第一篇:圆柱体积和圆锥体积的应用教学设计
圆柱体积和圆锥体积的应用教学设计
高楼小学
王俊渊
教学内容:新课标人教版小学数学六年级下册圆柱体积和圆锥体积的应用 教学目标:
1、让学生进一步掌握圆柱和圆锥体积的计算方法,正确熟练地运用公式计算圆柱和圆锥的体积。
2、进一步培养学生运用所学知识解决实际问题的能力和思维能力。
3、进一步激发学生学习数学的兴趣,培养学生的合作意识和应用意识。教学重难点:
灵活运用公式解决简单的实际问题。学法指导
在教学活动中,教师要重视学生的全面参与,通过学生动手、动脑、分析、计算、讨论等方式,自主获取知识. 教学方法:
尝试教学法、讨论法、启发诱导式、参与式、分析比较法. 教具准备: 课件。教学过程:
一、复习引入:
1、上学期我们学习了圆的面积,如何计算一个圆的面积,用字母表示它的计算公式。
2、前面我们学习了圆柱和圆锥的体积,如何计算圆锥和圆柱的体积,用字母来表示分别表示其计算公式。
二、导入新课:
这节课我们学习圆柱体积和圆锥体积在生活中的应用,教师出示本节课题。
1、出示应用1:
一个圆柱蓄水池的底面直径是20米,深2米。(1)这个蓄水池的占地面积是多少平方米?(2)挖成这个水池,共挖出土多少立方米?
让学生分析讨论后自己解答,并让一名学生进行板书,然后师生共同订正。(1)3.14×﹙20/2﹚² =314(平方米)
答:这个蓄水池的占地面积是314平方米。(2)3.14×﹙20/2﹚²×2
=314×2
=628(立方米)
答:挖成这个水池,共挖出土628立方米。
2、出示应用2:
把一个底面半径是10分米,高是2分米的圆柱形铁块熔铸成与它等底的圆锥体,这个圆锥体的高是多少分米? 讨论:
(1)这个圆柱体的什么与圆锥体的什么没有变,什么发生了变化?
(2)这个圆锥体的体积实质上就是谁的体积?
(3)如何求这个圆锥体的高?
让学生分析讨论后自己解答,并让一名学生进行板书,然后师生共同订正。
(3.14×10²×2)÷(1/3×3.14×10²)=628÷314/3)=6(分米)
答:这个圆锥体的高是6分米。
3、出示应用3:
在一个底面周长是62.8厘米,高是6厘米的圆柱体中削取一个最大的圆锥体,这个圆锥体的体积是多少立方厘米?剩下部分的体积是多少立方厘米? 讨论:
(1)削取的这个圆锥体与原来的圆柱体有什么相同点?
(2)在等底等高的圆柱体和圆锥体中,圆柱体的体积与圆锥体的体积有什么关系?
(3)要计算这个圆锥体的体积,首先要算出什么?
(4)当这个圆锥体的体积计算出来后又如何计算剩下部分的体积? 学生分析讨论后自己解答,并让一名学生进行板书,然后师生共同订正。3.14×[62.8÷﹙2×3.14﹚] ²×6
=3.14×100×6
=314×6
=1884﹙立方厘米﹚
1884×1/3=628
﹙立方厘米﹚
1884×2/3=1256 ﹙立方厘米﹚
答:这个圆锥体的体积是628立方厘米.剩下部分的体积是1256立方厘米.
三、师生共同小结:
这节课我们主要学习了应用圆柱体积和圆锥体积解决我们实际生活中的问题,通过本节课的学习,不难看出他们在我们的实际生活的应用是非常广泛的,因此同学们一定要认真的学习,并将所学知识应用到我们的实际生活中去。
四、谈一谈自己这节课的收获.
五、课后作业:
有一块正方体木料,它的棱长是5分米,把它加工成一个最大的圆柱体,这个圆柱体的体积是多少?
六、板书设计:
圆柱体积和圆锥体积的应用
V柱=Sh
V锥=1/3Sh
应用1:
(1)3.14×﹙20/2﹚² =314(平方米)
答:这个蓄水池的占地面积是314平方米。
(2)3.14×﹙20/2﹚²×2
=314×2
=628(立方米)
答:挖成这个水池,共挖出土628立方米。
应用2:
(3.14×10²×2)÷(1/3×3.14×10²)
=628÷314/3)
=6(分米)
答:这个圆锥体的高是6分米。应用3:
3.14×[62.8÷﹙2×3.14﹚] ²×6
=3.14×100×6
=314×6
=1884﹙立方厘米﹚
1884×1/3=628
﹙立方厘米﹚
1884×2/3=1256 ﹙立方厘米﹚
答:这个圆锥体的体积是628立方厘米.剩下部分的体积是立方厘米.
1256
第二篇:圆柱和圆锥体积比较教学设计
《等底等高的圆柱和圆锥》教学设计
陇县东风镇西沟小学 刘金为
【教学题目】等底等高的圆柱和圆锥 【教学目标】
知识与技能:
1、领会等底等高的圆柱和圆锥体积的相互关系。
2、掌握解答有关等底等高的圆柱和圆锥体积问题的方法。
过程与方法:
1、培养学生的观察、探究能力。
2、培养学生的思维创新能力。
情感态度与价值观:
1、让学生体会成就感。
2、提高学生学习数学的兴趣。【学情分析】学生已经学习了圆柱的体积计算和圆锥的体积计算,很有必要通过本节课的学习,使他们对两者的体积计算能做到融贯通。
【教学要点】
重点:准确判断圆柱的体积、圆锥的体积和削去的的体积各占的份数。难点:根据已知条件准确判断份数和数量。【教学准备】
等底等高的圆柱和圆锥容器各一个,并在圆柱里面盛满水。【教学过程】
一、温习旧知
任务:让学生说出圆柱和圆锥各自的体积计算公式。
二、初步探究,建立模型
1、老师演示:第一步:先把圆柱和圆锥并排放在桌子上,再把圆锥放在圆柱的上面,让学生通过观察说出圆柱和圆锥的关系。第二步:把圆柱容器里面的的水倒入圆锥里面,让学生观察看几次能倒完,总结两个容器之间的容积关系和体积关系。
2、师生探讨:把一个圆柱削成一个最大的圆锥,削成的圆锥和原来的圆柱之间有什么关系?削去的体积是圆柱体积的几分之几?
(设计意图:首先通过初步探究、归纳总结,使学生建立一个比较完整的知识架构,即等底等高的圆柱和圆锥体积关系可以归纳为圆柱是3份、圆锥是1份、削去的是2份。)
三、解决问题,体会方法
例
1、一段圆柱形木头,削成一个最大的圆锥,削去的体积是44立方厘米,则削成的圆锥的体积是多少立方厘米?(练习册11页第1题第五小题)
例
2、一个圆锥和一个圆柱的底面积和高都相等,已知它们的体积之和是64立方分米,则圆锥的体积是多少立方分米?(学习资源第9页第1题第四小题)
(设计意图:通过这些习题的解答,使学生掌握份数思想和归一法,并体会这种解题方法的巧妙之处。)
四、归纳总结,解题方法
任务:这类题目的解答步骤一般可以分为哪几步,每一步要解决的主要问题是什么,怎么解决?
(设计意图:指导学生主动讨论、加深理解,对所学方法作更加深入的研究,使感性经验变成理性技能,提高自身的学习能力,同时让学生体会成就感。)
五、作业与练习
1、一个圆柱与一个和它等底等高的圆锥的体积之差是84立方厘米,这个圆柱的体积是多少立方厘米?(学习资源第9页第1题第七小题)
2、一个圆柱和一个圆锥等底等高,已知圆柱体积比圆锥体积多32立方厘米,圆柱体积是多少立方厘米,圆锥体积是多少立方厘米?(学习资源30页第1题第五小题)
3、一个圆柱和一个圆锥,它们的底面直径和高都相等,已知它们的体积和是16立方分米,圆锥的体积是多少立方分米?(学习资源33页第1题第六小题)
【教学反思】
一、深入研究教材内容
在设定教学内容时,针对学生存在的问题,对教学用书进行了归纳整理,确立了本节课的教学内容,充分调动了学生的积极性。
二、教给学生优秀的数学思想和方法
本节课在“授之以渔”上选择了基于学习内容的份数思想和归一法,使学生学会运用份数思想去思考数学问题,体会份数思想的优越、便捷,培养学生的信息素养并提高其迅速分析、运用信息的能力。在解答题目的过程中,用归一法使学生快速找到解决问题的突破口,使学生感受到归一法的优越性,体会“追本索源”的解题策略,发展学生的自主学习能力。
三、需要改进的地方
根据实际上课的情况来看,有部分学生在遇到稍有变化的习题时显得无所适从,不能及时有效地解决问题。所以在以后的教学设计中,要注重对知识框架构建的全面性,让学生能把知识融会贯通。在学习策略上,多提供给学生交流、合作的机会,通过语言来相互沟通,保证每个学生都能完成知识框架的构建和相关数学问题模型的建立。
第三篇:圆柱和圆锥的体积复习教学设计
教学内容:小学六年制数学第十二册──圆柱体和圆锥体体积的复习;
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程 :
一.出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行“圆柱体和圆锥体体积的复习”;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱=Sh 3.圆锥体的体积怎么求?
板书:V圆锥=1/3 Sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?
二.基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)计算这些形体的体积:
(1)S底=1.5平方米 h=5 米 求V圆柱
(2)S底=1.5平方米 h=5 米 求V圆锥
(3)r=10分米 h=2 米 求V圆柱
(4)C=6.28米 h=6 米 求V圆锥(1)、(2)两题条件相同,所求不同;
板书:2.圆锥体积一定要乘 1/3(3)、(4)两题都要先求出底面积;
板书:3.单位名称要统一
三.实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四.提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2.S可以通过哪个条件求?(r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五.圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?
第四篇:《圆锥体积》教学设计
《圆锥的体积》教学设计
教学目标:
1.通过“演示、猜测、操作、验证”使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并能运用公式解决简单的实际问题。
2.在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力,发展学生空间观念。
3.在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。
教学重点:理解和掌握圆锥体积的计算公式。教学难点:圆锥体积公式的推导过程。教 具:ppt课件
学 具:圆柱、圆锥量杯各一个,水一桶。教学过程:
一、复习旧知,设疑导入
1、前几节课我们学习了圆柱的体积,圆柱的体积的计算公式你还记得么?字母公式又怎样表示?(板书:v =sh)
2、一个圆柱的底面积是60平方分米,高是15分米,它的体积是多少立方分米?
课件出示圆锥形谷堆,问:它占了多大的空间呢?圆锥的体积怎样计算呢?他又是怎样推导出来了呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)
二、科学验证,经历过程
引导学生借助圆柱,用实验的方法,推导圆锥的体积公式。教师出示实验用具:圆柱,圆锥,水。
1、引导学生观察圆锥、圆柱的特点。
通过看一看,比一比,有什么特点?(学生发现等底等高)(师板书:等底等高)
2、这个圆柱和圆锥,谁的体积大?谁的体积小?你是怎样想的?(圆柱的体积大,它们等底等高,圆锥上面是尖的,所以体积小)
3、学生实验。(把学生分成六组)
实验要求:把圆锥装满水倒进等底等高的圆柱中,观察要几次才能倒满。
学生分小组动手演示:
(1)通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?
(2)根据这个关系怎样求出圆锥的体积?
4、学生汇报,完成计算公式的推导:
一名学生汇报,师板书。
生:我们把圆锥装满水,倒入这个等底等高的圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个等底等高圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh(教师板书)
等底等高V=1/3Sh
5、教师课件再演示:圆柱体积与圆锥体积的关系。
6、找条件:根据这个公式就可以求出圆锥的体积,要计算圆锥的体积需要知道那些条件?
7、(反例子)强调等底等高: 同学们经过实验,发现了用来实验的圆锥的体积等于圆柱的体积的1/3,老师也想做实验:出示一个非常大的圆柱,一个很小的圆锥,这个圆柱的体积是圆锥体积的3倍吗?(你有什么看法、为什么?)
强调:圆锥的体积等于与它等底等高的圆柱的体积的1/3。(让学生说)
三、巩固练习,运用拓展 1.填空:(1)、一个圆柱体体积是27立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)、一个圆锥体积是15立方厘米,与它等底等高的圆柱的体积是()立方厘米。
2.计算下列圆锥的体积(1)、底面半径2厘米,高6厘米。(2)、底面半径3厘米,高3厘米。
3、一个近似于圆锥的沙堆,测得底面直径是4米,高是1.5米。每立方米沙约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
4.如图,直角梯形ABCD,以AB为旋转轴旋转一周,所围成几何图形的体积是多少?
四、整理归纳,回顾体验
本节课学习了什么?这节课你有什么收获?
(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
板书:
圆锥的体积
v =sh 等底等高 V =1/3Sh
第五篇:圆锥体积教学设计
《圆锥的体积》教学设计
教学内容:人教版《义务教育课程标准实验教科书数学》六年级下册圆锥的体积 教学目标:1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
教学重点和难点:圆锥体体积公式的推导。教学过程:
(一)、复习准备
一、创设情境,导入新课
1、故事情景 渗透转化
师:你知道《曹冲称象》的故事吗?
2、圆锥实物 揭示课题
① 教师出示一筒沙子。师:将这筒沙子倒在桌上,会变成什么形状?这是什么体?(圆锥体)(板书:圆锥)上节课我们已经认识了圆锥体
在这几个圆锥体中,几号线段是圆锥体的高,就举手示意。你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)(二)学习新课
一、问题引入
(老师拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体问学生)这两个圆锥哪个体积大,哪个体积小?(引起学生争论,说法不一。)看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积,这节课我们就重点研究圆锥的体积。
二、教师引导、学生合作学习
(1)为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?
(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(2)那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)你可以用大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。
(3)学生分组做实验,教师巡视。
学生先在小组里面讨论如何试验,然后再做试验。有困难可以看书第25、26页。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?(学生发言。)同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)(不是)是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。
(三)巩固反馈 1.口答。
2.板书例题。
例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?(指名回答,老师板书。)
3.练习题。一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)4.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。
(1)、a+3(dm3)(2)、3a(dm3)(3)、a3(dm3)(举卡片反馈,订正。)(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是()cm3。
6.出思考题:
现在我们比一比谁的空间想象能力强。看看我们的教室是什么体?(长方体)要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。
(四)总结、质疑
这节课我们学了什么知识?你还有什么不懂的地方
《 圆锥的体积》的说课材料
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:(1)密切数学与现实的联系,富有儿童情趣。学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米、沙、水;最后,习题中又回归生活,延伸了课堂。
(2)致力于改变学生的学习方式。在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。
(3)学习过程中揭示了一般科学的研究方法: 提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。
纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。