第一篇:圆柱教学设计
圆柱教学设计
圆柱是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个圆柱形状的笔筒需要多少材料。虽然学生已经学会了如何计算圆柱的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:笔筒的外形是什么样的?圆柱吗?计算所需材料的面积是否就是计算这个圆锥的表面积?做的笔筒没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《圆柱的表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决笔筒制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握圆柱表面积的计算方法,能够正确计算圆柱的表面积。2.使学生能够根据实际情况计算圆柱里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
一、引导学生学习圆柱表面积的计算方法 1.回忆
上节课我们学习了圆柱表面积的概念,那么谁来说一说什么叫做表面积以及圆柱的表面积? 2.联想:
(拿起一个圆柱的模型,手摸着面)提问:圆柱的面有什么特点?圆柱的表面积是指什么?圆柱每个面的面积怎样算?所以可以怎样计算圆柱的表面积? 3.归纳引入新课:
圆柱的一个侧面积加两个底面积的总面积就是圆柱的表面积。圆柱的表面积怎样求呢?这就是这节课的主要内容(板书课题)4.教学例4 一定圆柱形厨师帽,高28cm,冒顶直径20cm,做这样一顶 帽子需要多少面料?
提问:题目条件是什么,让我们求什么?求至少要多少面料,是求圆柱的什么?你会算吗?
小结:这顶厨师帽的下面应该是没有的,所以在这里,不需要我们算圆柱的下面,也就是说少算一个底面。
二、笔筒的制作问题
说明:我们已经学会了计算圆柱的表面积。在实际生产和生活过程中,有时不需要计算圆柱3个面的总面积,只需要计算某几个面的总面积,比如我们刚做的那道题,这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。
1.帮助学生回忆笔筒的形状(圆柱体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个圆柱的表面积,但是要减去上面的面积)3.课本第16页第10题:
(出示笔筒模型)(1)笔筒缺少哪个面?(上面)
(2)要求至少需要多少彩纸,要算几个面的面积和?算不算上面?如何计算每一个面的面积?(2个面,没有上面,侧面=底×高,下面=一个圆的面积=π)(3)指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“笔筒”启发学生如何计算制作一个笔筒所需材料的面积,也就是计算圆柱体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)
4、练习
书P18页练习二的第15题。
(点评:要计算圆柱体某几个面的面积之和,关键是要知道如何计算圆柱体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)《圆柱体的表面积》的教学反思: 在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
第二篇:圆柱 教学设计
《圆柱的认识》教学设计
保定市东马池小学 高秀丽
教学目标:
1、认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
2、经历探索圆柱基本特征的过程,提高观察、操作、分析和概括的能力;通过自主研究,掌握研究立体几何的一般方法,提高学生学习数学的积极性。
3、进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。教学重、难点:
1、掌握圆柱的基本特征。
2、高的认识。
教学方法:动手操作法、自主探索与合作交流法 教 具:
教师:课件,圆柱模型,自制长方形粘在小棒上,草稿纸。学生:每生自带一个圆柱形物体,自制长方形粘在小棒上。教学过程:
一、复习旧知,初步感知
1、教师出示长方体、正方体、圆柱的图形 师:同学们知道它们是什么图形吗? 生:长方体、正方体、圆柱
师:那长方体、正方体有什么特征?那与圆柱相比,长方体和正方体的面都是有什么样的面围成的呢?(平面)
师:那你摸一摸你手中的圆柱,它是由什么面围成的呢? 生:有平面、曲面。
师:今天我们就来认识一下——圆柱。
二、动手操作,探究圆柱的特征
1、整体感知。
教师出示主题图,学生观察这些物体的形状有什么共同特点? 生:这些物体都是圆柱。
师:这些物体的形状都是圆柱体,简称圆柱。出示抽象图
师:你还见过哪些圆柱体的物体? 学生自由发言
师:同学们都细心的观察了生活中的事物,是热爱生活的孩子。
2、小组合作:探究圆柱各部分的组成和特征。(1)观察底面
师:现在拿出你手中的圆柱体,摸一摸它的整个表面,说一说你的感受。(可以提示有几个面,个是什么样子的?)生:2个平面,1个曲面
师:观察圆柱的上、下2个平面,分别是什么形状?(圆形)教师板书:圆形
师:这两个圆面叫做圆柱的底面。那这两个底面大小如何呢?(相等)师:怎样验证? 小组讨论做好记录,教师巡视,适时指导。
师:现在我们来交流一下,谁愿意分享一下你的方法?
生:①量底面的半径;②用绳子围绕底面周长绕一圈,量出长度,再用同样的方法测量另一个底面;③沿着底面的边画在纸上,把圆柱倒过来,看看是否重合;④把圆柱从中间截开,两个底面对起来,看是否重合......师:同学们的方法都可以,现在我们找一组同学来验证一下,(用③的方法)
学生动手操作,得到圆柱的两个底面是完全的圆形。板书:大小一样 把圆柱平放在平面上,学生观察
师:那圆柱的两个底面的位置关系是怎样的呢?(平行)怎样验证? 生:①通过测量,两个底面的左边和右边高度一样;②圆柱横着放滚动得到两条直线,两条直线之间的距离相等,两条线平行。学生上前用方法②验证
师:圆柱的两个地面大小相同,位置是(板书:相互平行)(2)观察侧面
师:请你再来摸一摸圆柱的侧面是什么形状的? 生:弯曲的,光滑的曲面
师:援助周围的面(上、下底面除外)叫做侧面。板书:侧面(3)认识高
出示两个底面大小相同,高低不同的圆柱。师:这两个底面大小相同的圆柱有什么区别? 生;一个高一个矮
师:那哪里是圆柱的高呢?谁来给大家指一指
学生指出上下两个点连成的垂直线段就是高,教师随意找一条斜线,是不是高。
生:不是高,因为不垂直。
师;那垂直上下两个底面的线段就是两个地面之间的(距离),也就是说圆柱两个底面之间的距离就是圆柱的高。(板书:高)师:那怎么测量圆柱的高呢?
小组讨论一下,一会儿找同学来说一说你们小组的方法。教师巡视 交流汇报,集体总结
师:测量高我们要测量两个底面之间的距离,我们在侧面上找到了高,你还能在圆柱的其他地方找到高吗?
师:如果把圆柱从中间竖着截开,你能上前来指一指圆柱的高吗? 教师展示圆柱模型,找学生上前指一指
师:圆柱的里面也有高,侧面也有高,那圆柱有多少条高呢? 板书:无数条
师:那这些高的长度是怎么样的? 板书:一样长
三、巩固练习
1、出示第18页教材做一做第1题,找出圆柱的底面、侧面和高
2、出示第20页练习的第1题,判断下面的物体是不是圆柱,为什么?
四、实验操作
1、出示:一张长方形的纸贴在木棒上,转动。思考:会形成什么图形?
学生拿出课前做好的小棒,转动观察。出示课件动画,演示转动过程
师:看到形成的图形是圆柱。那长方形的长和宽形成了圆柱的什么? 生:长方形的长就是圆柱的高,宽就是圆柱底面圆的半径。
2、出示出示第18页教材做一做第2题,长方形ABCD围着边转动,形成两个圆柱,这两个圆柱分别是长方形围着哪条边形成的?
五、课堂小结
通过这节课,你有什么收获?
第三篇:圆柱教学设计
班级: 主备人:徐永红 审核人:向家富 使用人: 日期
第一课时:面的旋转
学习目标:通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。学习过程:活动一
如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?(点动成线)
活动二
观察下面各图,你发现了什么?(线动成面)
活动三
如图:用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。
介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。一. 找一找
请你找一找我们学过的立体图形
二. 说一说
圆柱与圆锥有什么特点?和小组的同学互相说一说
圆柱: 圆锥: 认一认
圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。
圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。
三. 练一练
1. 找一找,下图中哪些部分的形状是圆柱或者圆锥?
再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。2. 下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。
3. 想一想,连一连
班级: 主备人:徐永红 审核人:向家富 使用人: 日期
第二课时:圆柱的表面积
学习目标:
1、结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。学习过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?那么大家猜猜侧面是怎样做成的呢?
二、自主探究,发现问题。
1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2、观察对比:观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:能用已有的知识计算它的面积吗?
4、小组汇报。
重点感受:圆柱体侧面如果沿着高展开是一个()。这个长方形与圆柱体上的那个面有什么关系? 长方形的面积=圆柱的侧面积。
如果圆柱展开是平行四边形,是否也适用呢?
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
2、圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积 =
3、动画:圆柱体表面展开过程
三、实际应用
1、解决书上的例题
2、填空 圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
3、要求一个圆柱的表面积,一般需要知道哪些条件()
4、教材第六页试一试。
班级: 主备人:徐永红 审核人:向家富 使用人: 日期
第三课时:练习课
学习目标:
1、进一步理解圆柱体侧面积和表面积的含义。
2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。学习过程 :
一、基本练习
说说计算方法
二、实际应用
求压路的面积是求什么?
说自己的想法,独立解答。
三、实践活动
班级: 主备人:徐永红 审核人:向家富 使用人: 日期
第四课时:练习课
学习目标:
1、进一步理解圆柱体侧面积和表面积的含义。
2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。学习过程 :
一、实际应用 1、2、3.班级: 主备人:徐永红 审核人:向家富 使用人: 日期
第五课时:圆柱的表面积练习课
学习内容:北师大版数学六年级下册6—7页。学习目标:
1、进一步理解圆柱表面积的含义及其计算方法。
2、能够运用圆柱表面积的计算方法解决简单的实际的问题。
3、进一步发展学生的空间观念。学习过程:
活动一:复习,巩固圆柱表面积的计算方法。
1、圆柱的表面积和侧面积有什么关系?
2、侧面积怎样计算?
3、表面积怎样计算?
4、一个圆柱,底面周长94。2厘米,高25厘米,求它的侧面积和表面积。
5、一个圆柱,半径3。2分米,高5分米。求表面积。
活动二;提高解决问题的能力。
1、如图,压路机前轮转动一周,压路的面积是多少平方米? 请看着书上的图,说说压路机前面的圆柱,底面在哪?高在哪? 求压路的面积就是求什么?
2、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1。2米,镶瓷砖的面积是多少平方米? 师:是指侧面积和一个底面积。
3、制作一个底面直径20厘米,长50厘米的圆柱形通风管,至少要用多少平方厘米铁皮? 通风管有什么特征?
计算通风管需要多少铁皮,就是求圆柱的的什么?
4、油桐的表面要刷上防锈油漆,每平方米需用防锈油漆0。2千克,漆一个油桐大约需要多少防锈油漆?(结果保留两位油漆)求需要多少油漆就是求圆柱形油桐的什么?
注意:这种解决实际问题的内容,一般都采用进一法进行保留。
5、薯片盒规格如图,每平方米纸最多能做多少个薯片盒的侧面包装?
要解决这个问题,必须先求什么?(先求侧面积)再求什么?(再求1平方米里面包含了几个侧面积)
第四篇:圆柱体积教学设计(通用)
圆柱体积教学设计(通用9篇)
作为一名教职工,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的圆柱体积教学设计(通用9篇),仅供参考,大家一起来看看吧。
圆柱体积教学设计1一、教学目标
【知识与技能】
掌握圆柱的体积计算公式,能够正确计算圆柱的体积。
【过程与方法】
通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。
【情感态度价值观】
感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。
二、教学重难点
【教学重点】
圆柱的体积公式。
【教学难点】
圆柱体积公式的推导过程。
三、教学过程
(一)引入新课
提问:长方体和正方体的体积公式是什么?
预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体
(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。
(二)探索新知
1.圆柱体积公式的猜想
在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。
提问:长方体和正方体的体积相等吗?
预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。
追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么?
预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。
2.圆柱体积公式的推导
回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。提问:圆柱可以转化成已知体积公式的哪个图形呢?
预设:可以把圆柱转换成长方体。
让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?
预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。
组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。
预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。
3.圆柱体积公式的推出
提问:圆柱的体积公式是什么?
预设:圆柱的体积=底面积×高
用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。
预设:V=Sh
教师强调字母V、S是大写,h是小写。
追问:回顾探究圆柱体积公式的过程,有哪些心得体会?
预设1:可以用长方体体积公式推导出圆柱体体积公式;
预设2:把圆柱转化成长方体,与探索圆面积的方法类似;
预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。
(三)课堂练习
试一试
一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?
(四)小结作业
提问:通过本节课的学习有什么收获?
课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式
2.会运用公式计算圆柱的体积
教学重点
圆柱体体积的计算
教学难点
理解圆柱体体积公式的推导过程
教学过程
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体
2.学生利用学具操作
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化
③近似长方体的高就是圆柱的高,没有变化
4.学生根据圆的面积公式推导过程,进行猜想
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米.
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
(一)填表
(二)求下面各圆柱的体积
(三)一个圆柱形水池,半径是10米,深1.5米.这个水池占地面积是多少?水池的容积是多少立方米?
(一)求下列图形的表面积和体积(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4.5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
教学目标:
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积
教学难点:
理解圆柱体积计算公式的推导过程。
教学用具:
圆柱体积演示教具。
教学过程:
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)
1、说一说:
(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=()×()用字母表示()
2、求下面各圆的面积(只说出解题思路,不计算。)
(1)r=1厘米
;(2)d=4分米;
(3)C=6.28米。
(二)揭示课题
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)
请仔细阅读课本第8-9页的内容,完成下面问题
(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()
2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()
[汇报交流,教师用教具演示讲解2题]
(二)独立完成3、4题。
3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?
先求底面积,列式计算()
再求体积,列式计算()
综合算式()
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)
【要求:完成之后以小组互查,有争议之处四人大组讨论。】
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
1、课本9页试一试
2、课本9页练一练1题(只列式,不计算)
【要求:完成后小组互查,教师评价】
课本练一练的2、3、4题
【要求:组长先给组员讲解题思路,然后小组内共同完成】
教师进行错例分析。
1、课本练一练的5题
2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?
【要求:先组内讨论确定解题思路,再完成】
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题
圆柱体积教学设计4教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学过程:
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。
1、练习三第4题。
学生独立练习,强调选取有用信息,培养认真审题习惯。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第10题。
指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的.底面积。利用这个底面积再求出另一个圆柱的体积。
4、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9题
(1)学生独立审题后完成。
评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
5、练习三第11题。
此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。
(3)三、布置作业
完成练习中未做完的习题
教学反思
第五课时特别关注
练习三第4题,在教学中必须应该特别关注。
关注理由:
1、有多余条件,是培养学生收集有用信息的契机。
这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0.5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。
在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。
2、有容易忽视的条件,是培养学生认真审题的契机。
一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。
学生巧解
——巧求削去部分的体积
今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?
我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。
同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。
而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
圆柱体积教学设计5教学内容:
本内容是六年级下册第8页至第9页。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?
(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)
探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)
大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)
验证:能否将圆柱转化为学过的立体图形?
让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。
思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?
(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)
用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。
学生讨论交流:
1、把圆柱拼成长方体后,什么变了,什么没变?
2、拼成的长方体与圆柱之间有什么联系?
3、通过观察得到什么结论?
得到:圆柱的体积=底面积×高
V=Sh=πr2h
(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)
练习设计:
1、计算下面各圆柱的体积。
(1)S=60cm2 h=4cm
(2)r=1cm h=5cm
(3)d=6cm h=10cm2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?
(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)
3、试一试:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?
(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)
4、拓展练习:
(1)填表:
填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。
(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)
(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?
(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)
课堂小结:谈谈这节课你有哪些收获?
(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)
教学反思:
本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。
情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。
圆柱体积教学设计6教学目标
圆柱的体积(1)
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
复习导入
1、口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2、引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
新课讲授
1、教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2、教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的体积是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
课堂作业
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
课堂小结
通过这节课的学习,你有什么收获?你有什么感受?
课后作业
完成练习册中本课时的练习。
第4课时圆柱的体积(1)
课后小结
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
课后习题
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
圆柱体积教学设计7教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题
圆柱体积教学设计8一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1、板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1、创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2、你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
圆柱体积教学设计9探究目标:
1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:
学生会应用圆柱体积公式解决实际问题。
探究过程:
提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?
1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?
怎样求这个长方体的容积呢?
2、出示圆柱形鱼缸。
⑴估测。这个圆柱形鱼缸的容积大约是多少?
⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:
生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:
①94.5÷3.14÷2≈15.0(厘米)
②3.14×152×12=8478(立方厘米)
生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)
⑷评价。
组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。
⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?
3、自学例题。
组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。
做教科书第80页“做一做”中的第2题、练习二十一的第5题。
学生独立完成,指名板演,集体评讲。
学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。
在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?
第五篇:圆柱体积教学设计
一、复习导入
1、同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?他们的体积体积的通用公式是什么?用字母怎么表示?
2、回忆一下圆面积的计算公式是如何推导出来的?
3、课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1、学生猜想可以把圆柱转化成什么图形?
2、课件演示:把圆柱体转化成长方体(1)是怎样拼成的?
(2)观察是不是标准的长方体?
(3)演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3、借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
4、交流展示
(1)小组讨论,交流汇报。(2)生汇报,师结合讲解板书。圆柱的体积=底面积x高
(3)用字母公式怎样表示呢?v、s、h各表示什么?
5、知道哪些条件可以求出圆柱的体积?
6、计算下面圆柱的体积:
(1)底面积24平方厘米,高12厘米(2)底面半径2厘米,高5厘米
三、课题检测
1、判断
(1)圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。(2)圆柱的底面积扩大3倍,体积也扩大3倍。(3)圆柱体的底面直径和高可以相等。
(4)两个圆柱体的底面积相等,体积也一定相等。
(5)一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。
2、联系生活实际解决实际问题。
(1)一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
(2)一个塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆,大棚内的空间大约有多大?
四、全课总结 这节课你有什么收获?