第一篇:机电一体化教学平台设计正文
机电一体化实验教学平台设计
第一章 绪论
现如今,随着教学方法的进步,以及科技的发展,实验教学平台已经进入校园。PLC教学用的试验箱,单片机教学用的开发板等等,都是实验教学平台。而机电一体化教学平台相对来学涉及的学科范围广,难度大,成本高,所以其普及率也相对较低,但是其对对机电一体化的教学却有着非常重要的意义。该平台采用了高度的教学开放式布局设计, 可以根据实验教学的要求进行不同的组合, 能够完成多项综合性实验。对平台总体方案以及微机数控车床机械系统的设计予以介绍, 重点是进给系统和自动回转刀架。单片机控制系统采用功能型模块化设计方案, 配置灵活, 适应面广。
该平台采用创新型的设计方法,软硬件系统从底层高度开放, 可完成多个综合性实验教学项目;有效地改善我国机电专业的实验教学条件, 显著提高教学效果, 得到国内许多高校的肯定。平台外观布局如图1.1所示。
图1.1平台
机电一体化实验教学平台设计
机电一体化实验教学平台采用开放式平台结构,可以完成本科教学多门课程的综合性、设计性和创新性实验,也可支撑专业课程设计或毕业设计。
实验平台的控制系统基于MCS-51系列的8位单片机,可控两个移动轴;伺服进给系统由步进电机驱动电源、二相混合式步进电机、无间隙减速齿轮箱、精密滚珠丝杠副和移动导轨副构成,最终控制卧式车床或X-Y平面工作台的运动;步进电机的尾部装有圆光栅编码器,系统采用半闭环控制。
1.硬件的模块化组合:硬件电路根据功能设计,采用模块化结构,使用者可以自由选择,组合连接,以实现不同的功能要求。
2.软件的高度开放性:使用者选择的硬件连接后,可以根据实验的要求,自己编制源程序代码,嵌入到系统程序中,完成指定的任务;既可采用单片机仿真插头,连接PC机在线调试,也可固化程序脱机运行;平台系统的底层汇编程序,包括相关的子程序,全部对外开放,可以选择使用。
机电一体化实验教学平台设计
第二章 系统总体方案设计
根据机电一体化系统设计、数控技术、单片机原理及其应用主干课程的实验教学要求,平台确定采用模块化设计, 具有很强的针对性和通用性。各模块既可单独完成某门课程的实验, 也可互相配合完成复杂的机电一体化综合性创新实验。
平台在总体方案设计时充分考虑教学的开放性要求, 在硬件和软件系统从最底层开放, 供学生自主实验。系统主要特色如下:
(1)由于教学功能要求, 所以总体布局与普通工业产品有很大不同, 最大特点是控制系统不能封闭, 而是以面板形式充分展开, 其外形总体尺寸大小应考虑一个实验小组的人数, 一般在5-7人。
(2)电气系统的模板配置应该考虑到强弱电的分开, 避免干扰的发生;此外强电模板要尽量减少裸露接头, 提高安全性。
(3)机械系统部件的选择;应能充分代表当前机电产品的典型应用, 教学难度适中;由于教学需要充分且详细的图纸资料讨论, 所以应该是作者科研开发的产品, 有自主知识产权。
平台由机械系统、控制系统、PC机等部分组成。机械系统包括数控车床、X-Y 工作台、自动回转刀架等。PC机通过仿真器和控制系统相连接, 学生可以在PC机上编制相应的源程序, 通过仿真器完成在线连机调试。平台总体构成见图2.1。
机电一体化实验教学平台设计
图2.1 系统框图 微机数控车床机械系统设计
微机数控机床是典型的机电一体化产品, 在几门主干课程中都是重要的教学对象。作者二十多年来一直在从事这方面产品的研究开发工作。积累了大量的经验和技术资料, 这为平台的研制提供了保障。主要设计工作是将纵向和横向进给系统改成用微机控制的、能独立运动的进给伺服系统;将手动刀架换成自动回转刀架。
总体设计方案的确定
总体设计方案应考虑车床数控系统的运动方式、进给伺服系统的类型、数控系统CPU 的选择, 以及进给传动方式和执行机构的选择等。主要如下:(1)普通车床数控化改造后, 数控系统应设计成连续控制型。车床经数控化改造后属于经济型数控机床, 应简化结构, 降低成本。因此, 进给伺服系统采用步进电动机的开环控制系统。
(2)根据数控系统的经济性要求, 结合本科教学课目, 决定选用MCS-51系列的8位单片机作为数控系统的CPU。根据系统的功能要求, 需要进行存储器扩展、键盘与显示、I/O 接口电路等设计;还要选择步进电动机的驱动电源以及主轴电动机的交流变频器 4
机电一体化实验教学平台设计
等。
(3)纵、横向的进给传动应选用摩擦力小、传动效率高的滚珠丝杠螺母副;为了消除传动间隙提高传动刚度, 滚珠丝杠的螺母应有预紧机构。由于采用步进电动机, 为了圆整脉冲当量, 往往需要减速机构, 并且应有消间隙措施。
(4)选择四工位的立式自动回转刀架, 采用单片机进行控制。
机械系统主要的改造设计
(1)主传动系统的改造设计对普通车床进行数控化改造时, 需要在加工中自动变换主运动转速, 可用2~ 4挡的多速电动机代替原有的单速主电动机;当多速电动机不能满足要求时,可用交流变频器实现无级变速。系统中, 当采用有级变速时, 可选用YD系列715kW变级多速三相异步电动机, 实现2~ 4挡变速;当采用无级变速时, 应加装交流变频器, 型号为: F1000-G0075T3B, 适配715kW电动机, 生产厂家为烟台惠丰电子有限公司。
(2)安装电动卡盘
为了提高加工效率, 工件的夹紧与松开采用电动卡盘, 选用呼和浩特机床附件总厂生产的KD11250型电动三爪自定心卡盘。卡盘的夹紧与松开由数控系统发信控制。(3)换装自动回转刀架
为了提高加工精度, 实现一次装夹完成多道工序, 将车床原有的手动刀架换成自动回转刀架;实现自动换刀需要配置相应的电路, 由数控系统完成。(4)螺纹编码器的安装方案
数控车床加工螺纹时, 需要配置主轴脉冲发生器, 作为车床主轴位置信号的反馈元件, 它与车床主轴同步转动。这里, 改造后的车床能够加工的最大螺纹导程是24mm, Z 向的进给脉冲当量是0101mm /脉冲, 选择螺纹编码器的型号为ZLF-1200Z-05V0-15-CT, 生产厂家为长春光机数显技术有限公司。
机电一体化实验教学平台设计
第三章 系统详细设计
3.1 机械系统的设计
3.1.1 X-Y工作台的设计
X-Y数控工作台是许多机电一体化设备的基本部件,如数控车床的纵-横向进刀机构、数控铣床和数控钻床的X-Y工作台、激光加工设备的工作台、电子元件表面贴装设备等。因此,选择X-Y数控工作台作为机电综合课程设计的内容,对于机电一体化专业的教学具有普遍意义。
模块化的X-Y数控工作台,通常由导轨座、移动滑块、工作平台、滚珠丝杠螺母副以及伺服电动机等部件构成。其外观形式如图2.2所示。其中,伺服电动机作为执行元件用来驱动滚珠丝杠,滚珠丝杠的螺母带动滑块和工作平台在导轨上运动,完成工作台在X、Y方向的直线移动。导轨副、滚珠丝杠螺母副和伺服电动机等均已标准化,由专门厂家生产,设计时只需根据工作载荷选取即可。控制系统根据需要,可以选用标准的工业控制计算机,也可以设计专用的微机控制系统。
图2.2 X-Y数控工作台外形
机电一体化实验教学平台设计
1.机械传动部件的选择
(1)导轨副的选用 要设计的X-Y工作台是用来配套轻型的立式数控铣床,需要承受的载荷不大,但脉冲当量小、定位精度高,因此,决定选用直线滚动导轨副。它具有摩擦系数小、不易爬行、传动效率高、结构紧凑、安装预紧方便等优点。
(2)丝杠螺母副的选用 伺服电动机的旋转运动需要通过丝杠螺母副转换成直线运动,要满足0.005mm的脉冲当量和 ±0.01mm的定位精度,滑动丝杠副无能为力,只有选用滚珠丝杠副才能达到。滚珠丝杠副的传动精度高、动态响应快、运转平稳、寿命长、效率高,预紧后可消除反向间隙。
(3)减速装置的选用 选择了步进电动机和滚珠丝杠副以后,为了圆整脉冲当量,放大电动机的输出转矩,降低运动部件折算到电动机转轴上的转动惯量,可能需要减速装置,且应有消间隙机构。为此本例决定采用无间隙齿轮传动减速箱
(4)伺服电动机的选用 任务书规定的脉冲当量尚未达到0.001mm,定位精度也未达到微米级,空载最快移动速度也只有3000mm/min。因此,本设计不必采用高档次的伺服电动机,如交流伺服电动机或直流伺服电动机等,可以选用性能好一些的步进电动机,如混合式步进电动机,以降低成本,提高性/价比。
(5)检测装置的选用 选用步进电动机作为伺服电动机后,可选开环控制也可选闭环控制。任务书所给的精度对于步进电动机来说还是偏高的,为了确保电动机在运转过程中不受切削负载和电网的影响而失步,决定采用半闭环控制,拟在电动机的尾部转轴上安装增量式旋转编码器,用以检测电动机的转角与转速。增量式旋转编码器的分辨率应与步进电动机的步距角相匹配。
考虑到X、Y两个方向的加工范围相同,承受的工作载荷相差不大,为了减少设计工作量,X、Y两个坐标的导轨副、丝杠螺母副、减速装置、伺服电动机以及检测装置拟采用相同的型号与规格。2.控制系统的设计
(1)设计的X-Y工作台准备用在数控铣床上,其控制系统应该具有单坐标定位、两坐标直线插补与圆弧插补的基本功能,所以控制系统应该设计成连续控制型。
(2)对于步进电动机的半闭环控制,选用MCS-51系列的8位单片机AT89C52作为控制 7
机电一体化实验教学平台设计
系统的CPU,应该能够满足任务书给定的相关指标。
(3)要设计一台完整的控制系统,在选择CPU之后,还需要扩展程序存储器、数据存储器、键盘与显示电路、I/O接口电路、D/A转换电路、串行接口电路等。(4)选择合适的驱动电源,与步进电动机配套使用。
3.1.2 自动回转刀架的设计
数控车床为了能在工件的一次装夹中完成多工序加工, 缩短辅助时间, 必须带有自动回转刀架。自动回转刀架是一个非常有代表性的机电一体化部件, 在机械结构上有蜗杆蜗轮副、螺杆螺母副、端齿盘等典型部件。为了保证可靠工作, 还要选择恰当的刀位检测和合理的定位结构。刀架的换刀是由计算机控制系统检测和控制的, 然后驱动继电器电路来实现。其工作过程是典型的计算机弱电、继电器强电、机械系统的控制过程。(1)总体结构设计
普通的三相异步电动机因转速太快, 不能直接驱动刀架进行换刀, 必须经过适当的减速。根据立式转位刀架的结构特点, 采用蜗杆-蜗轮副减速是最佳选择。蜗杆-蜗轮副传动可以改变运动方向, 获得较大的传动比, 保证传动精度和平稳性, 并且具有自锁功
能, 还可以实现整个装置的小型化。(2)上刀体锁紧与定位机构的设计
由于刀具直接安装在上刀体上, 所以上刀体要承受全部的切削力, 其锁紧与定位的精度将直接影响工件的加工精度。系统的上刀体的锁紧与定位机构选用端面齿盘, 将上刀体和下刀体的配合面加工成梯形端面齿。当刀架处于锁紧状态时, 上下端面齿相互啮合, 这时上刀体不能绕刀架的中心轴转动;换刀时电动机正转, 抬起机构使上刀体抬起, 等上下端面齿脱开后,上刀体才可以绕刀架中心轴转动, 完成转位动作。(3)刀架抬起机构的设计
图2.2 自动回转刀架的传动机构示意图
机电一体化实验教学平台设计
图2.2 自动回转刀架
要使上、下刀体的两个端面齿脱离, 就必须设计合适的机构使上刀体抬起。这里选用螺杆螺母副, 在上刀体内部加工出内螺纹, 当电动机通过蜗杆-蜗轮带动螺杆绕中心轴转动时, 作为螺母的上刀体要么转动, 要么上下移动。当刀架处于锁紧状态时, 上刀体与下刀体的端面齿相互啮合, 因为这时上刀体不能与螺杆一起转动, 所以螺杆的转动会使上刀体向上移动。当端面齿脱离啮合后, 上刀体就与螺杆一同转动。设计螺杆时要求选择适当的螺距, 以便当螺杆转动一定角度时, 使得上刀体与下刀体的端面齿能够完
全脱离啮合状态。图3为自动回转刀架的工作原理示意图。在机电一体化系统课程设计时, 自动回转刀架的设计也作为一个教学班的题目。
机电一体化实验教学平台设计
3.2 控制系统的设计
控制系统按照功能划分, 有CPU 模块、电源模块、步进电机驱动模块、LCD 显示模块、键盘及LED显示模块、继电器控制模块、变频器控制模块、通信模块等。学生可以针对不同实验的要求, 自主选择, 组合连接, 充分发挥学生的主动设计能力。控制系统所有的元器件都以展板的形式布置, 学生可以直观了解每一个元器件的结构、接口电路设计原理, 从而对机电一体化系统有感性的认识和深入的了解。CPU模块以MCS-51系列的AT89S52八位单片机为核心, 扩展片外RAM 及ROM 存储器;扩展并行I/O口8255经步进电机驱动模块控制步进电机等;扩展8279控制键盘及LED显示模块;D /A和A /D转换电路分别采用芯片DAC0832和ADC0809, 同时外接电压表, 方便观察模拟量的输入、输出。LCD显示模块由320 @ 240点阵式液晶板和液晶控制器SED1335组成, CPU 通过SED1335控制液晶面板的显示。变频器模块和继电器控制模块分别控制电机的无级调速和通断。通信模块集成RS-232标准串行接口和USB接口, 完成与外部通信。控制系统原理如图2.3所示。
图3.1控制系统原理图
机电一体化实验教学平台设计
根据实验教学的要求, 设计控制系统的硬件电路时主要考虑以下功能:(1)接收键盘数据, 控制LED 显示;接收操作面板的开关与按钮信号。(2)接收车床限位开关信号;接收螺纹编码器信号。
(3)接收电动卡盘夹紧信号与电动刀架刀位信号;控制X、Z 向步进电动机的驱动器。(4)控制主轴的正转、反转与停止;控制多速电动机, 实现主轴有级变速。(5)控制冷却泵启动/停止;控制电动卡盘的夹紧与松开。
(6)控制电动刀架的自动选刀;与PC机的串行通信。平台中X 向步进电动机的型号为110BYG5802,Z 向步进电动机的型号为130BYG5501。两台电动机的驱动电源可用同一型号, 选用科林数控科技有限责任公司生产的五相混合式调频调压型步进驱动器, 型号为BD5A。
3.2.1 CPU模块设计
本设计CPU模块选择单片机作为主控制器,单片机是一种集成的电路芯块采用了超大规模技术把具有运算能力(如算术运算、逻辑运算、数据传送、中断处理)的微处理器(CPU),随机存取数据存储器(RAM),只读程序存储器(ROM),输入输出电路(I/O口),可能还包括定时计数器,串行通信口(SCI),显示驱动电路(LCD或LED驱动电路),脉宽调制电路(PWM),模拟多路转换及A/D转换器等电路集成到一块单片机上,构成一个最小然而很完善的计算机系统。这些电路能在软件的控制下准确快速的完成程序设计者事先规定的任务。总的而言单片机的特点可以归纳为以下几个方面:集成度高、存储容量大、外部扩展能力强、控制功能强、低电压、低功耗、性能价格比高、可靠性高这几个方面。
单片机按内部数据通道的宽度,可分为4位、8位、16位及32位单片机。它们被应用在不同领域里,8位单片机由于功能强大,被广泛的应用在工业控制、智能接口、仪表仪器等各个领域。8位单片机在中、小规模应用场合仍占主流地位,代表了单片机的发展方向,在单片机应用领域发挥越来越大的作用。随着移动通讯、网络技术、多媒体技术等高科技产品进入家庭,32位单片机应用得到了长足发展。纵观单片机的发展过 11
机电一体化实验教学平台设计
程,可以预示单片机的发展趋势:
1、微型单片化
2、低功耗CMOS
3、与多品种共存
4、可靠性和应用水平越来越高
单片机有着微处理器所不具备的功能,它可以独立地完成现代工业控制所要求的智能化控制功能这就是单片机的最大特点。然而单片机又不同于单板机,芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果赋予它特定的程序,它便是一个最小的、完整的微机控制系统。它与单板机或个人电脑有着本质的区别,单片机属于芯片级应用,需要用户了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使芯片具备特定的智能。
(2)简介AT89S52 AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,可选择节电模式、空闲模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。其引脚图,如图3.2所示
机电一体化实验教学平台设计
图3.2 AT89S52的引脚图
它一共有40个引脚,引脚又分为四类。其中有四个电源引脚,用来接入单片机的工作电源。工作电源又分主电源、备用电源和编程电源。还有两个时钟引脚XTAL1、XTAL2。还有由P0口、P1口、P2口、P3口的所有引脚构成的单片机的输入/输出(IO)引脚。最后一种是控制引脚,控制引脚有四条,部分引脚具有复位功能。
综上所述,单片机的引脚特点是:
1、2、单片机多功能,少引脚,使得引脚复用现象较多。
单片机具有四种总线形式:P0和P2组成的16位地址地址总线;P0分时复用为8位数据总线;ALE、PSEN、RST、EA和P3口的INT0、INT1、T0、T1、WR、RD以及P1口的T2、T2EX组成控制总线;而P3口的RXD、TXD组成串行通信总线。
89C52单片机的主要功能 与MCS-51单片机产品兼容
8K字节在系统可编程Flash存储器 1000次擦写周期 全静态操作:0Hz~33Hz 13
机电一体化实验教学平台设计
三级加密程序存储器 32个可编程I/O口线 三个16位定时器/计数器 八个中断源
全双工UART串行通道 低功耗空闲和掉电模式 掉电后中断可唤醒 看门狗定时器 双数据指针 掉电标识符
3.2.2 电源模块的设计
直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成。直流稳压电源方框图
图3.3 直流稳压电源的方框图
其中:
(1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。
(2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电
机电一体化实验教学平台设计
(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。
(4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。总的设计原理图如图3.4所示
图3.4 稳压电路原理图
3.2.3 步进电机模块设计 1.步进电机的工作原理
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
机电一体化实验教学平台设计
该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。
图3.5 四相步进电机步进示意图
开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:
机电一体化实验教学平台设计
51单片机驱动步进电机的方法
通常高压斩波恒流驱动电路如图3.6 示。这种电路与单电压限流型及高低压驱动相比,步进电机绕阻电流波形的前后沿陡,无顶部下凹的现象,并且在高频大负载时仍具有较宽的平顶(不下凹),绕阻负载电流也较为恒定,起动和运行的频率特性都有明显的提高。绕阻单相通电的电流波形如图2a 所示。但是,在实际驱动电路的测试中,采用多相通电(步进电机带载运动)时,由于步进电机绕阻电流顶部的锯齿波形波动频率较低(效率一般为几kHz 到十几kHz ,与步进电机型号、驱动电压、驱动电流有关),故电磁噪声较大。同时,由于运行中步进电机各相绕阻的电感不可避免会发生瞬时变化,以及它们的互感作用,各相绕阻电流会产生局部过冲现象。对于三相步进电机按三相六拍驱动时,其绕阻电流波形如图2b 所示,出现2~3 个过冲现象。对于大功率步进电机,这种过冲电流是极其有害的,它使步进电机绕阻异常发热,驱动力矩不够,系统极有可能发生振荡。
图3.6 高压斩波恒流驱动原理
机电一体化实验教学平台设计
图3.7 绕组电流波形图
要消除这种电磁噪声及步进电机绕阻电流局部过冲现象,一般可采用MOSFET 场控晶体管,允许将斩波频率提高到超声波段,并采用FWM 技术使各相斩波频率相同来消除差拍噪声。在设计应用中,斩波频率一般应比由环形分配器或单片机输出的步进驱动脉冲频率高10 倍以上。在后级功率驱动中,如果采用大功率晶体管开关管来设计,由于它们的工作频率较低,一般最高的频率仅有106 Hz ,且它们所要求的驱动功率也较大,驱动线路也较复杂。在晶体管的安全工作区如果选择裕量较小,通常要发生二次击穿。MOSFET 是一种单极控制器件,其开关频率远比达林顿功率管和大功率三极管高,最高可达109Hz。并且,MOSFET 的输入阻抗很高,具有自关断能力,电流放大倍数大,无二次击穿问题,这使MOS2FET 安全工作区宽,可设计较大的功率。在后级功率放大电路中,采用MOSFET 设计大功率步进电机驱动电源是一个理想的选择。设计MOSFET 的驱动线路,通常采用MOSFET 专用驱动器件,其原理简图如图3 所示。前极采用高速光电隔离,后极采用NPN 和PNP 三极管互补输出,提高了MOSFET 驱动电路的快速性。
机电一体化实验教学平台设计
图3.8 MOSFET 专用器件的原理简图
MOSFET 的开关频率由时钟信号CP 触发PWM 控制器来实现,各相开关频率受同一时钟信号控制,从而达到了各相的同频斩波。(PWM + MOSFET),步进电机驱动电路原理如图4 所示:由环形分配器或单片机输出的步进电机步进脉冲信号进入PWM 控制器,经PWM 控制器处理后分成两路:一路送入上开关管T1 ,使T1 导通;一路送入下开关管T2 ,使T2 导通。R4 为电流检测电阻。当步进电机绕阻达到额定值时,其电流值通过电流/ 电压转换,输出一控制电压进入PWM 控制器。PWM 控制器输出一调宽脉冲改变上开关管的开通时间,从而达到绕阻恒流的目的。另外,PWM 控制器可对步进电机绕阻电流上升速率作检测,从而防止绕阻电流过冲现象。在图4 中,由R1、D2、C1 组成的阻容滤波网络保护T1 管,由R2、D3、C2 组成的阻容滤波网络保护T2 管,放电回路中D1、D4 必须选用快恢复续流二极管,适当选择R3 可使步进电机绕阻电流下降沿变陡。这种电路在实际测试中,波形非常好,其波形如图2c 所示。在实际使用中,PWM 控制器还有半电流控制端CY,使步进电机在静止时以半电流锁定,以减少发热,降低功耗。19
机电一体化实验教学平台设计
图3.9步进电机驱动电路原理图
上述驱动电源在对C650 及落地车床的经济型数控改造中,应用一年多情况良好。Z 向步 进电机选用LB180(静力矩40 N·m),相电流调至23A ,X 向步进电机选用LB150(静力矩20 N·m),相电流调至18A ,在X 向未采用滚珠丝杆情况下(无该规格的滚珠丝杆),空载运行实测能保持0101 mm 的步距精度。在加工铸钢件时,吃刀深度18 mm 时也不丢步。在三班制工作时,性能也保持相当稳定。可见,(PWM + MOSFET)是一种优良的大功率步进电机驱动电源。
3.2.4 LCD显示模块设计
液晶(Liquid Crystal)是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始广泛应用在轻薄型显示器上。液晶显示器(Liquid Crystal Display,LCD)的主要原理是以电流刺激液晶分子产生点、线、面并配合背部灯管构成画面。本次设计采用的是DMF50840液晶显示器,日本OPTREX 公司生产的 DMF50840液晶是一款性能不错的液晶显示模块。它的分辨率是320*240;显示效果为蓝底白字;背光为 20
机电一体化实验教学平台设计
CCFL背光,且为双电压的模块。原装的DMF50840价格较高,维修困难,国内公司相继开发出兼容屏。其中广泛被国内厂家选用的替代屏是杭州清达光电技术有限公司生产的HG320240系列屏,大大降低了中华企业对日本显示器件的依赖性。
图3.3 DMF时序图
表1:DMF引脚说明
机电一体化实验教学平台设计
3.2.5 变频器控制模块的设计
工作原理
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。整流器
最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路
在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。逆变器
同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、22
机电一体化实验教学平台设计
关断。
(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。变频器的选择
由于本设计中变频器的作用是驱动三相异步电动机,其中转速与频率的关系为:n=60f/p,根据转动惯量、负载转矩,电机的效率等参数选择变频器的型号为XHF100-185G/200P-4,它是国内西普公司生产的变频器,驱动功率为185kw--200kw。
图3.10 变频器接线图
3.2.6 通信接口模块设计
USB(u niversalse rialb us)是近年发展起来的一种快速、灵活的总线接口。它最大的特点是易于使用、可热插拔、接口连接灵活,并且能够提供外设电源川,在嵌人式系统及智能仪表中得到广泛的应用。而51系列单片机以其优越的性能、成熟的技术、高性价比被广泛应用于测控仪器等自动化领域。因此用51系列单片机实现USB主机接口,进而实现对USB外设的控制,对提高整个系统的数据存储、数据传输、设备控制等性能都有很大的作用。因此本次设计与PC机的通讯采用USB接口。
51.8 11 H S是Cypress公司推出的具有主/从两种工作模式的USB控制器[4],遵循USB1.1 规范,可自动检测总线速率,支持全速12M bps和低速1.5 M bps设备;具有8位 23
机电一体化实验教学平台设计
双向的数据总线,易与单片机连接;片内256字节的SRAM(其中16字节用于工作寄存器),用于数据传输;可自动产生SOF和CRC5/16,简化软件工作量;片内具有根Hub,US B口可以直接外接集线器;支持挂起/唤醒工作模式,减少功耗;支持地址自动加1功能,在连续读写过程中,只需设置一次地址,其内部寄存器地址自动增加,这在大容量数据的通信中是非常必要的。
1.2 单片机与SL811H S接口设计
图 1所 示 是AT89C 51与SL811H S的硬件连接电路111。在本设计中,由于所选用的单片机AT89C51及其外围元件的工作电压为5V,而SL811H S的工作电压为3.3 V,所以系统应提供5V电压同时要进行电压转换。虽然SL811H S可以使用12M Hz晶振,但在实际使用过程中,如果晶振质量不太好,电路稳定性就会比较差,因此,设计时推荐使用48 MHz有源晶振。SL811H S的中断请求输出的是高电平,因此需要用反向器把它变换成低电平以满足AT89C51中断输人要求。此外,应注意SL811H S是低电平复位。为了便于调试,系统扩展了液晶显示器。硬件完成后要进行测试,先向SL811HS 寄存器中写人数据,之后读出数据并在液晶显示器上显示,如果和写人的数据相同,说明SL811H S与单片机连接正确。再用示波器观察有源晶振是否起振,一切正常后便进入软件调试。
图3.11 USB硬件接线图
机电一体化实验教学平台设计
第四章 总结
通过这次的课程设计,我对学习了机电一体化系统设计方案的拟定有了一定的认识,涉及的内容广,包括机电一体化技术单片机原理及应用、机械设计、电机拖动技术、变频器技术,以及相关的电子技术。本设计是以机电一体化技术为依托,综合多门学科,实现机电一体化教学平台的设计。控制部分采用单片机技术,即CPU采用的是Atmel公司的AT89S52单片机,可实现在应用编程和在系统编程,单片机的外围电路有电源电路、复位电路、晶振电路、键盘电路、显示电路、步进电机驱动电路、USB接口电路、变频器控制电路等。主轴动力由三相交流异步电机提供,三相交流异步电机采用变频技术进行变频调速,变频调速是一种无极变速技术。显示部分采用LCD液晶显示器,显示的分辨率为320*240。由于X-Y平台的负载较大,其驱动的步进电机必须采用大功率步进电机,所以其驱动步进电机的电路必须能够承受高电流。
通过此次课程设计,使我更加扎实的掌握了有关机电一体化技术方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手操作,使我们掌握的知识不再是纸上谈兵。
过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!
课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我许多道,给了我很多思,给了我莫大的空间。同时,设计让我感触很深。
机电一体化实验教学平台设计
参考文献
[1] 袁中凡,李彬彬.机电一体化技术.电子工业出版社.2010 [2] 尹志强.机电一体化系统设计课程设计指导书.机械工业出版社,2007 [3] 房小翠.单片微型计算机与机电接口技术.国防工业出版社,2002 [4] 王小明.电动机的单片机控制.北京航空航天大学出版社,2002 [5] 郑学坚,周斌.微型计算机原理及应用.清华大学出版社,2003 [6] 王爱玲,白恩远,赵学良.现代数控机床.国防工业出版社,2001 [7] 徐灏.机械设计手册(3).机械工业出版社,2003 [8] 张建民.机电一体化系统设计.北京理工出版社,2004 [9] 徐灏等.机械设计手册[M].北京:机械工业出版社,2000 [10] 濮良贵 ,记名刚.机械设计[M].北京:高等教育出版社,2003 [11] 吴振彪.机电综合设计指导[M].湛江:湛江海洋大学,1999 [12].杨入清.现代机械设计—系统与结构[M].上海:上海科学技术文献出版社,2000 [13].张立勋,孟庆鑫,张今瑜.机电一体化系统设计[M].哈尔滨:哈尔滨工程大学出版社,2000
机电一体化实验教学平台设计
附录:带功能注释的源程序
USB部分驱动程序: 读单个寄存器: BY TE S L811R ead(B YTEa){SL 81 1H _ADDR二a;ret unr(SL811H _DATA);} 写单个寄存器: voi dS L8 11W rite(BYTEa ,B YTEd)}S L8 11 H _ADDR=a;SL8 11 H DATA=d;} 连续读 SL811H S寄存器: voi dS L8 11BufRead(BYTEa ddr,B YTE*s,B YTEc){B YT E c;SL8 11 H _ AD DR=addr;wh ile(c--)*s ++ = S L8 11H_DATA;} 连续写SL811H S寄存器: voi dS L8 11BufWrite(BYTEa ddr,B YTE*s,B YTEc)}B YT E c;SL8 11 H _ AD DR=addr;wh ile(c--)SL8 11 H _D AT A=*s++;}
第二篇:机电一体化转台设计
机电一体化
一维转台设计说明书
目 录
课程设计的目的1 《机电一体化》设计任务及设计参数1
一、系统总体改造方案的确定2
二、工作台旋转机械部分的改进2
三、工作台升降机械部分改进6
四、最佳方案8
五、其他机械部分改进8
六、控制部分方案设计11 小
结14 参考文献14
设计过程
课程设计的目的
1)学习机电一体化系统总体设计方案拟定、分析与比较的方法。
2)通过对机械系统的设计掌握几种典型传动元件与导向元件的工作原理、设计计算方法与选用原则。齿轮同步带减速装置、蜗杆副、滚珠丝杠螺母副、直线滚动导轨副等。
3)通过对进给伺服系统的设计,掌握常用伺服电动机的工作原理、计算选择方法与控制驱动方式,学会选用典型的位移速度传感器;如交流、步进伺服进给系统,增量式旋转编码器,直线光栅等。
4)通过对控制系统的设计,掌握一些典型硬件电路的设计方法和控制软件的设计思路;如控制系统选用原则、CPU选择、存储器扩展、I/O接口扩展、A/D与D/A配置、键盘与显示电路设计等,以及控制系统的管理软件、伺服电机的控制软件等。
5)培养学生独立分析问题和解决问题的能力,学习并初步树立“系统设计”的思路。6)锻炼提高学生应用手册和标准、查阅文献资料以及撰写科技论文的能力。
设计参数
设计名称
转台的机电一体化设计。
设计任务 机械部分
说明该机构的工作原理、传动支撑方式、导向方式、预紧方式等;若有必要,可在提供的CAD图中按自己认为合理的方式进行修改。设计限位装置(如接近开关的安装支座)控制部分
该装置由两台异步电动机驱动,其中一台电机控制工作台在90度范围内往复旋转,另一台电机控制工作台上的托辊转动,完成工件输入、停止和输出的动作。要求用继电器接触器控制系统、或PLC、或单片机完成上述动作的控制。
提交的设计文件 设计说明书(A4)。相关电气参数 3.1电机
Y系列(IP44)小型三相异步电动机技术数据(380V、50Hz).型号:
Y801-2
额定功率/kW:
0.75
铁心长度/mm:
气隙长度/mm:
0.3
定子外径/mm:
120
定子内径/mm:
定子线规nc-dc:
1-0.63
每槽线数:
并联支路数:
绕组型式:
单层交叉
节距:
1~9/2~10/18~11
槽数Z1/Z2:
18/16
转动惯量/(kg·m^2):
0.00075
质量/kg:
PLC(参考)FX2N-32MR-001 电源电压220V AC 输出电压 220V AC
一、系统总体改造方案的确定
我这次课程设计主要针对旋转工作台机械部分的改造。将原方案中的由原来的通过电机带动涡轮蜗杆转动是工作台旋转,由液压缸伸缩控制工作台升降;改成由液压缸升降工作台使与工作台固定的轴在特制的套筒按一定的轨迹移动,已达到旋转特定角度且上升到指定高度的目的;工作台上升高度可以通过手动控制液压缸的电磁阀控制。这样不仅简化了转台整体结构,降低加工制造成本,而且提高了旋转角度的定位精度。
工作台传送工件由电机通过减速器和联轴器带动限力式辊轴的转动,辊轴间通过链条连接,已达到传送工件的目的,而工件的位置则由挡板控制。
二、工作台旋转机械部分的改进
1、原方案(图一)
图一
该方案的工作过程:电动机正转经联轴器带动蜗杆涡轮使工作转台旋转,当转到后,电动机停转,电动机反转时,工作转台回到原来的位置。分析不合理处:
A、该方案中采用三相异步电动机不合理。在工作中电机需频繁启动,很容易使电机损坏。
B、电动机与蜗杆直接用联轴器连接不合理。首先,三相异步电机转速都较快,而转台只需转半圈,则需要较大传动比的涡轮蜗杆,结构过大,明显不适合用在此处。其次,若工作过程中发生卡死故障,由于电动机与蜗杆直接用联轴器连接,很可能导致烧坏电机并且有可能引发安全事故。
C、轴承端没有挡油环,不利于润滑 改进方案
(1)针对A处改进方案 槽轮机构
该方案与方案一的类似,不同之处为联轴器后面加上了一个槽轮机构(图三),由槽轮带动涡轮蜗杆转动,从而转动工作台。其工作原理为拨销盘以不变的转速旋转,拨销转过2时,槽轮转过相邻两槽间的夹角为2,在拨销转过其余的部分时,即2(),槽轮静止不动,直到拨销进入下一个槽内,又重复以上循环,这样就将拨销盘的连续运动变为槽轮的间歇运动。
图二
图三 槽轮传动机构分析:
采用槽轮机构具有结构简单,转速迅速,从动件能在较短的时间内转过的较大的角度,传动效率高,槽轮单位时间内与静止时间比值相等,由于槽轮的角速度不是常数,转速的开始和结束有一定大小的速度,从而产生了冲击,采用锁紧弧和定位弧定位,其定位精度不是很高,与方案一相比,避免了电机的频繁启动,直选首先设置好时间节拍即可,保护了电机的及电路,降低了事故发生的频率。将三相异步电机换成液压马达,因为液压马达时将液压转换成机械能,不会因频繁启动而烧坏。
在电机与联轴器间增加一个离合器,当工作台达到指定位置时,松开离合器。而电机可以连续工作。
蜗形凸轮传动机构
蜗形凸轮传动机构
(
1、转盘
2、滚子
3、蜗形凸轮)
图四、针对B处改进方案
①对于速度较快问题,可以在电机和联轴器之间加上减速器,降低输入轴速度。
②而为防止卡死时电机损坏,我们可以将刚性销连接改成安全销连接,其结构如下图。原理当输出轴扭矩过大时,安全销会自动切断,已达到保护电机的效果。还可以在电动机后加一个带传动机构,当发生卡死时,带轮会出现打滑。
原方案
改进后
对比分析:
与前两种方案相比,只是在联轴器的后面加上一个蜗形凸轮传动机构,就能得到如下特点:(1)能得到任意转位时间和静止时间之比,其工作时间系数K比槽轮机构小;(2)能实现转盘所要求的各种运动规律;(3)与槽轮机构相比,能够用于工作位数较多的设备上,而且不需要加入其它的传动机构;(4)在一般情况下,凸轮棱边的定位精度已满足要求,而不需要其它定位装置;(5)有足够的刚度和韧性、装拆方便;而不足之处为成本较高,与前两种方案相比,造价是最昂贵的,其效果也是最好的,避免了电机的频繁启停,保护了电路和电机,更加安全可靠。
三、工作台升降机械部分改进
1、原方案(图七)
图七
工作原理:
液压缸工作使工作台上升,直至超过挡板后,电动机的启动带动涡轮蜗杆,使工作台旋转,该方案用液压缸与驱动工作台上升,太复杂且液压缸精度要求高,造价昂贵,工作效率不高,耗能大,转动部分采用电动机带动涡轮蜗杆,从而使工作台旋转,较复杂且涡轮蜗杆造价高,不经济。
2、改进方案一的设计(图八)
图八
本方案的工作原理:
液压缸工作使杆支撑工作太上升,到曲槽刚好到达工作台高于挡板,杆沿曲槽上升旋转到曲槽顶时,刚好旋转。与原方案相比:
都用了液压缸,但缺少了电动机带动涡轮蜗杆使工作台旋转,用曲槽代替,结构简单,节约成本,相比第一种方案好。
改进方案二设计(图九)
此方案的工作原理:丝杆轴的旋转可使其在水平方向的移动,使支撑杆伸张和收缩,从而使工作台的上下移动。
图九
方案比较:
与前两种方案相比较,用丝杆代替液压缸,结构简单,节约成本,操作方便。综合考虑:
第三种方案最经济,前两种方案都用了液压缸,第二种方案比第一种方案好,液压缸精度高,但效率很低,成本不经济。第三种方案升降部分用丝杆轴的旋转,旋转部分用电机带动涡轮蜗杆,从而地使工作台旋转,没方案二的旋转部分经济,但整体考虑,方案三比方案二更好。
四、最佳方案
将工作台的旋转和升降设计成由一个系统控制如图,工作原理:当液压缸上升时,工作台带动轴上升,而轴由于被限制在套筒中,只能按照套筒上所开的槽的轨迹移动。套筒上的槽形轨道是螺旋上升且只旋转90度。这样不仅简化了系统结构,减少成本;而且满足旋转精度。
五、其他机械部分改进
1、润滑密封
原方案中轴的轴承部分(图十)
图十
分析:
该方案轴承的下端没有挡油环,故润滑脂很容易漏出来,且会有杂质进入润滑脂中影响软化效果。
改进后的方案(图十一)
图十一
对比分析:
改进后,下端面加挡油环,润滑时将润滑油滴入轴承,影响轴承的运转和寿命,左端增加了一个隙缝密封,在密封隙里加入润滑脂,在提高密封效果的同时防止了杂质进入轴承,以免损坏轴承。
2、导轨部分(图十二)
图十二
分析:
该方案沟槽内部不方便能润滑,且旋转是摩擦较大。加工业不经济,所以得改进。改进后的方案(图十三)
图十三
分析对比:
与原方案相比,导轨槽位V型槽,可储存润滑剂,加工方便,结构简单,加工成本低,降低了摩擦阻力,方向精度高,对温度变化不敏感,工艺性好。升降导轨的设计
考虑到工作台是竖直方向移动,所以,选用闭式矩形导轨或燕尾槽式导轨,由于这里对导向精度没有较高要求,我这里选择闭式矩形导轨如图
闭式矩形导轨
传送部分机械改进
原方案
有三相异步电动机通过减速机构再带动辊筒转动,使工件达到指定位置,有挡板定位。如图
这个方案中有挡板定位不够精确,并且会对挡板产生较大冲击力,当工件到达挡板后电机还会转动,使辊筒与工件之间则会产生较大摩擦力。改进方案
将辊筒用限力式辊筒,当工件到达挡板后,电机转动但辊筒外表面不会转动。
六、控制部分方案设计 工件传送控制
工件传送只需控制电机正反转即可,采用接触器联锁的正反转控制。控制原理:
当按下正转启动按钮SB1后,电源相通过热继电器FR的动断接点、停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。
互锁原理 :
接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。同样,当接触器KM2得电动作时,KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。实现联锁作用的常闭触头称为联锁触头(或互锁触头)。工作台升降和旋转控制
工作台升降和旋转采用三位四通电磁阀控制液压回路,如图
工作原理:
当有压力油进入时,回油路的单向阀被打开,压力油进入工作液压缸。但当三位四通电磁换向阀(Y型)处于中位或液压泵停止供油时,两个液控单向阀把工作液压缸内的油液密封在里面,使液压缸停止在该位置上被锁住。(如果工作液压缸和液控单向阀都具有良好的密封性能,即使在外力作用下,回路也能使执行元件保持长期锁紧状态)。
在图示位置时,由于Y型三位四通电磁换向阀处于中位,A、B、T口连通,P口不向工作液压缸供油,保持压力,缸两腔连通。此时,液压泵输出油液经溢流阀流回油箱,因无控制油液作用,液控单向阀A,B关闭,液压缸两腔均不能进排油,于是,活塞被双向锁紧。要使活塞向上运动,则需使换向阀1DT通电,左位接入系统,压力油经液控单向阀A进入液压缸,同时也进入液控单向阀B的控制油口K,打开阀B,使液压缸右腔回油经阀B及换向阀流回油箱,同时工作液压缸活塞向右运动。当换向阀右位接通,液控单向阀B开启,压力油打开阀A的控制口K,工作液压缸向下行,回油经阀A和换向阀T口流回油箱。
当工件在工作台上定位后,液压缸上升带动工作台旋转上升,当转到90度后,可以通过液压缸控制工作台高度。工件加工完后,液压缸回油带动工作台下降且旋转。
全自动控制方案
在按加工需要工作台首尾两端各安装一个传感器脉冲开关SB1、SB2和导轨上下各安装一个传感器脉冲开关SB3、SB4,且每个开关均有手动控制装置。用PLC控制,其接线图如图
图中接触器KM1控制电机正转;接触器KM2控制电机反转;接触器KM3控制三位四通电磁阀左位得电,即液压缸上升;接触器KM4控制三位四通电磁阀右位得电,即液压缸下降。
工作原理:
按下启动按钮SB1,线圈KM1得电,KM1主触头闭合,电机正转;当工件接触到工作台尾端传感器,SB2闭合,延时1秒,线圈KM2得电,KM2主触头闭合,电磁阀左位得电,液压缸上升;当导轨滑块接触导轨上端传感器,SB3闭合,延时50秒,等待工件加工后,线圈KM3得电,KM3主触头闭合,电磁阀右位得电,液压缸下降;当导轨滑块接触导轨下端传感器,SB4闭合,延时一秒,线圈KM4得电,KM4主触头闭合,电机反转;当工件接触到工作台首端传感器,SB5闭合,延时5秒,返回前面操作。其梯形图如图
小 结
在设计的过程中,我深刻地体会到机电一体化系统的设计,是多学科的交叉与综合,涉及了大学课程里的大部分知识,是对过去所学知识的一次复习、巩固和实际的操作,强化训练了我们的学科融合的思维能力,进一步加强了我们对机电一体化系统设计技术总体思想,初步了解到了设计一个机电一体化系统的方法,培养了一个机电工程师应具备的思维能力。在设计中我学到了很多从书本上无法体会的东西。学习实践技能得到明显的提高,使自己的综合能力得到进一步的提高,从而为自己毕业后更快地适应社会工作打下良好的基础。但我们还需要在实践中不断的学习,提高,掌握新概念、新技术、将来才能成为机电一体化的复合人才。参考文献
张建民等,机电一体会系统设计(第三版)高等教育出版社,2010
王信义,机电一体化技术手册(第二版)机械工业出版社,2000
机械设计委员会,机械设计手册,机械工业出版社2004
李建勇.机电一体化技术.科学出版社.2004
徐灏.机械设计手册(3).机械工业出版社,2003
张建民.机电一体化系统设计.北京理工出版社,2004
杨入清.现代机械设计—系统与结构[M].上海:上海科学技术文献出版社,2000
第三篇:机电一体化系统设计
机电一体化系统设计
1、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电动机)等五个子系统组成。
2、系统必须具有以下三大“目的功能”:①变换(加工、处理)功能;②传递(移动、输送)功能;③储存(保持、积蓄、记录)功能。
3的变换、调整功能,可将接口分成四种:1)零接口;2)无源接口;3)有源接口;4)智能接口。
4、机电一体化系统设计的考虑方法通常有:机电互补法、结合(融合)法和结合法。
5擦、低惯量、高强度、高谐振频率、适当的阻尼比等要求。
6、为达到上述要求,主要从以下几个方面采取措施:
1)采用低摩擦阻力的传动部件和导向支承部件,如采用滚珠丝杠副、滚动导向支承、动(静)压导向支承等。
2如用加预紧的方法提高滚珠丝杠副和滚动导轨副的传动和支承刚度;采用大扭矩、宽调速的直流或交流伺服电机直接与丝杠螺母副连接以减少中间传动机构;丝杠的支承设计中采用两端轴向预紧或预拉伸支承结构等。
3的等效动惯量,尽可能提高加速能力。
5如选用复合材料等来提高刚度和强度,减轻重量、缩小体积使结构紧密化,以确保系统的小型化、轻量化、高速化和高可靠性化。
第四篇:机电一体化
只要你学会了机电一体化的所有课程已经很不错了,机电一体化课程画法几何与机械制图、工程力学、电工电子技术、机械设计基础、液压传动、金属材料与金属工艺学、微机原理与接口技术、C语言程序设计、自动控制原理、机床电气控制、机电一体化系统设计、数控系统及应用、可编程器原理及应用、计算机辅助设计与制造等,你是学习上面这些内容吗?如果是的话,就可以找机电厂,电厂,电气控制设备厂,或普通工厂的机电维修等工作,在工作中,就学点电气自动化的知识,这样深化你的机电一体化的知识。只要你认真领会了机电一体化化的实践知识,去到那里都会很容易找到工作的。因为现在的社会都是机电自动化的社会了。现在中型的小工厂都会用得上 机电一体化,只要有控制机械的工厂都可以去实践学习。刚开始就是不求工资的高低,只要在实践中深化自己,有了第一次的就业经验,第二次就也就会很容易了,因为招聘的人一般都会问你第一次在那里工作。工作的情况,经验的,你就要好好展示你的才华了。
管理员也可以呀,专门搞画法几何与机械制图、工程力学,C语言程序设计等工作,专门专业是很不错的,将来社会所有工厂都会陆续进行改造为机电一体化控制。前景无限呀。
至今机电一体化发展已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。对机电一体化技术的基本与成长进行了简要介绍,并阐述了机电一体化的发展进程及未来的发展趋势。机电一体化是现代技术的必然结果,机电一体化技术是现代科技发展的核心技术,机电一体化专业人才也是现代社会不可或缺的核心人才。现从机电一体化技术的发展、现状、前景等方面谈机电一体化技术以及培养适应现代社会工业发展需要机电一体化专业高职人才的必要性。机电一体化是我国制造业发展的重要基础专业之一.但我国目前这个专业高层次人才奇缺,高精尖方向大部分都被国外控制.因此,如果想在这个方面发展,如果有硕士研究生学历,并有实践经验,甚至是博士研究生,那么前途无量的.机电一体化的未来发展趋势探析
【论文关键词】:光机电一体化;技术特征;发展
【论文摘要】:介绍了光机电一体化技术特征,研究了国内外技术现状和发展趋势,指出了未来发展前景和一些重要技术热点。
近些年来,光机电一体化技术得到迅猛发展,在民用工业和军事领域得到广泛地应用。因此,光机电一体化技术成为当今机械工业技术发展的一个主要趋势。
1.光机电一体化技术特征
光机电一体化系统主要由动力、机构、执行器、计算机和传感器五个部分组成,相互构成一个功能完善的柔性自动化系统。其中计算机软硬件和传感器是光机电一体化技术的重要组成要素。与传统的机械产品比较,光机电一体化产品具有以下技术特征。
1.1 体积小,重量轻,适应性强,操作更方便
光机电一体化技术使得操作人员摆脱了以往必须按规定操作程序或节后频繁紧张地进行单调重复操作的工作方式,可以灵活方便地按需控制和改变生产操作程序,任何一台光机电一体化装置的动作,可由预设的程序一步一步控制实现,甚至实现操作全自动化和智能化。
1.2 功能增加,精度大幅提高
光机电一体化系统包括以激光、电脑等现代技术集成开发的自动化、智能化机构设备、仪器仪表和元器件。电子技术的采用使得包馈控制 水平提高,运算速度加快,通过电子自动控制系统可精确按预设动作,其自行诊断、校正、补偿功能可减少误差,达到靠单纯机械方式所不能实现的工作精度。同时,由于机械传动部件减少,机械磨损及配合间隙等引起的误差也大大减小。
1.3 部分硬件实现软件化,智能化程度提高
传统机械设备一般不具有自维修或自诊断功能。光机电一体化技术使得电子装置能按照人的意图进行自动控制、自动检测、信息采集及处理、调节、修正、补偿、自诊断、自动保护直至自动记录、显示、打印工作结果。通过改变程序,指令等软件内容而无需改动硬件部分就可变换产品的功能,使机械控制功能内容的确定和变化趋势向“软件化”和“智能化”。
1.4 产品可靠性得到提高,使用寿命增长
传统的机械装置的运动部分,一般都伴随着磨损及运动部件配合间隙所引起的动作误差,导致可动摩擦、撞击、振动等加重,严格影响装置寿命、稳定性和可靠性。而光机电一体化技术的应用,使装置的可动部件减少,磨损也大为减少,像集成化接近开关甚至无可动部件、无机械磨损。因此,装置的寿命提高,故障率降低,从而提高了产品的可靠性和稳定性。
1.5 融合了多种学科新技术,衍生出许多功能更强、性能更好的新产品
光机电一体化产品的研究开发涉及到许多学科和专业知识,包括数学、物理学、化学、声学、机械工程学、电力电子学、电工学、系统工程学、光学、控制论、信息论和计算机科学等。例如人们很熟悉的静电复印机、彩色印像机等,就是一种由机、电、光、磁、化学等多种学科和技术复合创新的新型产品。光机电一体化技术将光电子技术、传感器技术、控制技术与机械技术各自的优势结合起来,衍生出许多功能更强、性能更好的新一代技术装备。
1.6 产品系统性增强,各部分系统间协调性要求提高
光机电一体化是一门学科的边缘科学技术,多种技术的综合及多个部分的组合,使得光机电一体化技术及产品更具有系统性、完整性和科学性。其各个组成部分在综合成一个完整的系统中相互配合有严格的要求,这就要求各种技术扬长避短,提高系统协调性。
2.研究现状和发展趋势
2.1研究现状
自从我国实行改革开放以来,科技领域急起直追,我国的光机电一体化技术已取得明显的成效,数控产品有了很大的提高,尤其是经济型灵敏数控装置发展很快,是我国特有的经济实用产品,不但适用国内市场的需要,部分产品还随主机配套出口。国内的机械产品采用可编程控制器(PC)和微电子技术控制设备也越来越多,覆盖面也日益扩大,从纺织机械、轴承加工设备、机床、注塑机到橡胶轮胎成型机、重型机械、轻工业机械都是如此,我国自行研制和生产的光机电设备,在质量上也有重大突破,为今后的推广应用打下了良好的基础。
2.2 发展趋势
光机电一体化技术已经渗透到各个学科、领域,成为一种新兴的学科,并逐渐成为一种产业,而这些产业作为新的经济增长点越来越受到高度重视。
从世界科学技术的发展情况来看,光机电一体化技术的未来技术热点主要包括:
(1)激光技术
1)高单色性,利用激光高单色性作精密测量时,可极大地提高测量精度和量程。
2)高方向性,因具有很远距离传输光能和传输控制指令的能力,从而可以进行远距离激光通信、激光测距、激光雷达、激光导航以及遥控。
3)高亮度性,利用激光的高亮度特性,中等亮度激光束在焦点附近可产生几千到几万度的高温,可使照射点物体熔化或汽化,对各种各样材料和产品进行特种加工。
4)相干性,由于激光速频率单
一、相位方向相同。适用于激光通信、全息照相、激光印刷以及光学计算机的研制,而在实际运用中也会通过一些激光技术改变激光辐射的特性,应用范围更广。
(2)传感检测技术
1)激光准直,能够测量平直度、平面度、平行度、垂直度,也可以做三维空间的基准测量。
2)激光测距,其探测距离远,测距精度高,抗干扰性强,体积小,重量轻,但受天然影响大。
3)光纤探测器,在目标很小,间隔受限或危险的环境中,最常选用的是光纤探测器。
其他还有激光打孔、刻槽=标记、光化学沉积等加工技术。
(3)激光快速成型技术
激光快速成型是利用计算机将复杂的三维物体转化为二维层,将热塑性塑料粉末或胶粘衬底片材纸张烧结,由点、线构造零件的面(层),然后逐层成型。激光快速成型技术可使新产品及早投放市场,极大地提高了汽车生产企业对市场的适应能力和产品的竞争能力。
(4)光能驱动技术
利用光致变形材料可制作光致动器和光机器人。现已研制成功一种光致动器,其工作原理是将光照在形状记忆合金上,反复地通、断使材料伸缩,再利用感温磁性体的温度特性,将材料末端吸附在衬底上。利用材料本身的伸缩和端部的吸附特性,加上光的通断便能实现所要求的动作。实验验证,该致动器能可在顶面步行。这种状态目标处于初级阶段,如果能发现具有优异光作用特性的动态物质,则可使光能驱动技术广泛应用。
3.结语
技术上的改革和与之相配套的技术支持是创新技术的基础。开发光机电一体化产品有不同的层次和灵活的自由度。在机械技术中恰当地引入电子技术,产品的面貌和行业的面貌就可以迅速发生巨大变化。产品一旦实现光机电一体化,便具有很高的功能水平和附加价值,将给开发生产者和用户带来巨大的社会经济效益。
参考文献
[1] 刘志,朱文坚.光机电一体化技术,现代制造工程,2001(12)
梁进秋.微光机电系统国内外研究进展.光机电信息,2000(8)
宋云夺编译.光机电一体化业的未来.光机电信息,2003(12)
左铁钏、施定源、陈铠.激光加工技术的优势及在工业生产中的应用.激光杂志,1999(4)
王家淳.激光焊接技术的发展与展望.激光技术,2001(2)
第五篇:机电一体化
机电一体化
机电一体化又称机械电子学,英语称为Mechatronics,它是由英文机械学Mechanics的前半部分与电子学Electronics的后半部分组合而成。机电一体化最早出现在1971年日本杂志《机械设计》的副刊上,随着机电一体化技术的快速发展,机电一体化的概念被我们广泛接受和普遍应用。随着计算机技术的迅猛发展和广泛应用,机电一体化技术获得前所未有的发展。现在的机电一体化技术,是机械和微电子技术紧密集合的一门技术,他的发展使冷冰冰的机器有了人性化,智能化。
具体内容
(1)机械技术
(2)计算机与信息技术
(3)系统技术
(4)自动控制技术
(5)传感检测技术
(6)伺服传动技术
阶段
1、模型阶段
2、测试阶段
3、原型阶段
组成要素与四大原则
1.五大组成要素
2.四大原则 选型与设计
课程简介
就业前景
发展方向
光机电一体化技术
具体内容
(1)机械技术
(2)计算机与信息技术
(3)系统技术
(4)自动控制技术
(5)传感检测技术
(6)伺服传动技术 阶段
模型阶段
测试阶段
原型阶段
组成要素与四大原则
1.五大组成要素 2.四大原则 选型与设计 课程简介 就业前景 发展方向
光机电一体化技术 展开
定义:机电一体化技术是将机械技术、电工电子技术、微电子技术、信息
机电一体化
技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。是现代化的自动生产设备几乎可以说都是机电一体化的设备。
中国机电设计迈入PLM全新阶段,正挑战着了前所未有的,不可预测的难题,一个个久战沙场经久不衰精兵良将正褪去了昨日英雄的光环,唯有CAMEL VIEW 能够胜任军统三国,光复旧业的重任,此时数系科技与德国iXtronics GmbH公司携手共同开拓机电设计领域的新篇章,CAMEL VIEW 作为机电一体化设计系统,从产品的概念设计到产品性能的测试、验证、通过都是一体化的,流程化的、规范化的,在满足用户设计的前提下,数值实验的仿真与结果的验证无不精确化,支持复杂环境下,多工况,多耦合场设计。
编辑本段介绍
研究将电子器件的信息处理和控制功能附加或融合在机械 装置中的一种复合化技术。俗称机电一体化。机械电子学(mechatronics)是由机械学(mechanics)和电子学(electronics)两个词结合而成的新词。其全称为机械电子工程学,英语为mechanical and electronical engineering。机
机电一体化
械电子学主要研究目的是把机械技术与微电子技术和信息技术有机地结合为一体,实现整个系统的最优化。机械电子学可以充分发挥机械技术、微电子技术和信息技术的各自的长处和特点,促进机械产品的更新换代。机械电子学系统主要由机械主体、传感器、信息处理和执行机构等部分组成。较高级的系统不但有硬件,而且还有相应的软件,利用软件技术可以实现硬件难以实现的功能,使机械系统增加柔性。典型的机械电子系统有数控机床、加工中心、工业机器人等。机械电子学技术除用于单个机器、设备或一般的生产系统的技术改造之外,还用于柔性制造系统、计算机集成制造系统、工厂自动化、办公自动化、家庭自动化等方面。
编辑本段内容 具体内容
(1)机械技术
机械技术是机电一体化的基础,机械技术的着眼点在于如何与机电一体化技
机电一体化
术相适应,利用其它高、新技术来更新概念,实现结构上、材料上、性能上的变更,满足减小重量、缩小体积、提高精度、提高刚度及改善性能的要求。在机电一体化系统制造过程中,经典的机械理论与工艺应借助于计算机辅助技术,同时采用人工智能与专家系统等,形成新一代的机械制造技术。
(2)计算机与信息技术
其中信息交换、存取、运算、判断与决策、人工智能技术、专家系统技术、神经网络技术均属于计算机信息处理技术。
(3)系统技术
系统技术即以整体的概念组织应用各种相关技术,从全局角度和系统目标出发,将总体分解成相互关联的若干功能单元,接口技术是系统技术中一个重要方面,它是实现系统各部分有机连接的保证。
(4)自动控制技术
其范围很广,在控制理论指导下,进行系统设计,设计后的系统仿真,现场调试,控制技术包括如高精度定位控制、速度控制、自适应控制、自诊断校正、补偿、再现、检索等。
机电一体化
(5)传感检测技术
传感检测技术是系统的感受器官,是实现自动控制、自动调节的关键环节。其功能越强,系统的自动化程序就越高。现代工程要求传感器能快速、精确地获取信息并能经受严酷环境的考验,它是机电一体化系统达到高水平的保证。
(6)伺服传动技术
包括电动、气动、液压等各种类型的传动装置,伺服系统是实现电信号到机械动作的转换装置与部件、对系统的动态性能、控制质量和功能有决定性的影响。
编辑本段阶段 模型阶段
模型阶段,所有的系统组件都能够被最优化;
在仿真计算的帮助下,可以测试和分析这些组件的适用性;监测响应频率;
对模型进行分析。此外,还能够生成一个物理/拓扑系统模型,包括机械、液压和控制导向组件。有必要有一个模型工具,这个工具支持机电一体化系统的物理模型,即当有实物和节点时,这些模型能够以1:1来测试,并且原型设计研究阶段可以在严酷的实时条件下进行。
测试阶段
在系统运行完模型阶段之后,所产生的具体的性能数据可以通过试验台验证。这
机电一体化
样就可以测试和检验该系统有关参数波动的鲁棒性,功率储备及连续运行的特征。这样做的话,用户可以进行测试或者使用CAMeL-View TestRig进行硬件在回路(的测试)。要进行硬件在回路测试,相关装置的物理特性需要详细确认,这些装置必须是建立在测试平台的基础之上。识别经过测试平台上测试过的组件,容许这些组件在模型中被识别,并确保整个以系统为基础的仿真分析布局。
原型阶段
成功的测试之后,就会建立一个原型。这里要特别关注的是模型特性,这些特性特指通过特别费力的仿真所决定的特性,比如组件损耗(性能)。这些数据结果,为模型基础性分析提供服务,同时为进一步研发提供知识基础。
编辑本段组成要素与四大原则 1.五大组成要素
一个机电一体化系统中一般由结构组成要素、动力组成要素、运动组成要素、感知组成要素、职能组成要素五大组成要素有机结合而成。机械本体(结构组成要素)是系统的所有功能要素的机械支持结构,一般包括有机身、框架、支撑、联接等。动力驱动部分(动力组成要素)依据系统控制要求,为系统提供能量和动力以使系统正常运行。测试传感部分(感知组成要素)对系统的运行
机电一体化
所需要的本身和外部环境的各种参数和状态进行检测,并变成可识别的信号,传输给信息处理单元,经过分析、处理后产生相应的控制信息。控制及信息处理部分(职能组成要素)将来之测试传感部分的信息及外部直接输入的指令进行集中、存储、分析、加工处理后,按照信息处理结果和规定的程序与节奏发出相应的指令,控制整个系统有目的的运行。执行机构(运动组成要素)
根据控制及信息处理部分发出的指令,完成规定的动作和功能。
机电一体化系统一般由机械本体、检测传感部分、电子控制单元、执行器和动力源5个组成部分构成。
2.四大原则
构成机电一体化系统的五大组成要素其内部及相互之间都必须遵循结构耦合、运动传递、信息控制与能量转换四大原则。接口耦合:两个需要进行信息交换和传递的环节之间,由于信息模式不同(数字量与模拟量,串行码与并行码,连续脉冲与序列脉冲等)无法直接传递和交换,必须通过接口耦合来实现。而两个信号强弱相差悬殊的环节之间,也必须通过接口耦合后,才能匹配。变换放大后的信号要在两个环节之间可靠、快速、准确的交换、传递,必须遵循一致的时序、信号格式和逻辑规范才行,因此接口耦合时就必须具有保证信息的逻辑控制功能,使信息按规定的模式进行交换与传递。
能量转换:
两个需要进行传输和交换的环节之间,由于模式不同而无法直接进行能量的转换和交流,必须进行能量的转换,能量的转换包括执行器,驱动器和他们的不同类型能量的最优转换方法及原理。
信息控制:在系统中,所谓智能组成要素的系统控制单元,在软、硬件的保证下,完成信息的采集、传输、储存、分析、运算、判断、决策,以达到信息控制的目的。对于智能化程度高
机电一体化 的信息控制系统还包含了知识获得、推理机制以及自学习功能等知识驱动功能。
运动传递:运动传递使构成机电一体化系统各组成要素之间,不同类型运动的变换与传输以及以运动控制为目的的优化。
三、自动化技术:
所谓自动化技术,是指人类利用各种技术手段和方法来代替人去完成各种测试、分析、判断和控制工作,以现实预期的目标、功能。一个自动化系统通常由多个环节要素组成,以完成信息的获取、信息的传递、信息的转换、信息的处理及信息的执行等功能,最后实现自动运行目标。
编辑本段选型与设计
控制系统各功能元件的选型与设计:
1.单片机选用INTEL公司生产的8031单片机
单片机,它主要通过并行8255口担负控制系统的信号处理:接收系统对转矩、阀门开
机电一体化
启、关闭及阀门开度等设定信号,并提供三相PWM波发生器所需要的控制信号;处理IPM发出的故障信号和报警信号;处理通过模拟输入口接收的电流、电压、位置等检测信号;提供显示电动执行机构的工作状态信号;执行控制系统来的控制信号,向控制系统反馈信号;
2.三相PWM波发生器 PWM波的产生通常有模拟和数字两种方法。模拟法电路复杂,有温漂现象,精度低,限制了系统的性能;数字法是按照不同的数字模型用计算机算出各切换点,并存入内存,然后通过查表及必要的计算产生PWM波,这种方法占用的内存较大,不能保证系统的精度。为了满足智能功率模块所需要的PWM波控制信号,保证微处理器有足够的时间进行整个系统的检测、保护、控制等功能,文中选用MITEL公司生产的SA8282作为三相PWM发生器。SA8282是专用大规模集成电路,具有独立的标准微处理器接口,芯片内部包含了波形、频率、幅值等控制信息。
3.智能逆变模块IPM 为了满足执行机构体积小,可靠性高的要求,电机电源采用智能功率模块IPM。该执行机构主要适用功率小于5.5kW的三相异步电机,其额定电压为380V,功率因数为0.75。经计算可知,选用日本产的智能功率模块PM50RSA120可以满足系统要求。该功率模块集功率开关和驱动电路、制动电路于一体,并内置过电流、短路、欠电压和过热保护以及报警输出,是一种高性能的功率开关器件。
4.位置检测电路 位置检测电路是执行机构的重要组成部分,它的功能是提供准确的机电一体化
位置信号。关键问题是位置传感器的选型。在传统的电动执行机构中多采用绕线电位器、差动变压器、导电塑料电位器等。绕线电位器寿命短被淘汰。差动变压器由于线性区太短和温度特性不理想而受到限制。导电塑料电位器目前较为流行,但它是有触点的,寿命也不可能很长,精度也不高。笔者采用的位置传感器为脉冲数字式传感器,这种传感器是无触点的,且具有精度高、无线性区限制、稳定性高、无温度限制等特点。
5、电压、电流及检测 检测电压、电流主要是为了计算电机的力矩,以及变频器输出回路短路、断相保护和逆变模块故障诊断。由于变频器输出的电流和电压的频率范围为0~50Hz,采用常规的电流、电压互感器无法满足要求。为了快速反映出电流的大小,采用霍尔型电流互感器检测IPM输出的三相电流,对于IPM输出电压的检测采用分压电路。
6)、通讯接口为了实现计算机联网和远程控制,选用MAX232作为系统的串行通讯接口,MAX232内部有两个完全相同的电平转换电路,可以把8031串行口输出的TTL电平转换为RS-232标准电平,把其它微机送来的RS-232标准电平转换成TTL电平给8031,实现单片机与其它微机间的通讯。
7.时钟电路时钟电路主要用来提供采样与控
制周期、速度计算时所需要的时间以及日历。文中选用时钟电路DS128
机电一体化
87。DS12887内部有114字节的用户非易失性RAM,可用来存入需长期保存的数据。
8.液晶显示单元 为了实现人机对话功能,选用MGLS12832液晶显示模块组成显示电路。采用组态显示方式。通过菜单选择,可分别对阀门、力矩、限位、电机、通讯和参数等信号进行设置或调试。并采用文字和图形相结合的方式,显示直观、清晰。
9.程序出格自恢复电路为了保证在强干扰下程序出格时系统能够自动地恢复正常,选用MAX705组成程序出格自恢复电路,监视程序运行。如图2-3所示,该电路由MAX705、与非门及微分电路组成。工作原理为:一旦程序出格,WDO由高变低,由于微分电路的作用,由“与非”门输入引脚2变为高电平,引脚2电平的这种变化使“与非”门输出一个正脉冲,使单片机产生一次复位,复位结束后,又由程序通过P1.0口向MAX705的WDI引脚发正脉冲,使WDO引脚回到高电平,程序出格自恢复电路继续监视程序运行。
编辑本段课程简介
核心课程
机械制图、电气CAD工程实践、电工技术基础、工程力学、机械设计基础、机械加工工艺、数控机床编程、单片机原理与应用、电子技术基础、检测与传感技术、液压与气动技术、机床电气控制(电机与电气控制)、PLC、电力电子技术、数控加工工艺与编程、数控机床与维修、机电一体化技术(机电控制技术)、自动化控制原理(PC控制与组态)、供配电技术等。
实训课程
电工技术基础实训、金工实习、电子技术基础实训、单片机原理与应用实训、液压传动实训、电力拖动控制线路实训、PLC编程实训、数控机床维修实训、毕业实训、职业生涯规划、大学生涯规划、职业环境认知、成功素养拓展、工作能力提升、激情自主创业、求职过程胜出、初涉职场转型等。
专业软件
设计制图:AUTO CAD、UG、solidworks、3ds max等
编程仿真:PLC编程setp7(西门子PLC组态编程调试软件)、;51单片机编程keil(AT89系列、8051内核)仿真Proteus(很多单片机支持C++,包括凌阳十六位单片机);数控编程仿真斯沃数控、宇龙数控仿真系统;维修仿真数控机床维修仿真软件。
PC组态软件:wincc(西门子)、组态王、昆仑组态等。
电子仿真:NI Multisim、Proteus 等
液压与气动仿真:AMEsim、MSC等
培养目标与就业方向
1、培养学生具有机、电、液一定的理论知识和较强的实践技能。
2.具有机械加工设备的初步操作技能和数控加工、数控编程的能力。
3.具备从事机电技术必需的理论知识和综合职业能力的机电设备、自动化设备和生产线的运行与维护人员,并具有设备改造能力的高等技术综合性应用型人才。
4.能在机电设备制造企业、从事机电产品设计与开发、企业与车间生产技术管理等工作,以及机电一体化设备的安装、调试、维修、销售及管理;普通机床的数控化改装等。
编辑本段就业前景
机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称.目前实操性人才缺乏,各企业高薪聘请机电一体化专业人才,在深圳地区例如:富士康、三星、华为、等一线企业拥有大量高薪职位就业前景十分广阔.以下由工控行业网为您进行的机电一体专业就业前景的方向分析。
机电一体专业就业方向
1、从事机电一体化液体灌装生产线及商品包装自动化机械运行、维护、管理、技术改造等工作的机电一体化高等技术应用性专门人才.可在大型啤酒、饮料、食品及商品包装生产企业从事现代化自动机与生产线的维护和管理工作,也可在相关的自动机与生产线的生产厂家或设计部门、营销单位从事技术工作.2、机电一体化专业(计算机辅助设计与制造方向)
从事机电产品的计算机辅助设计(CAD)与计算机辅助制造(CAM),并熟练使用和维修数控加工设备的机电一体化高等技术应用性专门人才.可在模具设计也制造、机械加工、塑料、五金、电子产品、计算机生产等企业从事数控机床的加工工艺设计编程,数控机床的调试、维护及加工操作,从事生产和技术管理工作,也可以从事国内外数控设备的营销工作.3、机电一体化专业(模具CAD/CAM方向)
从事利用计算机技术和数控加工技术对模具进行设计和制造等工作的机电一体化高等技术应用性专门人才.可在模具、机械、五金、塑料、家电等生产企业从事模具计算机辅助设计与制造等方面的技术工作,也可在企事业单位从事与本专业有关的经营、管理工作.4、机电一体化专业(机电CAD技术方向)
在机电一体化产品、设备的设计、制造、维修、管理、技术改造与服务过程中专门从事用电脑绘图设计、信息处理和资料管理的高等技术应用性专门人才.可在机械设计、制造与装备行业、模具制造业,轻工、家用电器、电子制造业从事设计、制造、技术改造、产品营销、设备管理与维护等工作.机电一体专业就业前景
有关研究报告显示机电一体化“一词最早是日本提出的,在上世纪80年代初,日本名古屋大学最早设置了机电一体化专业.如今已改称为”机械电子工程“专业;在高职高专则仍延用机电一体化专业名称.机电一体化专业是精密机械--电子技术(含电力电子)--计算机技术等多门学科交叉融合的产物,属高新技术,也是当前发展最快的技术之一,它是先进制造技术的主要组成部分.它的发展推动了当前制造技术的迅速更新换代,是产品向高、精、快迅速迈进,使劳动生产率迅速提高.由于我国逐渐成为世界制造业基地加上传统企业面临大规模的技术改造与设备更新,国内急需大量先进制造技术专业人才.因此该专业毕业生就业前景很好,而且待遇也高.毕业生主要在各行政、企业、事业单位从事机械、电气工程、常用电器的维修、安装与调试以及技术管理等工作.机电一体化专业就业前景到底怎样呢?市场调研发现机电一体化专业是一个宽口径专业,适应范围很广,学生在校期间除学习各种机械、电工电子、计算机技术、控制技术、检测传感等理论知识外,还将参加各种技能培训和国家职业资格证书考试,充分体现重视技能培养的特点.学生毕业后主要面向珠江三角洲各企业、公司,从事加工制造业,家电生产和售后服务,数控加工机床设备使用维护,物业自动化管理系统,机电产品设计、生产、改造、技术支持,以及机电设备的安装、调试、维护、销售、经营管理等等。[1] 编辑本段发展方向
机电一体化向智能化方向迈进.20世纪90年代后期,各主要发达国家开始了机电一体化技术向智能化方向迈进的新阶段。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面,对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地,也为产业化发展提供了坚实的基础。
关注六个发展方向:
机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。未来机电一体化的主要发展方向有:
1.智能化。智能化是21世纪机电一体化技术发展的一个重要发展方向。人工智能在机电一体化建设者的研究中日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而必要的。
2.模块化。模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机电一体化产品单元是一项十分复杂但又是非常重要的事。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置。这样,可利用标准单元迅速开发出新产品,同时也可以扩大生产规模。这需要制定各项标准,以便各部件、单元的匹配和接口。由于利益冲突,近期很难制定国际或国内这方面的标准,但可以通过组建一些大企业逐渐形成。显然,从电气产品的标准化、系列化带来的好处可以肯定,无论是对生产标准机电一体化单元的企业还是对生产机电一体化产品的企业,规模化将给机电一体化企业带来美好的前程。
3.网络化。20世纪90年代,计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产、政治、军事、教育及人们的日常生活都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术是家用电器网络化已成大势,利用家庭网络(home net)将各种家用电器连接成以计算机为中心的计算机集成家电系统(computer integrated appliance system,CIAS),使人们在家里分享各种高技术带来的便利与快乐。因此,机电一体化产品无疑将朝着网络化方向发展。
4.微型化。微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1立方厘米的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小、耗能少、运动灵活,在生物医疗、军事、信息等方面具有不可比拟的优势。微机电一体化发展的瓶颈在于微机械技术,微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术两类。
5.绿色化。工业的发达给人们生活带来了巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前途。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。
6.系统化。系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现之二是通信功能的大大加强,特别是“人格化”发展引人注目,即未来的机电一体化更加注重产品与人的关系。机电一体化的人格化有两层含义。一是机电一体化产品的最终使用对象是人,如何赋予机电一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层含义是模仿生物机理,研制各种机电一体化产品。
编辑本段光机电一体化技术
光机电一体化技术是微电子技术、计算机技术、控制技术、光学技术与机械技术的相互交叉与融合,是诸多高新技术产业和高新技术装备的基础。它包括产品和技术两方面:光机电一体化产品是集光学、机械、微电子、自动控制和通信技术于一体的高科技产品,具有很高功能和附加值;光机电一体化技术是指其技术原理和使光机电一体化产品得以实现,使用和发展的技术。
光机电一体化技术是由光学,光电子学,电子信息和机械制造及其他相关技术交叉与融合构成的综合性高新技术是诸多高新技术产业和高新技术装备的基础。它丰富和拓宽了光机电一体化技术的内涵和外延。