建议,王师傅终于找到了合适的木料!
生不禁欢呼……
第五组:
师:王师傅完成了任务!一看时间,不早了,得赶紧回家!
出示:
师:王师傅从木料场回家,有几条路可走?他会选择哪一条路呢?
生:中间一条。
师:为什么?
生:两边的路是弯曲的,中间的是直的,两点之间线段最短。
师:用我们今天学的知识能解释吗?
生:中间一条路和两边的路合在一起,可以看作两个三角形。每个三角形中,两边之和又是大于第三边的,所以中间的路最近。
【设计思考】
特级教师吴正宪提出,要让孩子享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合孩子的美味?本节课,主要做了以下思考:
有“营养”,要有明确的目标定位。课前,我首先对教材中安排的4道习题进行了研究。题1是根据每组中3条线段的长度判断它们是否能围成三角形,巩固对三角形三边关系的认识,强化对三角形特征的认知。题2引导学生根据给定的三角形的两条边,讨论第三边的长度所在的区间,并选择合适的第三边的长度,使学生更深刻地理解三角形的三边关系,培养思维的条理性和严密性,发展空间观念。题3要求先测量长度,再判断能与之围成三角形的第三根小棒的长度。促使学生在寻求第三根小棒长度的过程中,初步形成三角形两边长度的差小于第三边的认识,进而加深对三角形三边关系的认识与理解。题4则是让学生应用三角形的三边关系解决简单的实际问题,使学生在解决问题的过程中不断加深对三角形三边关系的理解。
以上习题的训练目标成为我练习设计的首要定位,即:无论以何种形式呈现,内在的达成目标应该是既定不变予以落实的。
有“营养”,要有助于提升思维能力。
教材习题是通过不同的要求,达成学习目标的,但每道题在独立练习时,目标指向性比较单一,一道题解决一个问题。而关于三边关系的知识,内在联系是非常紧密的,三条边中任意一条边长度的改变都有可能引起整体的变化。是否可以通过“变式”来沟通知识的联系,让学生在不断的思维转换中加深对三边关系的理解?这一想法成为练习设计的落脚点。于是梳理不同类型三角形的特点并有机串联,第一组是两边之和小于第三边的类型,通过追问,引导学生得出判断的简便方法,只要判断两条短边之和大于第三边即可。第二组呈现两边之和等于第三边的情形,用于巩固。第三组则在第二组的基础上,将最长的变为最短的,此举,从形式上来看,只是改变了一根小棒的长度,但从本质上讲,此时三角形三边的长短关系则发生了变化,较短边不再是前两组的7和3,而是3和3,这就促使学生重新审视三边长度整体把握后再作判断。第四组只给定两根小棒的长度,思考第三根小棒的长度区间,不仅考虑两根之和大于第三边,还要考虑两边之差小于第三边。最后一组将知识应用于生活。此环节没有出示过多的习题与要求,只是在一组练习的基础上通过不断地变式,由浅入深,逐步提升思维含量,培养学生的思维能力。
“好吃”,要能激发儿童兴趣。
很多学生抱怨数学冰冷、枯燥、无趣,那往往是因为我们将原本鲜活的内容生硬地呈现在了学生面前。课堂上,学生为了做题而做题,数学与生活成了两张皮,学生丝毫体会不到所学的数学知识离开了课本在生活中能有何应用?儿童的心理特征决定了只有有趣的,才是他们愿意学的。激发学习兴趣,理应成为教师课堂教学的重要任务。上述案例中,笔者反复思量,寻找与三边关系紧密结合的生活原型,创造性地设置出木匠王师傅做三角形的情境,学生在帮助王师傅寻找合适木料的过程中,积极性被充分调动起来,体会到了问题解决后的愉悦之情。
“好吃”,要站在儿童立场解决问题。
所谓儿童立场,简单地说,就是教师要能够换位思考,把自己当作儿童,以儿童的眼光看待事物,以儿童的视角考虑问题。我们常常以成人的眼光审视严谨系统的数学,并以自己习惯了的教学方式将数学“成人化”地呈现在学生面前。课堂上,常常忽视了童年期学生心理、特点和学习规律,失去了儿童的情趣。上述案例中,教者就抓住了儿童爱听故事的年龄特点,为数学问题创设生活情境,在情境中生动地讲述故事,王师傅找木料,换木料,锯木料,扔木料,一波三折,环环相扣。当王师傅总是找不到合适的木料时,学生们不禁发出一阵阵叹息,继而迅速投入到紧张的思考中。当王师傅在大家的帮助下终于完成任务,学生们竟不约而同地发出“耶……”的欢呼声!课堂上,既有人物情感的相互交融,又有学生思维的深度撞击,师生互动,生生互动,在分析、讨论、质疑、归纳过程中,学生对于三角形三边关系的认识不断丰富,理解更加深刻。有位老师听课后不觉感叹:数学课上成了“故事课”,不要说学生,连我们也意犹未尽啊!
作为教师,我们要读懂教材、读懂学生、读懂课堂,用心研究,尽可能地丰富习题内涵,让习题承载多重训练目标。同时用智慧创造,让学生在兴趣的指引下,思维不断得到提升。唯有“营养”与“好吃”兼而有之,才能烹饪出学生喜欢的数学课堂。
第五篇:《三角形三边关系》教学设计
《三角形三边关系》教学设计
教学内容:人教版小学数学四年级下册P82例3的内容及练习十四第4题。教学目标:
1、通过摆一摆等操作活动,探索并发现三角形任意两边的和大于第三边,并应用这一性质判定指定的三条线段能否组成三角形。
2、引导学生参与探究和发现活动,经历操作、发现、验证的探索过程,培养自主探索、合作交流的能力。
3、激发学生探究的愿望和兴趣,培养学生参与数学活动的积极性和严谨的科学态度。
教学重点:探索发现三角形任意两边的和大于第三边。
教学难点:能应用发现的结论,来判断指定长度的三条线段能否组成三角形,并能灵活实际运用生活。
教学准备: 直尺,小棒,统计表,课件、实物投影等 教学过程:
活动一:实践操作,问题引入。1、游戏导入
[出示两根小棒]请看,我这里有两根小棒,猜一猜,这是干什么用的?可是今天我想用这两根小棒围成一个三角形,能围成吗?为什么?围成一个三角形最少需要几根小棒?那谁能说一说什么叫做三角形?(三角形是由三条线段首尾相接围成的平面图形。)那我们就再加一根,围一个三角形,好吗?这个盒子里面有很多根长度不同的小棒,是不是随便取出一根就能和这两根小棒围成三角形呢?(谁愿意来试一试:围两个三角形)问题的提出:是不是任意三根小棒都能够围成一个三角形呢?你想亲自动手试一试吗?要想操作得开心、顺利,我们要先读懂规则,读懂规则是顺利进行探索与发现的关键。请看屏幕(试验表格,默读)
二、合理猜想,探究发现。〈一〉初步体验,提出猜想
1、学生小组合作活动
活动工具:四根小棒,其长度分别是3厘米、4厘米、7厘米、9厘米。活动要求:(课件出示)
①每次实验选出3根小棒来围三角形,实验完毕后放回原处,以便下次实验。②4人为一组,组长负责组织成员合作完成实验,并指派一名同学为记录员,填写实验报告。
③全部实验完毕后,小组内同学说一说哪三根小棒能围成一个三角形。师巡视,参与小组活动,并给予适当指导。
2、全班讨论交流:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)谁愿意把你们摆的情况给大家介绍一下?
(1)[实物投影]展示实验报告,还有不同的吗?(学生上台选小棒,拼摆出三角形)摆的情况有:① 3、4、7 ②3、4、9 ③3、7、9 ④ 4、7、9 [电脑动画演示四种围三角形的情况](2)讨论: 这四组小棒,有的围成了三角形,有的没有围成三角形,这是怎么回事呢?能否围成一个三角形和什么有直接的关系?(板书课题)(先小组交流,然后共同分享)大胆猜想一下,这三条边之间存在着什么样的关系?
(3)提出猜想:三角形的三条边,一定要有任意两条边的长度加起来比第三条边长,否则不能围成三角形。(板贴:三角形 两边的和大于第三边 任意说不出来,教师就要引导,举例子:如果这三条边的长度我们用a/b/c三个字母来代替,怎么样来表示他们的关系呢?怎么样用一句话代替他们之间的关系呢?这仅仅是我们在探索过程中的一个猜想,到底三角形三边之间是不是有这样的关系呢?我们还要进行验证。你想怎样验证?(课件出示一个三角形,完成板书 字母代替)
〈二〉验证猜想
1、小组验证猜想活动:三角形任意两边长度的和一定比第三条边大吗? 活动要求:
①小组内每一名同学任意画一个三角形,量出三条边的长度,进行比较。
②小组交流讨论,你发现了什么?
3、教师小结:三角形任意两边的和大于第三边。师问:同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!(加强对“三角形任意两边的和大于第三边”中的“任意”理解)
4、练习:(1)书上31页第一题。
师问:如果我给你3根小棒,你能很快判断能否摆成三角形吗?
(2)一组线段:3厘米、3厘米、3厘米、4厘米、6厘米,如果请你选其中三条围成一个三角形,你会怎么选?
师:刚才这几个判断题太简单了,提高一点难度,好不好?
5、课堂小结:
够厉害,不仅做得好,而且说得更好。刚才我们通过猜想、验证知道了三角形任意两边的和大于第三边,我们学习数学不仅仅是为了发现规律,掌握方法,如果要这样学习数学就很肤浅了,学习数学更重要的是应用于现实生活,现在让我们走进生活,看看生活中有哪些问题需要我们用今天的知识去解决,好吗?
三、实践应用,强化认知。
1、建筑工人打算制作一个三角形的钢架,其中有两根钢管长分别是5米和8米,那么第三根钢管的长可能是几米?
思考题:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?
四、自我小结,学习反思。
这节课你有哪些收获?关于三角形三边的关系还有值得我们探讨的地方,比如三角形任意两边的差与第三边有什么样的关系?有兴趣的同学课后可以自己探索。
板书设计:
三角形三边关系
猜想 发现 三角形任意两边的和大于第三边。验证 应用
《三角形三边关系》教学反思:
《三角形三边关系》是人教版小学数学四年级下册P82例3的内容。教学中通过摆三角形,引出研究三角形三边之间关系的数学问题。通过在小组内画一画,量一量,比一比等活动,探索并发现三角形任意两边的和大于第三边。学生能应用发现的结论,来判断指定长度的三条线段,能否组成三角形。我在设计这节课的时候,主要注重了以下几点:
一、创设民主,宽松,自由的学习氛围,激发学生的学习兴趣。通过摆小棒活动制造矛盾冲突,唤醒学生“探究”的需要,课中有效地引导学生自主探索、合作研究,通过汇报、讨论、相互启发,结合学生的想法和实际适时点拨,适当地评价,关注课堂的生成,让学生在真正的探究、发现和创新中建构知识、体验成功、建立自信。
二、活用教材,丰富学生的探索材料,激发学生参与“做数学”的过程。小学生的认知规律是“感知—表象—抽象”。突破教材的束缚,使用小棒开展探究实验,然后从学生已有的经验和基础出发,补充、调整优化学习材料,为学生提供或学生自己准备了充分的实验材料和感知材料,如利用多媒体、小棒等,让学生充分动手,即突破了教学难点,又有助于培养学生做数学的意识和勇于探索的科学精神。
三、让学生真正经历数学探究的过程。本节课我是按照游戏操作引入——激趣产生问题——操作进行猜想——需要进行验证——推广运用这一主线组织教学的。学生在行动中产生问题,由问题产生猜想,由猜想产生价值。由于课堂教学每一次生成的情况都会不同,根据几次试教情况,我把教案定为预设,同时根据课堂教学可能生成的情况设计了几种执行方案。这对我来说是一种挑战。不管怎样,我都牢牢地把握住教师的主导地位和学生的主体地位,给学生充分的时间和空间去亲自摆一摆、画一画、算一算。虽然学生自主探索的过程花的时间比较多,一些课后的练习不能在这课堂上解决,但我认为这是很值得的。教学不能是仅仅把知识结果传授给学生,而应该尊重学生知识的形成过程,让学生经历疑问、探究、收获的过程,从而培养学生科学的探究态度和初步的探究能力,让学生的思维得到充分的发展。
通过本节课的教学,既让我感受到了成功的喜悦,但是同时在课堂中还是暴露了一些存在的实际问题。如过于关注教学设计,忽视了学生的回答。课堂上,生怕落下教学环节,所以过于关注教学设计,导致有的学生的不规范的语言也没能及时的指出来。