第一篇:抽屉原理教学设计
《抽屉原理》教学设计
教学内容
人教版标准试验教材小学数学六年制第十二册“数学广角”例
1、例2及相关内容。
教材编排特点
1、教材借助例1(把4枝铅笔放进3个文具盒)中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。
为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况(在这里,只考虑存在性问题,即把4枝铅笔不管放进哪个文具盒,都视为同一种情况)。在每一种情况中,都一定有一个文具盒中至少有2枝铅笔。通过罗列实验的所有结果,就可以解释前面提出的疑问。为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”,只是数据比例题的稍大。学生可以利用例题中的方法迁移类推,加以解释。
2、例2介绍了另一种类型的“抽屉问题”,即“把多于
个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”实际上,如果设定=1,这类“抽屉问题”就变成了例1的形式。因此,这两类“抽屉问题”在本质上是一致的,例1只是例2的一个特例。教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生探究原因的愿望。学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)三种情况。在任何一种结果中,总有一个数不小于3。更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”。利用有余数除法5÷2=2„„1可以发现,如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
研究了“把5本书放进2个抽屉”的问题后,教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论。
在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解。例如,学生可以通过观察,归纳出“要把(是奇数)本书放进2个抽屉,如果÷2=„„1,那么总有一个抽屉至少有(+1)本书”的一般性结论。教材第69页的“做一做”延续了第68页“做一做”的情境,在例2的基础上有所扩展,把 “抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
设计理念
兴趣是最好的老师,喜欢和好奇心比什么都重要,以“抢座位”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作、动手操作的探究性学习和“鸽子进巢”模拟想象事情情景的发生把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容,从而牵引出“平均分”这个更具一般性的方法。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
教材内容分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。在数学问题中有一类与“存在性”有关的问题,在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。“抽屉原理”的理论本身并不复杂,甚至可以说是显而易见的。例如,要把三本书放进两个抽屉,至少有一个抽屉里有两本书。这样的道理对于小学生来说,也是很容易理解的。但“抽屉原理”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。因此,“抽屉原理”在数论、集合论、组合论中都得到了广泛的应用。
本单元用直观的方式,介绍了“抽屉原理”的两种形式。例1描述的是最简单的“抽屉原理”——把
个物体任意分放进个空抽屉里(>,是非0自然数),那么一定有一个抽屉中放进了至少2个物体。例2描述了“抽屉原理”更为一般的形式:把多于
个物体任意分放进个空抽屉里(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。
教学对象分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
教学目标
(1).经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
(2).通过操作发展学生的类推能力,形成比较抽象的数学思维。(3).通过“抽屉原理”的灵活应用感受数学的魅力。
教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教具、学具准备
若干个纸杯、笔、扑克牌
教学策略
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,在本节课的教学中我根据学生的认知特点和规律,在设计时我主要运用了产生式教学策略中的数感教学策略和应用意识教学策略两种方式,着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。
一、游戏激趣,初步体验抽屉原理。
创设贴近学生生活实际的情景。情境中激发兴趣,兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。再充分利用学生已有的经验学习数学。
二、讨论交流,操作探究,寻找抽屉原理的一般规律。
这一环节我利用提出问题——验证结论——解决问题——初步建模——运用假设法——发现规律——介绍课外知识等数学活动,引导学生探究抽屉原理的一般规律。
1、提出问题:(1)把3本书、4支笔分别放进2个抽屉、3个文笔筒中,不管怎么放,总有一个抽屉(笔筒)至少放进几本(几枝)。让学生猜测“至少会是”几支?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生并板书。
(1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)
学生汇报完后,教师再利用多媒体课件,指出每种情况中都有几支铅笔被放进了同一个文具盒。
(2)参与教学策略。由问题产生的参与,是思维的参与。教师充分发挥学生的主观能动性,创设丰富生动、富有挑战性的生活情境,激发学生参与的兴趣,通过问题激发学生主动参与学习活动,积极参与思考、讨论、动手实践、尝试练习,真正做学习的主人。如利用“鸽巢原理”中鸽子的聪明和机智一一占巢以及同学抢座位的做法让学生自然而然想到抽屉原理和“平均分”有着非常紧密的联系,再结合前面学生的动手操作验证平均分的的作用。
(3)合作教学策略。合作策略是指通过教师与学生之间,尤其是学生与学生之间的共同合作,达到某一预期的教学目标。小组学习活动是合作教学中最基本、最常用的形式。培养学生合作交流的习惯是非常重要的。
教学过程
一、课前游戏引入。
上课前,我们先来热身一下,请五位同学一起来玩“抢座位”的游戏。5人抢4个位置,说开始后每人必须坐在位置上。你们先想像一下他们可能的坐后的情景,看老师猜的对不对。
他们都坐下了么?老师不用看就知道“一定有一把椅子上坐了两个同学,对不对?假如请这五位同学再坐,不管怎么坐,总有一张椅子至少坐两个同学,同意么?板书:总有 至少
其实这里蕴含了一个有趣的数学原理,是什么原理呢,它里面又有什么需要我们去探讨呢?
二、通过操作,探究新知
(一)探究例1
1、研究3本书放进2个抽屉里。
(1)要把3 本书放进2个抽屉,有几种放法?请同学们想一想,同桌摆一摆,再把你的想法在小组内交流。(提醒学生左2右一与左1右2是同一种方法)
(2)反馈:两种放法:板书(3,0)和(2,1)
(3)观察这两种放法,同学们有什么发现呢?(总有一个抽屉至少放有2本书)让孩子们充分地说(仿照抢座位来说)。板书:总有一个抽屉至少放有2本书。
(4)“总有”什么意思?你能用另外一个词代替它(一定有)(5)“至少”有2本什么意思?(最少是2本,2本或者2本以上)小结:这就是数学上著名的 “抽屉原理”。即把东西放入抽屉里,怎么放,出现什么现象。
2、研究4枝笔放进3个杯子。
(1)现要把4枝笔放进3个杯子里,有几种放法?请同学们4人一小组动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。多媒体依照学生回答展示放的情况,并把放有2枝或2枝以上的杯子用红线圈出。
(3)从这四种放法,同学们有什么发现?(总有一个杯子至少放有2枝笔)(4)小结:同学们在研究4枝笔放入3个杯子里是也得出了相同的结论。那么你能用抽屉原理告诉老师这里有几个抽屉吗?其实,数学上又把“抽屉原理”叫做“鸽巢原理”。(5)多媒体出示4个鸽巢 5只鸽子
问:鸽子的进巢情况会怎样,还有前面的结论吗? 学生想象一下鸽子回巢的情景,小组讨论进巢的实际现象。
(6)引导学生根据前面抢座位游戏,再结合聪明的鸽子进巢情景模拟试验,说明“抽屉原理”也就是“鸽巢原理”和“平均分”有关(突破难点)。由平均分引出除法算式。
(7)师生总结:如要能一眼看出摆放结果,利用平均分(除法算式)比列举法要简单、明了、方便的多
(8)学生用除法算式表示前面游戏和3个活动。叫生板演。
3、(1)把6枝笔放进5个杯子,是不是总有一个杯子至少有2枝笔?为什么?
把7枝笔放进6个杯子,是不是总有一个杯子至少有2枝笔?为什么?
把100枝笔放进99个杯子,是不是总有一个杯子至少有2枝笔?为什么?(2)从刚才我们的探究活动中,你有什么发现?小组交流。汇报:只要放的笔比杯子的数量多1,总有一个杯子里至少放进2枝笔。提示学生用字母表示N+1个笔放进N个杯子里,总有一个杯子里至少有两枝笔。
(3)如果笔数比杯子数多2呢?多3呢?是不是也能得到结论:“总有一个杯子至少有2枝笔。”摆一摆,说一说。
(4)小结:刚才我们分析了把笔放进杯子的情况,只要笔数量多于杯子数量时,总有一个杯子至少放进2枝笔。
(5)如果7只鸽子飞进5个鸽巢,情况怎样呢?8只呢(多媒体出示)同桌交流,汇报,(6)写出除法算式,总结结论。
(二)探究例2
1、研究把5本书放进2个抽屉中。(1)多媒体出示 5本书 2个抽屉 会有几种放置情况?学生动手放并反馈(5,0)、(4,1)和(3,2)
(2)从三种情况中,我们可以得到怎样的结论呢?(每一种放法里总有一个抽屉至少放进了3本书)
(3)最能一眼看出结论的是哪种方法:即先在每个抽屉里放进2本书,剩下的1本书放进任何一个抽屉中,这个抽屉就有3本书了。也就是平均分,用算式表示是:5÷2=2„1(商2表示什么,余数1表示什么)
2、类推:如果把7本书放进2个抽屉中,总有一个抽屉至少放进4本书。
如果把9个本书放进2个抽屉中。总有一个抽屉至少放5本书。
如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。
3、板书算式后提问:现在你们又有什么发现,放置结果的至少数又有什么规律?小组讨论后互相说说并汇报结论。得出;
至少数 = 商+1 问:如果没有余数结论是什么(至少数 =商)
这就是今天我们学习的“抽屉原理”的一个小奥秘。经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。其实“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。(多媒体显示抽屉原理的来历)
4、在我们的生活中,常常会遇到抽屉原理,如课前我们玩的游戏。
5、小结:从以上的学习中,我们发现在解决抽屉原理时,我们是把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)
三、迁移与拓展
下面我们一起来放松一下,做个小游戏。
(1)我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?任意抽出来的五张至少有几张是同一种颜色的?
(2)在我们班的任意13人中,总有至少几个人的属相相同,想一想,为什么?
(3)六(1)班有学生55人,我们可以肯定,在这55人中,至少有 人的生日在同一个月?想一想,为什么?
(4)多媒体出示:数学家波沙童年的故事。
匈牙利现代数学家厄尔迪斯说过这样一句名言:“数学家就是将咖啡变为定理的机器。”
有一次厄尔迪斯听说本国有个9岁的神童叫波沙,他便专程到布达佩斯去看他。见面后,他问波沙:“从1、2、3„„100中任意取51个不相同的数,其中必有两个互质,这是为什么?” 波沙正在喝咖啡,他用汤匙在杯子里搅了几下,然后就轻松地回答了这个看似简单却又难以回答的问题:“将1、2、3„„100分成50个组,每组两个相邻的数为1,2|3,4|„„|99,100|。如果每组中各取一个数,那么至多只能取出50个数。因此如果取出51个数,那么必有一组的两个数都被取出。而每两个相邻的自然数互质,因此取出的51个数中必有两个数互质。
这里就运用到了我们今天所学的抽屉原理的相关知识。这节课你有哪些收获呢?
老师对你们利用抽屉原理解决实际问题充满了信心,希望你们再接再厉!
四、总结全课
五、布置作业。
2、做一做:(出示幻灯片)
(1)张叔叔参加飞镖比赛投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。这是为什么?
(2)某班有32名小朋友是在8月份出生的,能否找到两个在同一天过生日的小朋友?为什么?(3)小明和小刚掷色子,小明说:“我掷了7次,至少有2次点数相同。”小明说得对吗?为什么?
(六)板书设计
抽屉原理
总有(一个抽屉)至少放有:商+1
3÷2=1(本)„„1(本)2(3,0)(2,1)4÷3=1(枝)„„1(枝)2(4,0,0)(3,1,0)
2(2,2,0)(2,1,0)
5÷4=1(只)„„1(只)2 7÷5=1(只)„„2(只)2 8÷5=1(只)„„3(只)2 5÷2=2(本)„„1(本)3 7÷2=3(本)„„1(本)4 9÷2=4(本)„„1(本)5 11÷3=3(本)„„2(本)4
至少数=商+1
第二篇:抽屉原理教学设计
抽屉原理
【教学内容】
义务教育课程标准实验教科书数学六年级下册第70、71页,例
1、例2。
【教学目标】
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过动手操作、画图、推理等活动,使学生会运用多种方法去解决问题。
3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】
每组都有相应数量的笔筒、铅笔。【课前游戏】
师:同学们喜欢做游戏吗?学习新课之前我们先来做个游戏.从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有两张是同花色的。
你们相信吗?
一、导入:
老师为什么能做出准确的判断呢?因为啊,在这个游戏中蕴含着一个有趣的数学原理。
二、动手操作,获取新知:
(一)初步感知
1、教师引导:你们想不想自己通过动手实践来发现它?
每个小组拿出4枝铅笔,把它们放进3个笔筒中,怎么放?有几种方法?你有什么发现吗?(提出要求:在动手操作之前分好工,有操作的,有负责记录的)
2、全班交流:
哪个小组愿意到前边给大家展示一下?
学生展示
观察这四种方法,你有什么发现?
(明确:无论怎么放,总有一个笔筒至少有2枝铅笔)
问:总有是什么意思?至少有两支呢?
全班明确:把4枝铅笔放进3个笔筒中,不管怎么放,总有一个笔筒中至少有2枝铅笔,3、这是列举出所有方法之后得出的结论。我们把这种方法称为“枚举法”(板书)这是数学中常见的一种方法。
4、还有其他方法吗?(假设法)
5、说说你的想法?生说想法
6、师:能用算式表示吗?生说,师板书。质疑:这两个1表示的一样吗?
7、师:如果把5枝铅笔放入4个笔筒里,会出现什么情况? 学生汇报交流
(也存在着总有一个笔筒里至少有2枝铅笔的情况)
师;你们是怎样得出这个结论的?
类推:6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把8枝铅笔放进7个笔筒呢?把9枝铅笔放进8个笔筒呢?
把100枝铅笔放进99个笔筒呢?
把1000枝铅笔放进999个笔筒呢?„„
观察这些算式,你有什么发现?
(铅笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。)
师:还有想说的吗?加深记忆。
8、师:如果铅笔的数量不是比笔筒的数量多1呢?
把5枝铅笔放进3个笔筒,学生可以动手操作,也可以动脑想
汇报交流。学生可能有两种意见:总有一个盒子里至少有2枝;总有一个盒子里至少有3枝。让学生分别说想法。
只有把剩余的2枝分别放进不同的笔筒里,才能保证至少有几枝。
9、师:观察这些算式,你发现了什么?(明确:这些算式中,都是铅笔的数量比笔筒的数量多,商都是1,并且都有余数,说明不论余几,总有一个笔筒中至少有商+1枝铅笔)
(二)深入研究,学习例2
1、师:如果商不是1,还会有这种结论吗?
出示题目:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
学生汇报,展示学生的结论。
2、思考:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把15本书放进4个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、师:同学们发现的这一规律,其实就是一个非常著名的数学原理,也是我们今天研究的“抽屉原理”(板书课题)一起看大屏幕(介绍抽屉原理的相关知识)
4、师:抽屉原理虽然简单,却能解决许多有趣的问题。现在,你能利用这一原理解释课一开始时的扑克牌问题了吗?学生回答
三、应用原理
抽屉原理不仅在数学中应用,在现实生活中也随处可见。你能举出生活中的例子吗?
1、学生举例说明。
2、其实,早在2000多年以前,我国先人就应用过这一原理解决问题,听说过“二桃杀三士”的故事吗?课件播放“二桃杀三士”的故事。
只要你善于观察思考、善于总结概括,相信不久的的将来你也能成为伟大的科学家。
四、畅谈感受,教学结束
通过这节课的活动,你有什么收获和感受?
板书设计:
抽屉原理
4÷3=1……1
5÷2=2……1
7÷2=3……1
15÷4=3……3 物体数÷抽屉数=商……余数
至少数=商+1
教学反思:(略)
第三篇:抽屉原理教学设计
《抽屉原理》教学设计
【教学内容】《义务教育课程标准实验教科书〃数学》六年级下册第70--71页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。3. 通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教具、学具准备】每组都有相应数量的纸杯、小棒;教师准备一副扑克牌 【教学过程】
一、创设情景、揭示课题
1、拿出一副扑克牌取出两张王牌,让学生从剩下的52张中随意抽出5张牌。
2、教师判断:我敢肯定地说,不论怎么抽,抽出的5张牌中至少有2张牌是同一花色。(让学生验证)
3、揭示目标:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,大家想不想研究?(那今天这节课老师就和大家一起用小棒和杯子来研究这个有趣的数学原理)
板书:小棒 杯子
【设计意图】教师从学生感兴趣的“玩牌”游戏开始,让学生初步体验不管怎么抽取,总有两张牌是同一花色,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、自学提示
自学课本70—71页内容,通过操作活动解决以下问题
1、把3支小棒放入2个杯子里,不管怎么放总有一个杯子至少放进几支小棒?
2、把4支小棒放进3个杯子里,不管怎么放总有一个杯子至少放进几支小棒?
3、把6根小棒放入5个杯子,你感觉会有什么结果?100根小棒放入99个杯子会有什么结果呢?
4、把5支小棒放进3个杯子里,会有什么结果?7支小棒放进4个杯子呢?你发现了什么规律?能否用算式表示。
三、自主探究、理解原理
(一)1.课件出示:把3支小棒放入2个杯子里,不管怎么放总有一个杯子至少放进 ____支小棒。
猜一猜:不管怎么放,总有一个杯子至少放进 ____支小棒。① 学生自主思考、分组操作。
请同学们实际放放看。学生动手操作,将不同的放法记录下来。(师巡视,了解情况,个别指导)
②分组操作、展示交流:根据学生摆的情况,师板书各种情况(3,0)(2,1)
③教师引导学生正确表述:3支小棒放入2个杯子里,不管怎么放,总有一个杯子里至少有2支小棒 师:是这样吗?谁还有这样的发现,再说一说。强调:A“总有”是什么意思(一定有)?
B“至少”有2根什么意思(不少于两只,可能是2根,也可能是多于2根)?
2、课件出示:把4支小棒放进3个杯子里,不管怎么放总有一个杯子至少放进 ____支小棒。请同学们实际放放看。
①学生操作活动,教师巡视,了解情况,个别指导
②学生展示:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。问:你发现了什么?
(不管怎么放,总有一个杯子里至少有2支小棒)
小结:把3根小棒放进2个杯子里,和把4根小棒放进3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒。这是我们通过实际操作发现的这个结论。
③同学们自己说说看,同组之间边演示边说一说好吗? 问:这种分法,实际就是先怎么分的(平均分)?
④同学们用平均分的方法解决了这个问题,能用算式表示吗? 学生汇报,教师板书:3÷2=1……1 4÷3=1……1
3、课件出示:把6(10、100)根小棒放入5(9、99)个杯子,你感觉会有什么结果? 学生思考——组内交流——汇报
生1:小棒的根数数比杯子数多1,不管怎么放,总有一个杯子里至少有2根小棒。你发现什么?和算式之间有什么关系没有(商+余数)?
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【设计意图】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与到认知活动中来。
(二)认知冲突、优化思考
我们刚才通过研究发现:“小棒的根数比杯子数多1,不管怎么放,总有一个杯子里至少有2根小棒。”这是不是一般规律呢?我们做进一步研究:
(1)课件出示:把5(7、)支小棒放进3(4)个杯子里,会有什么结果?(学生活动----独立思考---自主探究)(2)交流、说理活动。
(3)师板书:5÷3=1……2(总有一个杯子至少有2 根小棒)
7÷4=1……3(总有一个杯子至少有2 根小棒)(4)引导观察:杯子数量、小棒数量有什么关系?
分析归纳:当小棒数量多于杯子数量时候,不管怎么放,总有一个杯子至少有“商+1”支小棒 【设计意图】教师故意设置认知冲突,让学生在操作讨论的基础上用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把小棒尽量多地“平均分”给各个杯子里,看每个杯子里能分到多少小棒,余下的小棒不管放到哪个杯子里,总有一个杯子里比平均分得的小棒数多1。特别是对“某个杯子至少有的小棒数”是除法算式中的商加“1”,而不是商加“余数”,教师适时提出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
同学们非常了不起,善于运用观察、实验的方法研究问题,通过分析得出结论。大家的这一发现,称为“抽屉原理”。
(4)介绍抽屉原理:“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。(前面我们研究活动中的小棒可以看做物体、纸杯可以看做抽屉)
(5)自己看课本例
1、例2,同桌之间说说自己的想法和发现。下面我们应用这一原理解决问题。
四、解释运用、内化提升
1、教材70页做一做、71页例
2、做一做(让学生运用原理用规范的语言解释说明)
2、用“抽屉原理”解释课前游戏:扑克牌游戏(练习十二第1题)
3、我们班任意13个同学中至少有几名同学属相相同,为什么?
五、全课小结
今天同学们在课堂上的表现很“给力”,大家用自己睿智的双眼、灵巧的双手和聪慧的大脑体验了一把研究数学问题的乐趣。老师相信,中国的“狄利克雷”在不久的将来一定会在我们六年级诞生。
想一想:通过这节课的学习你知道了什么?
作者姓名:郭彩霞 性 别:女 年 龄:43 职 称:小学一级 工作单位:竹溪县实验小学 邮 编:442300 电 话:*** 邮 箱:453481389@qq.com
第四篇:《抽屉原理》教学设计
《抽屉原理》教学教案
刘家场小学:郑华
背景导读
“抽屉原理”是六年级数学第二册的一个新增的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。本节课的教学目的:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
过程描述
一、问题引入。
师:今天,我们教室里来了很多的客人,希望每位同学能够超常发挥,在客人的面前能够充分展示自我,大家有信心吗? 生:齐答,好!
【反思】一开课老师就为学生树立上好这节课的信心,调动学生上好这节课的积极性,使学生能以一种雄赳赳、气昂昂精神面貌面对这节课。
师:好!,我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢椅子”
现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 生:生争先恐后的要上来,师顺势一大组选一代表
师:请听清楚游戏要求,下面的同学为他们进行倒计时,时间一到,请你们5个都坐在椅子上,每个人必须都坐下。听清楚要求了吗? 游戏完后师述:
“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
【反思】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、探究新知
(一)教学例1 课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们分小组实际放放看,或者动手画一画。生:分小组活动
各小组汇报放或者画的情况.(1)、枚举法(师用课件演示各种摆放的过程)(2)、数的分解法:(课件出示)(4,0,0)(3,1,0)(2,2,0)(2,1,1),课件出示问题:
4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
总结:不管怎么放,总有一个盒子里至少有2枝笔。课件出示问题,生回答后师课件出示(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢(3)、假设法(反证法)
学生思考并进行组内交流,教师选代表进行总结,并用课件演示平均放的过程.如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下
1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。课件出示问题:
把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?把99枝笔放进100个盒子里呢?……你发现什么? 生回答后总结板书: 只要放的铅笔数比盒子数多1,总有一个盒子里至少放进2支。【反思】教师关注了“抽屉原理”的最基本原理一的形成过程,先让学生分小组探索,然后教师用课件展示,从动手操作摆放、画图等形式到不用摆放、画图直接推理多个物体的情况,使学生经历了从简单到复杂,从感性到理性的过程,在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数比盒子数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。2.完成课下“做一做”,学习解决问题。
课件出示问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子
要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2 1.出示题目例2:
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。课件出示: 5÷2=2本„„1本(商+1)
课件出示问题:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。课件出示:
7÷2=3本„„1本(商+1)9÷2=4本„„1本(商+1)
课件出示问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:
到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)
小组汇报后,师用课件演示这一过程.剩下的2本书既可以放进同一个抽屉里,也可以分别放进2个抽屉里。要保证“至少”就继续从“最不利的情况”考虑,让2本书放进2个抽屉。达到“至少”有2本书在1个抽屉里.板书:5÷3=1本„„2本,用“商+ 1 总结:课件出示用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
课件出示:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
【反思】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题
进行交流、讨论,并恰当运用课件演示,使学生从本质上理解了“抽屉原理”。另外,介绍鸽巢原理、抽屉原理的由来,以增加数学文化的气息。同时教育学生学习数学家的观察生活的态度,研究问题的方法。
三、解决问题 1课本上的做一做
2、小游戏
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么? 生:2张/因为5÷4=1„1 师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2„1
3、小丽从书架上随意拿下了13份报纸,你知道至少有几份报纸是同一个月的吗?
4、你能证明在一个11位数中,至少有2个数位上的数字是相同的吗? 【反思】研究的问题来源于生活,还要还原到生活中去。在教完抽屉原理后,请学生用这节课所学的新知识解释日常生活中的一些有趣的现象,以达到巩固应用的目的。
四、全课小结
总结:通过今天的学习你有什么收获?——知识上、学习方法上、数学小知识上
【反思】本课着眼于学生数学思维的发展,通过猜测、验证、操作、观察、分析、比较等活动,经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,渗透数学思想方法。数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者,本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。在用“抽屉原理”解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。
第五篇:《抽屉原理》教学设计
《数学广角——抽屉原理》
【教学内容】:
我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。
【教学目标】:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。
【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教法和学法】:
以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。
【教学准备】:一定数量的笔、铅笔盒、课件。【教学过程】:
一、游戏激趣,初步体验
师:同学们还记得我们上节课玩的取和拿物品的游戏吗?这节课我们继续做游戏,好不好?第一个游戏,这个游戏的名字叫“抢椅子”,玩过没有?老师这里准备了2把椅子,请3个同学上来,(找生)听清要求,老师说“坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一把椅子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一把椅子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的原理,想不想在游戏中研究研究?
接下来我们就开始玩游戏,你们准备好了吗?
【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】
二、操作探究,发现规律
三、游戏一:放苹果。
(一)师:(出示游戏1:把4个苹果放入3个盘子中),有几种不同的放法?你能明白什么?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? 合作要求:组长合理分工,组员听从指挥,做好记录。(1)、学生动手操作,讨论交流,老师巡视,指导;
(2)全班交流。
(3)师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。其他小组是这样分的放的吗? 师:老师也是这样放的,我们一起看一下(课件演示)观察这几种放法,你能明白什么?(课件出示:不管怎么放,总有一个盘子里至少有2个苹果)。
(4)师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答 “平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1„„1)
师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。
【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。】
(二)加大难度(1)
①如果把5个苹果放入4个盘子里出示),会是什么结果呢?(生答),你怎么想的? ②增加难度:把100个放进99个盘子里呢?
③师:你有什么发现?(苹果数比盘子数多1时,无论怎么放,总有一个盘子至少放2个苹果)。你的发现和他一样吗?你们太了不起了,说给你的同桌互听。
【设计意图:此环节让学生充分体会用平均分的好处,用除法算式表示出来,形象直观,便于学生理解,帮助学生初步建立模型。】
四、游戏二:抽屉放书
①师:接下来我们继续挑战,第二个游戏。
(出示游戏2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。
②汇报:
生:把5本书放2个抽屉,先平均分,每个抽屉放2本,剩1本,无论怎么放,总有1个抽屉至少放3本书。(课件演示)
③师:用同样的方法推想:如果把7本书放2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?
生:把7本书平均分,每个抽屉放3本,剩1本,无论怎么放,总有1个抽屉至少放4本(课件演示)。
④如果把9本书放进2个抽屉呢?
生:先把9本书平均分,每个放4本,余1本,不管怎么放,总有1个抽屉至少放5本(课件演示)。
【设计意图:让学生在这个过程中发展了学生的类推能力,形成比较抽象的数学思维,逐步建立模型】
五、游戏三:
(出示:5只鸽子飞进3个鸽巢里,至少有几只鸽子要飞进同一个鸽巢里?)
师:这里的笼子就是刚才的抽屉
① 小组讨论。② 汇报交流。
先把5只鸽子平均分,每个鸽巢飞1只,还剩2只,把这2只再平均分,飞入不同的鸽巢里,所以无论怎么飞,总有1个鸽巢至少2只鸽子。
③师总结:看来,余数不是1时,要把余数再平均分,才能保证至少。
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】
5、修改结论,得出规律:大家现在认为至少数应该与什么有关?(板书:至少数=商+1)
6、引出课题: 同学们,把4个苹果放进三个盘子里,总有一个盘子至少放2个苹果。不管是往抽屉里放书,往盘子里放苹果,还是鸽子飞进鸽巢,其实都是一样的原理,不知不觉中我们已经发现了一个很伟大的原理,这个原理叫抽屉原理又称鸽巢原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。(板书课题)一起来看大屏幕,(出示抽屉原理资料介绍)找生读。用抽屉原理解决问题,同学们一定要注意哪些是“抽屉”,哪些是“苹果”,并且要学会制造“抽屉”,巧妙地以应用,这样看上去十分复杂,甚至无从下手的游戏,也能顺利的找到致胜关键。
六、游戏四
1、师:接下来我们继续玩游戏(出示课件)
本学期,我们五年级的选读书目有很多本,我们班选定三本《窗边的小豆豆》《安徒生童话》《西顿动物故事》,买来各若干本,每名学生可以任意借2本书,同学们,你值得那么至少在多少名同学中,才一定能找到两人所借的图书完全相同吗?
2、全班交流。让学生说说自己的想法。这个游戏中,谁是抽屉?谁是苹果?
3、总结
在三本图书中任意借2本,借出图书的情况有6种可能,这6种可能看作6个抽屉,则至少需要7名同学,才一定能出现两人所借图书完全相同。
七、游戏五
1、同学们,你知道咱们班至少在多少个人中,一定能找到两个同一月份出生的人?
2、全班交流。谁是抽屉?谁是苹果?
八、拓展延伸
铅笔盒里有红、黄、蓝三种颜色的铅笔各4支,问一次至少取出几支铅笔才能保证每种颜色的铅笔至少一支?这个问题回家跟爸爸妈妈一起讨论解决。