第一篇:果胶酶在果汁生产中的应用教学设计
果胶酶在果汁生产中的应用教学设计
昌邑市文山中学 王成伟 2010年7月27日 17:21
一、课题目标
简述果胶酶的作用;检测果胶酶的活性;探究温度和pH对果胶酶活性的影响以及果胶酶的最适用量;搜集有关果胶酶应用的资料。
二、课题重点与难点
课题重点:温度和pH对果胶酶活性的影响。课题难点:果胶酶的最适用量。
三、课题背景分析
随着生活水平的提高,水果几乎成为人们生活中的必需品,果汁饮料也深受人们的喜爱。将水果制成果汁,不仅有利于解决水果丰收季节的产、销、运输和保存等多方面的问题,而且提高了水果的附加值,满足了人们不同层次的需要。课题背景从与社会的联系、与学生生活的联系入手,引入课题研究。教师在教学过程中,可以以本地某种水果的生产、贮存、加工和运输为素材,让学生做一个简单的估算,从而认识到果汁加工的经济效益。例如,可以让学生计算生产一升苹果汁大约需要多少斤苹果,苹果与苹果汁的价格相差多少;等等。此外,教师还可以联系学生已有的关于酶的知识,引导学生认识果胶酶的特性及其作用。
四、基础知识分析与教学建议 知识要点:1.果胶酶的作用;2.酶的活性的定义;3.影响酶活性的因素;4.果胶酶的用量。
教学建议:关于果胶酶作用的教学,教师可以先展示图4-1,介绍植物细胞壁的成分和细胞与细胞之间的胞间层成分,说明这些成分对果汁制作的影响,从而引出果胶酶在果汁生产过程中的作用。
图4-1 植物细胞壁及细胞之间胞间层的成分
五、实验安排及注意事项
本课题的研究建立在必修模块“探究影响酶活性的条件”的基础之上,与必修模块的探究的不同之处主要体现在两个方面:一是酶的活性不是通过定性分析而是通过定量分析来进行探究的;二是本课题并不仅仅满足于探究温度和pH对酶活性的影响,还探究了果胶酶的最适用量,对生产实践具有指导意义。本课题可用3~4课时。其中,探究温度对果胶酶活性的影响的实验可以参考下面的教学思路进行。
在实际的操作过程中,还需要注意下列事项。
1.与其他工业用酶基本相同,果胶酶的适宜温度范围也比较宽泛,因此,可以选用10 ℃作为温度梯度,设置的具体温度为10 ℃、20 ℃、30 ℃、40 ℃、50 ℃和60 ℃等,也可以尝试以5 ℃作为温度梯度。
2.苹果、橙子和葡萄等水果都可以作为反应物,水果不用去皮。如用苹果为原材料,一般可按每个中等大小的苹果加水100~200 mL的比例进行搅拌,获得稀的苹果泥。
3.果泥的用量可以采用5 mL左右,果胶酶的用量可采用质量浓度为2%的果胶酶溶液2 mL。
4.水浴时间可以为20~30 min。5.过滤果汁时,漏斗中应放置滤纸。6.探究pH对果胶酶活性的影响,只须将温度梯度改成pH梯度,并选定一个适宜的温度进行水浴加热。反应液中的pH可以通过体积分数为0.1%的氢氧化钠或盐酸溶液进行调节。
探究果胶酶的用量是建立在探究最适温度和pH对果胶酶活性影响的基础之上的。此时,研究的变量是果胶酶的用量,其他因素都应保持不变。实验时可以配制不同浓度的果胶酶溶液,也可以只配制一种浓度的果胶酶溶液,然后使用不同的体积即可。需要注意的是,反应液的pH必须相同,否则将影响实验结果的准确性。
六、课题成果评价
本课题评价的重点应放在对学生探究报告的评价上。报告的主要内容应该包括:根据实验数据绘制出的温度和pH对果胶酶活性影响的曲线图;不同果胶酶用量对出汁量影响的曲线图(在浓度和体积相同的条件下);并最终得到果胶酶最适温度、pH以及果胶酶的最适用量。
七、答案和提示
(一)旁栏思考题
1.为什么在混合苹果泥和果胶酶之前,要将果泥和果胶酶分装在不同的试管中恒温处理?
提示:将果泥和果胶酶分装在不同的试管中恒温处理,可以保证底物和酶在混合时的温度是相同的,避免了果泥和果胶酶混合时影响混合物的温度,从而影响果胶酶活性的问题。2.在探究温度或pH的影响时,是否需要设置对照?如果需要,又应该如何设置?为什么?
提示:需要设置对照实验,不同的温度梯度之间或不同的pH梯度之间就可以作为对照,这种对照称为相互对照。
3.A同学将哪个因素作为变量,控制哪些因素不变?为什么要作这样的处理?B同学呢?
提示:A同学将温度或pH作为变量,控制不变的量有苹果泥的用量、果胶酶的用量、反应的时间和过滤的时间等。只有在实验中保证一个自变量,实验结果才能说明问题。B同学对于变量的处理应该与A同学相同,只是观察因变量的角度不同。
4.想一想,为什么能够通过测定滤出的苹果汁的体积大小来判断果胶酶活性的高低?
提示:果胶酶将果胶分解为小分子物质,小分子物质可以通过滤纸,因此苹果汁的体积大小反应了果胶酶的催化分解果胶的能力。在不同的温度和pH下,果胶酶的活性越大,苹果汁的体积就越大。
5.当探究温度对果胶酶活性的影响时,哪个因素是变量,哪些因素应该保持不变?
提示:温度是变量,应控制果泥量、果胶酶的浓度和用量、水浴时间和混合物的pH等所有其他条件不变。只有这样才能保证只有温度一个变量对果胶酶的活性产生影响。
(二)练习
答:大规模生产与实验室制备的主要不同点是: 1.有两次瞬间高温灭菌; 2.酶处理的时间相对较长; 3.有离心分离步骤和浓缩步骤。
第二篇:果胶酶在果汁生产中的作用教案
4.1 果胶酶在果汁生产中的作用
[教学目标] 1.简述果胶酶作用。2.检测果胶酶活性。
3.探究温度和pH对果胶酶活性影响。
4.探究果胶酶的最适用量,搜集有关果胶酶应用的资料。
[教学重点] 探究温度和pH对果胶酶活性影响
[教学难点] 探究果胶酶的最适用量
[教学过程] 讨论:果汁生产中存在的问题?
(1、果肉的出汁率低,耗时长.
2、榨取的果汁浑浊,黏度高,易发生沉淀.)怎么能够提高水果的出汁率并使果汁变得澄清? 在生产上,使用果胶酶、纤维素酶等解决。果胶酶有什么作用?
一、基础知识
(一)酶的基础知识
回忆:在高一我们学习过有关酶的知识,请回忆以下问题,1、酶的概念:酶是活细胞所产生的具有生物催化作用的一类特殊的有机物;
2、酶的本质:蛋白质(大多数)或RNA;
基本组成单位:氨基酸或核糖核苷酸
3、酶的功能:在各种化学反应中起催化作用。
原因:酶能降低化学反应的活化能,从而使反应能够迅速的进行。
4、酶的特性
(1)高效性: 酶的催化效率是无要催化剂的107~ 1013倍。(2)专一性: 一种酶只能催化一种化合物或一类化合物的化学反应。(3)需要适宜的条件: 适宜的温度、适宜的PH值。
(二)果胶酶的作用
阅读课本P42的内容,回答以下问题:
(1)细胞壁的组成成分?
(2)果胶的单体是什么?
(3)果胶酶的作用?
1、果胶
是植物细胞壁以及胞间层的主要组成成分之一,它是由半乳糖醛酸聚合而成的一种高分子化合物,不溶于水。
思考:要破坏植物的细胞壁,你有什么方法?结果一样吗?
2、果胶对果汁制作的影响:
影响果汁的出汁率,还会使果汁浑浊。
3、果胶酶:
它是分解果胶的一类酶的总称,包括半乳糖醛酸酶、果胶分解酶、果胶酯酶等。
果胶酶
果胶 半乳糖醛酸
4、果胶酶在果汁制作中的作用
① 分解果胶,瓦解植物的细胞壁及胞间层;使果胶水解为半乳糖醛酸。② 提高水果的出汁率,并使果汁变得澄清。
(三)酶的活性与影响酶活性的因素
1、酶的活性: 指酶催化一定化学反应的能力。
2、酶催化能力高低的衡量标准
在一定的条件下,酶所催化的某一化学反应的反应速度。
酶反应速度用单位时间内、单位体积中反应物的减少量或产物的增加量来表示。
3、影响酶活性的因素: ①温度
A、温度对酶的影响
在较低温度时,随着温度的升高,酶的活性也逐渐提高,达到最适温度时,酶的催化能力最高,但高于最适温度后,酶的催化能力迅速下降,最后完全失去催化能力。B、果胶酶的最适温度
果胶酶的最适温度为45~500C。
C、讨论:高温使酶的活性丧失后,酶的活性可否恢复?为什么? 不能恢复,因高温破坏了酶的分子结构,高温对酶造成不可逆的破坏。但低温使酶的活性丧失后,缓慢恢复其温度活性仍可恢复。②pH:
A、pH对酶的影响
酶的催化能力的发挥有一个最适pH,在低于最适pH时,随着pH的升高,酶的催化能力也相应升高,高于最适pH时,随着pH的升高,酶的活性逐渐下降,pH过高或过低会使蛋白质变性,当蛋白质变性后,酶也就完全丧失了活性。B、果胶酶的最适pH 果胶酶的最适pH范围为3.0~6.0。③酶的抑制剂:
Fe3+、Ca2+、Zn2+等金属离子对果胶酶有抑制作用。你知道这些离子为什么能抑制酶的活性?
(四)果胶酶的用量
1、酶的生产 ①提取法:
采用各种技术,直接从动物或微生物的细胞或组织中将酶提取出来(在原料充分的地区得以应用)。②发酵法:
通过微生物发酵来获得人们所需的酶(20世纪50年代以来生产酶的主要方法),如用曲霉、青霉等微生物发酵生产果胶酶。③化学合成法:
成本比较高,只能合成已知结构的酶。
2、控制酶的用量
为了果胶酶得到充分的利用,节约成本,需要控制好酶的用量。
二、实验设计
(一)探究温度对果胶酶活性的影响
1、实验原理
果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
2、实验操作流程
(1)获取苹果泥;
(2)保温——苹果泥和果胶酶分别进行;(多个温度)(3)混合后保温;(4)过滤。
讨论:为什么在混合苹果泥和果胶酶之前,要将果泥和果胶酶分装在不同的试管中恒温处理?
将果泥和果胶酶分装在不同的试管中恒温处理,可以保证底物和酶在混合时的温度是相同的,避免了果泥和果胶酶混合时影响混合物的温度,从而影响果胶酶活性的问题。
(二)探究pH对果胶酶活性的影响
1、实验原理
果胶酶的活性受pH影响,处于最适pH,酶的活性最高,高于或低于此值活性均下降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
2、实验操作流程
你能设计吗?
想一想,为什么能够通过测定滤出的苹果汁的体积大小来判断果胶酶活性的高低? 果胶酶将果胶分解为小分子物质,小分子物质可以通过滤纸,因此苹果汁的体积大小反应了果胶酶的催化分解果胶的能力。在不同的温度和pH下,果胶酶的活性越大,苹果汁的体积就越大。
在探究温度或pH的影响时,是否需要设置对照?如果需要,又应该如何设置?为什么? 需要设置对照实验,不同的温度梯度之间或不同的pH梯度之间就可以作为对照,这种对照称为相互对照。
4、果胶是植物细胞壁以及胞间层的主要成分之一。果胶酶能够分解果胶,从而分解植物的细胞壁及胞间层。在果汁生产中应用果胶酶可以提高果汁的澄清度。
(三)探究果胶酶的用量
1、实验原理
在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后,在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。
2、实验操作
请你设计。(1)配制不同浓度的果胶酶溶液和制备水果泥; ①配制不同浓度的果胶酶溶液
准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~9。②制备水果泥
搅拌器搅拌制成苹果泥并称 45g,等量装入9支试管中,并编号1~9。(2)将上述试管放入恒温水浴加热一段时间。
(3)将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。(4)恒温水浴约20分钟(5)过滤后测量果汁的体积
在最适温度和pH条件下制作1升苹果汁,使用多少果胶酶最合适?
一般为50mg/l左右,因为用此浓度处理果汁2~4小时后果汁率增加10%后不再增加。
第三篇:果胶酶在果汁生产中的作用学案
专题4酶的研究与应用
课题1果胶酶在果汁生产中的作用
【课题目标】
1.简述果胶酶的作用
2.理解影响果胶酶活性的因素。
3.探究温度和pH对果胶酶活性的影响以及果胶酶的最适用量 【重点难点】
1.重点:温度和PH对果胶酶活性的影响
2.难点:果胶酶的最适用量 【过
程】
(一)基础知识
活动1:阅读“果胶酶的作用”,讨论并回答下列问题:
(1)果胶是 的主要组成成分之一,它是由 聚合而成的一种高分子化合物,于水。
(2)在果汁加工中,果胶的存在易导致。(3)果胶酶作用是:能够 果胶,瓦解,使榨取果汁更容易,把果胶分解为,使浑浊的果汁变得澄清,因此可以解决果汁加工中出现的问题。
(4)果胶酶是一类酶的总称,包括: 酶、酶和 酶。(5)果胶酶的来源:_____、霉菌、酵母菌和_____均能产生果胶酶。由霉菌_____生产的果胶酶,被广泛地应用于果汁加工业。
活动2:学习酶的活性与影响酶活性的因素,回忆作图。
结合必修1的知识,请你大致分别绘出温度和pH影响酶活性的曲线:
(二)实验设计
1、阅读“[资料一]探究温度对酶的活性的影响”,思考下列问题:(1)实验的目的:。
(2)实验原理:果胶酶的活性受
的影响。处于
时,酶的活性最高。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成。(3)变量设计与控制: ①你确定的温度梯度为。②实验自变量是
③实验的因变量是,检测因变量的方法是测定 或者。(4)实验步骤设计:
①用榨汁机榨取适量的苹果汁,并配制一定浓度的果胶酶备用。
②取大烧杯 只,并贴标签注明温度:100C、150C、200C、250C、300C、350C、400C、450C、500C。
③取试管 支:其中 支倒入10mL果汁(A管),另外 支分别倒入2mL 溶液(B管)。
④将不同温度的水倒入相应的烧杯中,每只烧杯中放入 试管各一支,并插入一支温度计。
⑤待试管内温度稳定后,将果胶酶加入 温度的苹果泥内恒温保持10分钟 ⑥利用漏斗 果汁,用量筒测量各组的果汁体积并设计表格记录。
⑦设计表格记录实验数据:
(5)实验结果与结论:
问题思考:
a、进行④处理的目的是。b、上述 为设置对照实验,这种对照称为。c、为什么可以根据⑥操作判断果胶酶的活性高低?
第四篇:课题1 果胶酶在果汁生产中的作用 教学设计 教案
教学准备
1.教学目标
(一)知识与技能
1、果胶酶的作用
2、理解、应用影响果胶酶活性的因素
3、提高学生的实验能力
(二)过程与方法
1、探究温度对果胶酶活性的影响
2、探究PH对果胶酶活性的影响
3、探究酶量大小对反应速度的影响
(三)情感、态度与价值观
通过实验探究酶的影响因素,培养学生的探索精神、创新精神和合作精神。
2.教学重点/难点
1、教学重点:温度和PH对果胶酶活性的影响
2、教学难点:果胶酶的最适用量
3.教学用具
多媒体、板书
4.标签
教学过程
(一)导入
我国水果生产发展迅速,每年上市的新鲜水果品种多、数量大。但由于收获的季节性强,易造成积压滞销,腐烂变质。
酶普遍存在于动、植物和微生物中,将酶从生物组织或细胞以及发酵液中提取出来,可加工成具有一定纯度标准的生化酶制剂。在本课题中,我们将探究果胶酶在果汁生产中的作用。
(二)新课 1.基础知识
活动1:阅读“果胶酶的作用”,讨论并回答下列问题: 1.1果胶是 植物细胞壁和胞间层的主要组成成分之一。
1.2在果汁加工中,果胶的存在易导致
果汁出汁率低,果汁浑浊
。1.3果胶酶分解果胶的作用是:①瓦解
植物的细胞壁及胞间层,使榨取果汁更容易,②把果胶分解为
可溶性的半乳糖醛酸,使浑浊的果汁变得澄清,因此可以解决果汁加工中出现的问题。
1.4果胶酶是一类酶的总称,包括:
多聚半乳糖醛酸
酶、果胶分解
酶和
果胶酯
酶。
〖思考1〗在植物细胞工程中果胶酶的作用是
与纤维素酶一起除去植物细胞的细胞壁。
活动2:阅读“酶的活性与影响酶活性的因素”,讨论并回答下列问题: 1.5酶的活性是指:酶催化
一定化学反应的能力。
1.6酶的活性高低可用一定条件下的酶促 反应速度
来表示,即单位时间、单位体积内
反应物消耗量
或
产物生成量
来表示。
1.7影响酶活性的因素有:
温度、PH、激活剂
和
抑制剂
等。
活动3:阅读“果胶酶的用量”,讨论并回答下列问题:
1.8食品工业生产中最常用的果胶酶是通过
霉菌发酵
产生。
1.9根据影响酶活性的因素,在实际生产中我们如何获得果胶酶的最高活性? 确定果胶酶的最适温度、最适PH等条件。2.实验设计
活动4:阅读“资料一:探究温度和PH对酶的活性的影响”,思考下列问题并尝试写出实验过程:
2.1实验目的:
定量测定温度或pH对果胶酶活性的影响
。〖思考2〗该实验与必修I中探究“影响酶活性的条件”实验有何不同? 前者属于是定量分析实验,后者属于定性分析实验。
2.2实验原理:果胶酶瓦解细胞壁和胞间层增大果汁产量;果胶酶催化分解果胶增大果汁澄清度。2.3变量设计与控制:
①你确定的温度梯度(或pH梯度)为 10℃或5℃(或0.5、1.0)
。②实验的自变量是
温度(或pH),控制自变量的方法是利用 恒温水浴锅(或滴加酸碱等)。
③实验的因变量是
酶的活性,检测因变量的方法是测定
果汁的产出量或澄清度。
〖思考3〗果汁与果胶酶在混合之前,分装在不同试管中用同一恒温处理的目的是什么?
保证果汁与果胶酶混合前后的温度相同,避免因混合导致温度变化而影响果胶酶活性。
〖思考4〗该实验中是否设置了对照?若设置,那么它是如何设置的?若没有,则如何进行设置?
已经设置了对照。不同的温度设置之间可以相互对照。
〖思考5〗怎样排除PH和其他因素对实验结果的干扰?目的是什么? 控制PH和其他因素相同,保证只有温度一个变量对果胶酶的活性产生影响。〖思考6〗教材中A、B两个同学的实验设计有何不同? 测定的因变量不同(A测定果汁产量,B测定果汁澄清度)。3.操作提示
活动5:阅读“操作提示”,回答下列问题
3.1制备果泥:用
榨汁机
榨制果泥。在榨制橙子汁时应怎样处理橙皮? 不必去橙皮
3.2在探究不同PH对果胶酶活性的影响时,可以用 0.1%的NaOH溶液和盐酸
调节pH。3.3在果胶酶处理果泥时,为了是果胶酶能充分地催化反应,如何操作? 用玻璃棒不时搅拌。4.结果分析与评价
将以下某同学实验数据转换成曲线图。
(三)课堂总结、点评
课堂小结
通过本节内容的学习,要能熟悉果胶酶的特点和作用,并能运用酶的特点尝试设计简单的探究实验。在分析案例时既要遵循单一原理,又要实验设计的合理性等各种因素,此外还要多结合身边实际进行学习。本节课要注重运用详实的数据(以教科书中的数据和文字叙述为主),以帮助学生了解酶的活性。注重培养学生收集整合资料的能力和合作交流的能力。利用生活中的实例来调动学生的学习兴趣。这些问题与他们的切身利益有一定的相关性,让学生从这一角度认识问题,会让问题的讨论更加激烈,会让每个学生都认真地去思考酶的有利之处。充分利用了教材资源、本地资源和学生收集的图片资料等资源,增强学生理论联系实际能力,分析资料的能力以及探究解决问题的能力。
板书
专题四
酶的研究和应用
课题1
果胶酶在果汁生产中的作用
一、果胶以及果胶酶的作用
二、酶活性以及影响酶活性的各种因素
三、实验探究
1、探究温度对果胶酶活性的影响
2、探究PH对果胶酶活性的影响
3、探究酶量大小对反应速度的影响
第五篇:计算机辅助设计在材料生产中的应用
计算机辅助设计在材料生产中的应用
学 专 姓
院
材料科学与工程 称
防腐131班
名
蓝 文 程
计算机辅助设计在材料生产中的应用
摘要
计算机辅助设计是利用计算机及其图形设备帮助设计人员进行设计工作,简称CAD。在工程和产品设计中,计算机可以帮助设计人员担负计算、信息存储和制图等项工作。在设计中通常要用计算机对不同方案进行大量的计算、分析和比较,以决定最优方案;各种设计信息,不论是数字的、文字的或图形的,都能存放在计算机的内存或外存里,并能快速地检索;设计人员通常用草图开始设计,将草图变为工作图的繁重工作可以交给计算机完成;利用计算机可以进行与图形的编辑、放大、缩小、平移和旋转等有关的图形数据加工工作。
随着现代计算机技术的飞速发展,计算机辅助设计CAD(Computer Aided Design)在生产中的应用日益广泛,本文主要从计算机辅助设计在材料生产中的应用等方面阐述了其在材料计中的显著优势,并对目前国内企业产品开发过程三维CAD系统应用现状和存在问题进行了分析。
关键词:计算机辅助设计 三维CAD 应用 绪 论
开始于上世纪50年代后期的计算机辅助设计技术,从最初的仅仅被简单的作为图板的替代品到70年代的二维制图过度到三维建模再到现在的集产品的构思、功能设计、结构分析、加工制造、数据管理于一体的智能CAD技术,计算机辅助设计经历了一个漫长又曲折的发展历程。在今天,CAD技术越来越广泛的用于生产中。CAD技术从二维CAD向三维CAD的过渡
2.1 CAD简介
计算机辅助设计是利用计算机强大的图形处理能力和数值计算能力,辅助工程技术人员进行工程或产品的设计与分析,达到理想的目的,并取得创新成果的一种技术。自1950年计算机辅助设计(CAD)技术诞生以来,已广泛地应用于材料、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率飞速地提高。现已将计算机辅助制造技术(Computer Aided Manufacturing,CAM)和产品数据管理技术(Product Data Management,PDM)及计算机集成制造系统(Computer Integrated manufacturing system,CIMS)集于一体。
产品设计是决定产品命运的研究,也是最重要的环节,产品的设计工作决定着产品75%的成本。目前,CAD系统已由最初的仅具数值计算和图形处理功能的CAD系统发展成为结合人工智能技术的智能CAD系统(ICAD)(Intelligent CAD)。21世纪,ICAD技术将具备新的特征和发展方向,以提高新时代制造业对市场变化和小批量、多品种要求的迅速响应能力。
以智能CAD(ICAD)为代表的现代设计技术、智能活动是由设计专家系统完成。这种系统能够模拟某一领域内专家设计的过程,采用单一知识领域的符号推理技术,解决单一领域内的特定问题。该系统把人工智能技术和优化、有限元、计算机绘图等技术结合起来,尽可能多地使计算机参与方案决策、性能分析等常规设计过程,借助计算机的支持,设计效率有了大大地提高。
CAD技术正从二维CAD向三维CAD过渡。三维设计软件具有工程及产品的分析计算、几何建模、仿真与试验、绘制图形,工程数据库的管理,生成设计文件等功能。三维CAD技术诞生以来,已广泛地应用于机械、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率得以迅速提高。我国CAD技术的研究、开发和推广已取得较大进展,产品设计已全面完成二维CAD技术的普及,结束了手工绘图的历史,对减轻人工劳动强度、提高经济效益起到了明显的作用。有相当一部分CAD应用较早的企业已完成了从二维CAD向三维CAD转换,并取得了巨大的经济效益和社会效益。随着市场经济的逐步深入,市场竞争日趋激烈,加强自身的设计能力是提高企业对市场变化和小批量、多品种
要求的迅速响应能力的关键。2.2 三维CAD的优势
首先CAD技术以实用的零件实体建模优势和简便的产品造型修改和实体装配图的生成被用在机械设计的多个方面设计软件为三维建模提供了多种工具,包括最基本的几何造型如球体、圆柱等,对简单的零件,可通过对其结构进行分析,将其分解成若干基本体,对基本体进行三维实体造型,之后再对其进行交、并、差等布尔运算,便可得出零件的三维实体模型。对于较复杂的图形,软件提供了草图工具,设计人员可以通过它先勾勒出截面,再拉伸出较复杂的几何形体。为了满足人们不断提高的审美要求,目前主要流行的几款三维设计软件基本上都提供面片模块,该模块为设计人员提供了非常方便的曲面设计工具。对于具有大块曲面的零件,设计师可以方便地对单个面或片体进行变形处理,以达到需要的曲面。
企业生产的产品往往是按系列区分,各系列中每一代产品与上一代产品之间的区别较小,也许只是增加了一个功能部件或是产品造型尺寸上有所改动。三维CAD可以方便地修改一些参数就能达到设计师更改造型的目的。三维CAD在建模中一般使用参数化建模,整个建模的步骤和产品的外型尺寸被参数化,这些参数是与产品的造型直接关联的。若要对尺寸或造型进行局部的更改,只需要更改相关参数,整个造型将被自动更新。这样不仅大大减少了设计人员的工作量,还保证了产品外造型的延续性。
实体装配不仅能让设计人员直观地看到各零件装配后的状态,还可以测量各零件之间的空间大小,方便零件的布置。在装配完成后,零件可以被隐藏或设置成半透明的状态,方便设计人员观察内部结构。此外,在装配状态下,软件提供的标准件库,也方便了设计人员对标准件型号的选择。装配状态下的干涉分析也是常用的功能,计算机通过计算各装配零件的体积的大小和位置来确定是否有相交的部分,并确定各零件是否干涉,自动生成分析报告,明确指出互相干涉零件的名称和干涉的尺寸。方便设计师修改产品设计尺寸。
另外随着技术发展,为了减轻人工劳动强度,提高产品的精度,制造行业装备从普通机床逐步到数控机床和加工中心,模具激光快速成型技术(RPM)等,几乎应用到整个制造行业。这些数控加工装备基本都具有与各三维设计软件的接口。当产品模型在三维CAD软件中完成后,再由CAD软件模拟出加工刀具路径,随后生成数控语言,通过接口输入数控设备中,再由数控设备按照模拟出的加工路径加工产品。
2.3 CAE简介
CAE是三维CAD软件的重要模块,CAE功能包括工程数值分析、结构优化设计、强度设计评价与寿命预估、动力学、运动学仿真等。CAD技术在建模模块完成产品造型后,才能由CAE模块针对设计的合理性、强度、刚度、寿命、材料、结构合理性、运动特性、干涉、碰撞问题和动态特性进行分析。CAE技术在我国也得到了广泛应用,以汽车制造业为例,国内多家主车厂和汽车设计公司在使用三维CAD软件完成新车型的设计后,进行CAE分析,如干涉检查、钣金成型分析、塑料件拔模角分析、车身强度刚度的测试,在车窗、车门、雨刮器等运动部件上广泛采用CAE模块中的运动仿真功能,计算出零件的运动轨迹,以及零部件在运动中的状态,为设计人员提供直观的参考。这些分析工作大大提高了新车型的可靠度,缩短了新车型的开发周期,减少了返工,节约了研发成本。采用三维CAD技术,机械设计时间缩短了近1/3。同时,三维CAD系统具有高度变型设计能力,能通过快速重构,得到一种全新的机械产品,大大提高了工作效率。
3计算机辅助设计在材料加工中的应用
材料加工CAD技术是传统材料加工技术与计算机技术、控制技术、信息处理技术等相结合的产物,是材料加工和技术进步和标志。材料加工CAD又可分为铸造成形CAD、塑性成形CAD、焊接成形CAD、注射成型CAD以及模具CAD等几个方面:
3.1 铸造成形CAD
包括铸造工艺CAD以及铸造工装(模具/模板)CAD。前者的主要功能有铸造浇注系统设计,冒口补缩系统设计,冷铁的设计,砂芯的设计,铸造分型面的确定,加工余量的确定,起模斜度的确定,开放浇注系统库、冒口库、冷铁库、芯头库的建立,工艺图的标注与打印等,可以实现铸造工艺的快速准确设计。另外,基于有限分析的优化技术在CAD系统配套使用,例如充型过程模拟、凝固过程模拟、应力应变分析、微观组织模拟等,为制定合理的铸造工艺起到了有力的指导作用。
铸件弃型流动与凝固过程数值模拟在短短十余年的发展过程中,由二维到三维,由简单到复杂,由工作站到微机,由实用化到商品化,为铸造生产提供越来越重要的指导作用。华中科技大学推出的商品化三维模拟软件华铸CAD。这些铸造模CAD软件在铸造生产中取得了显著的效益。已覆盖了铸钢、球墨铸铁、灰铸铁、铸铝和铸铜等各类铸件,大到一二百吨,小到几千克,无论是解决缩孔和缩松,还是优化浇冒口结构,提高生产效率,改进浮渣等方面,都发挥了明显的作用。
3.2 塑性成形CAD
包括冷冲模、冲裁模、弯曲模、拉伸模以及锻造模设计CAD。随着工业技术的发展,产品对模具的需求愈来愈多。传统的模具设计与制造方法不能适应工业产品及时更新换代和提高质量的要求。因此,国外先进工业国家对模具CAD/CAM技术的开发非常重视。早在20世纪60代的初期,国外一些飞机和汽车制造公司就开始了CAD/CAM的研究工作,投入了大量人力和物力。各大公司都先后建立了自己的CAD/CAM系统,并将其应用于模具的设计与制造。目前,应用CAD/CAM技术较普遍的为美、日、德等国。日本丰田汽车公司于1965年将数控用于模具加工。20世纪80年代初期开始用覆盖件冲模CAD/CAM系统。该系统包括设计覆盖件的NTDFB和CADET软件和加工凸、凹模的TINCA软件。利用坐标测量仪测量粘土模型,并将数据送入计算机。将所得图形经平滑处理后,再把这些数据用于覆盖件设计、冲模的设计与制造。该系统有较强的三维图形功能,可在屏幕
上反复修改曲面形状,使工件在冲压成形时不致产生工艺缺陷,从而保证了模具和工件的质量。模具型面的模型保存在数据库中,TINCA软件可利用这些数据,进行模具型面的数控加工。美国的Diecomp公司开发的计算机辅助级进模设计系统PDDC,可以完成冷冲模设计的全过程,包括从输入产品和技术条件开始设计出最佳样图,确定操作顺序、步距、空位、总工位数,绘制带料排样图,输入模具装配图和零件图等,比传统设计提高功效8倍以上。在优化设计方面,利用有限元技术的应力应变分析在塑性成形CAD中已获得较为普遍应用。
我国模具CAD/CAM的研究与开发始于20世纪70年代末,发展也很迅速。到目前为止,先后通过国家有关部门鉴定的有精冲模、普遍冲裁模、级进模、汽车覆盖模、辊锻模、锤锻模和注塑模等CAD/CAM系统。但直到现在有些系统仍处于试用阶段,尚未在生产中推广应用。为迅速改变我国模具生产的落后面貌,今后应继续加速模具CAD/CAM的研究开发和推广应用工作。
3.3焊接成形CAD 目前,在焊接结构生产的各个环节中计算机得到广泛应用。90年代初,国际焊接学会将这类应用概括为“计算机辅助焊接技术”(CAW)。现在CAW已不限于焊接结构和接头的计算机辅助设计、焊接工装计算机辅助设计、焊接工艺计算机辅助计划、焊接工艺过程计算机辅助管理等以计算机软件为主的许多方面,而且还涵盖了焊接过程模拟、焊接工艺过程控制、传感器以及生产过程自动化等与计算机应用有关的方面。
20世纪80年代提出了计算机集成制造系统的概念。可以认为,CIMS是从订货到加工、直至发货的全部过程的各个步骤都可以从计算机中及时得到必需的信息集成系统。焊接CIMSA系统,自20世纪90年以来在造船、桥梁、建筑、汽车等行业中得到了一些应用。以船舶生产为例,设计人员首先要根据设计标准和用户要求进行初步设计,然后在对结构强度、刚度分析的基础上,还要考虑制造能力,再进行分段的详细设计。这些工作可运用CAD、CAE等软件来实现。焊接生产的计划管理与装配焊接过程设计,则通过计算机的CAPM和CAPP系统来实现。
3.4 注射成型CAD 包括产品图模具型腔图的尺寸转换、标准模架与典型结构的生成、模具零件图和总培育图的生成、模具刚度与强度校核、设计进程管理、模具成本分析与计算等。注射模工艺分析已成熟的商品化软件,可以预测注射成型流动和保压阶段的压力场、温度场、应
力应变场和凝固层的生成,从而有效地指导实际生产。
在西方先进工业国家,注射模CAD/CAE/CAM技术的应用已非常普遍。公司之间模具订货所需的塑料制品资料已广泛使用电子文档,能否具有接受电子文档的模具CAD/CAM系统已成为模具企业生存的必要条件。当前代表国际先进汪洋的注射模CAD/CAE/CAM的工程应用具体表现在如下方面:
(1)基于网络的模具CAD/CAE/CAM集成化系统开始使用。英国Delcam公司在原有软件DUCT5的基础上,为适应最新软件发展及实际需求,向模具行业推出了可用于注射模CAD/CAM的集成化系统。该系统覆盖了几何建模、注射模结构设计、反求工程、快速原型、数控编程及测量分析等领域。系统的每一个功能既可独立运行,又可通过数据接口作集成分析。
(2)微机软件在模具行业中发挥着越来越重要的作用。在90年代初,能用于注射制品几何造型和数控加工的模具CAD/CAM系统主要是在工作站上采用UNIX操作系统开发和应用,如在模具行业中应用较广的美国Pro/E、UGII、CADDS5,法国CATIA、EUCLID和英国的DUCT5等。随着微机技术的飞速进步,在90年代后期,基于Windows操作系统的新一代微机软件,如Solid Works、Solid Edge、MDT等崭露头角。这些软件不仅在采用NURSB曲面三维参数化特征造型等先进技术方面继承了工作站级CAD/CAM软件的优点,并且在Window风格、动态导航、特征树、面向对象等方面具有工作站级软件所不能比拟的优点,深得使用者的好评。
(3)模具CAD/CAE/CAM系统的智能化程度正逐步提高。当前,面向制造、基于知识的智能化功能现已成为衡量模具软件先进性和实用性的重要标志之一。许多软件都在智能化方面做了大量的工作。如以色列Cimatron公司的注射模专家系统,能根据脱模方向优化成分模面,其设计过程实现了加工参数的优化等,这些具有智能化的功能可显著提高注射模的生产率和质量。
(4)三维设计与三维分析的应用和结合是当前注射模技术发展的必然趋势。在注射模结构设计中,传统的方法是采用二维设计,即先将三维的制品几何模型投影为若干二维视图后,再按二视图进行模具结构设计。这种沿袭手工设计的方式已不能适应现代化生产的集成化技术的要求,在国外已有越来越多的公司采用基于实体模型的三维模具结构设计。与此相适应,在注射过程模拟软件方面,也开始由基于中性层面的二维分析方工式向基于实体模型的三维分析方式过渡,使三维设计与三维分析的集成得以实现。
参考文献
[1]王先逵.计算机辅助制造[M].北京:清华大学出版社,2008 [2]蔡汉明,陈清奎.机械CAD/CAM技术[M].北京:工业出版社,2005 [3]姚英学,蔡颖.计算机辅助设计与制造[M].北京:高等教育出版社,2002 [4]唐承统, 阎艳.计算机辅助设计与制造[M].北京:北京理工大出版社,2008 [5]刘德平,刘武发.计算机辅助设计与制造[M].北京:化学工业出版社,2007 [6]李超.CAD/CAM实训—CAXA软件应用[M].北京:高等教育出版社,2003 [7] Zeid,Ibrahim.CAD/CAM theory and practice[M]: McGraw-Hill College,1991 [8]Brahim Rekiek,Alian Delchambre.Assembly Line Design[M].Springer,2006