第一篇:《正弦定理》教学案例分析
《正弦定理》教学案例分析
刘文弟
一、教学内容:
本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:
1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:
1、知识目标:
把握正弦定理,理解证实过程。
2、能力目标:
(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:
(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:
五、教学过程:
(一)创设问题情景
课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?
[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!]
(二)启发引导学生数学地观察问题,构建数学模型。
用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:
1、考察角A的范围,回忆“大边对大角”的性质
2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A 从而抽象出一个雏形:
3、测量角A的实际角度,与猜测有误差,从而产生矛盾: 定性研究如何转化为定量研究?
4、进一步修正雏形中的公式,启发学生大胆想象:以及
等
[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]
(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:
1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。
2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。
3、让学生总坚固验结果,得出猜想:
在三角形中,角与所对的边满足关系
[“特例→类比→猜想”是一种常用的科学的研究思路!]
(四)让学生进行各种尝试,探寻理论证实的方法。提出问题:
1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。
2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。
3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。
4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!]
(五)反思总结,布置作业
1、正弦定理具有对称和谐美
2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗?
六、板书设计: 正弦定理
问题:大边对大角→边角准确的量化关系? 研究思路:特例→类比→实验→猜想→证实 结论:在△ABC中,边与所对角满足关系:
七、课后反思 本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证实方法的前提下,在教师预设的思路中,一步步发现了定理并证实了定理,感受到了创造的快乐,激发了学习数学的爱好。
(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:
1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证实”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。
2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”„„促使学生去思考问题,去发现问题。
(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证实方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。
(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。
一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。
一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!
第二篇:正弦定理教学案例分析
欢迎光临《中学数学信息网》 zxsx127@163.com
《正弦定理》教学案例分析
山东省莱芜市第十七中学/田才林
一、教学内容:
本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证明,最后进行简单的应用。
二、教材分析:
1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证明;难点是三角形外接圆法证明。
三、教学目标:
1、知识目标:
掌握正弦定理,理解证明过程。
2、能力目标:
(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:
(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:
《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》 zxsx127@163.com
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:
五、教学过程:
(一)创设问题情景
课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,突然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?
[设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来!]
(二)启发引导学生数学地观察问题,构建数学模型。
用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:
1、考察角A的范围,回忆“大边对大角”的性质
2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A 从而抽象出一个雏形:
3、测量角A的实际角度,与猜测有误差,从而产生矛盾: 定性研究如何转化为定量研究? 《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》 zxsx127@163.com
4、进一步修正雏形中的公式,启发学生大胆想象:以及
等
[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]
(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:
1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。
2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。
3、让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!]
(四)让学生进行各种尝试,探寻理论证明的方法。提出问题:
1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。
2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。
3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。
4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!] 《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》 zxsx127@163.com
(五)反思总结,布置作业
1、正弦定理具有对称和谐美
2、“类比→实验→猜想→证明”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗?
六、板书设计:
正弦定理
问题:大边对大角→边角准确的量化关系? 研究思路:特例→类比→实验→猜想→证明 结论:在△ABC中,边与所对角满足关系:
七、课后反思
本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。
(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:
1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。
2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”„„促使学生去思考问题,去发现问题。
《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》 zxsx127@163.com
(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。
(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。
一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。
一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!
《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》
第三篇:正弦定理教学案例
正弦定理教学案例
一、教学设计
1、教材分析
“正弦定理”是全日制普通高级中学教科书(试验修订本·必修)数学第一册(下)的第五章第九节的主要内容之五,既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课是“正弦定理”教学的第一节课,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
为什么叫解斜三角形?解斜三角形必须要用正弦定理和余弦定理吗?正弦定理和余弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。
2、设计思路
为了回答上述问题我想到了“情境——问题”教学模式,即构建一个以情境为基础,提出问题与解决问题相互引发携手并进的“情境——问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,笔者具体做出了如下设计:①创设一俱现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性7问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?③为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生使用计算器对猜想进行验证,进而引导学生对猜想进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点AC+CB=AB;二是如何将向量关系转化成数量关系,同时将三个项的关系式转化为只有两个项的关系式,以揭示引入单位向量j和使用向量的数量积运算的合理性。④由学生独立使用已证明的结论去解决②中所提出的问题。
二、教学过程
1、设置情境
利用投影展示:如图1,一条河的两岸平行,河宽d=1km。因上游暴
发特大洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及留守人员用船转运到正对岸的码头B处
或其下游1km的码头C处。已知船在静水中的速度
|v 1|=5km/ h,水流速度|v 2|=3km/ h。
2、提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选了几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的五个问题:
⑴船应开往B处还是C处?
⑵船从A开到B、C分别需要多少时间?
⑶船从A到B、C的距离分别是多少?
⑷船从A到B、C时的速度大小分别是多少?
⑸船应向什么方向开,才能保证沿直线到达B、C?
师:大家讲座一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题⑴,需要解决问题⑵,要解决问题⑵,需要先解决问题⑶和⑷,问题用直角三角形知识可解,所以重点是解决问题⑷,问题⑷与问题⑸是两个相关问题。因此,解决上述问题的关键是解决问题⑷和⑸。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生1:般从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小|v|及v 1与v 2的夹角θ:
=|v1|=5,|DE|=|AF|=|v2|=3,易求得∠AED=∠EAF=45°,还需求 及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题?
生3:在已知条件下,若能知道三角形中两条边与其对角这四个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生4:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这四个元素的数量关系,则第三边也可求出。
生5:在已知条件下,如果能知道三角形中三条边和一个角这四个元素之间的数量关系,也能求出第三边和另一边的对角。
师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?
3、解决问题
师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形的特例,可以先在直角三角形中试探一下。
师:如图4,请各小组研究在Rt△ABC中,任意两边及其对角这四个元素间有什么关系?
多数小组很快得出结论:
众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论:若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。
几分钟后,多数小组报告结论成立,只有一个小组合 因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。
生6:想法将问题转化成直角三角形中的问题进行解决。
生7:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。
师:在三角形中有哪些可以作为证明基础的等量关系呢?
学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直
角三角形有关的等量关系可能有利用价值:①三角形的面积不变;②
三角形同一边上的高不变;③三角形外接圆直径不变。在教师的建议
下,学生分别利用这3种关系作为基础得出了如下三种证法:
证法一:如图5,设AD、BE、CF分别是△ABC的三条高。则
有
AD=b·sin∠BCA,BE=c·sin∠CAB,CF=a·sin∠ABC。
所以S△ABC=a·b·csin∠BCA
=b·c·sin∠CAB
=c·a·sin∠
ABC.证法二:如图5,设AD、BE、CF分别是△ABC的3条高。
则有
AD=b·sin∠BCA=c·sin∠ABC,BE=a·sin∠BCA=c·sin∠CAB。
证法三:如图6,设CD=2r是△ABC的外接圆的直径,则∠DAC=90°,∠ABC=∠ADC。
师:据我所知,从AC+CB=AB出发,也能证得结论,请大家讨论一下。
生8:要想办法将向量关系转化成数量关系。
生9:利用向量的数量积运算可将向量关系转化成数量关系。
生10:还要想办法将有三个项的关系式转化成两个项的关系式。
生11:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量AC)垂直的向量与向量等式的两边分别作数量积。
师:请大家具体试一下,看还有什么问题?
众学生:向量j与AB、CB的夹角与△ABC是锐角三角形还是钝角三角形有关,所以应分两类情况分别证明。
教师让学生通过小组代表作完成了如下证明。
语法四:如图7,设单位向量j与向量AC垂直。
因为AB=AC+CB,所以 j·AB=j·(AC+CB)=j·AC+j·CB.因为j·AC=0,j·CB=| j ||CB|cos(90°-∠C)=a·sinC,j·AB=| j ||AB|cos(90°-∠A)=c·sinA
.4、反思应用
师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家考虑一下,正弦定理能够解决哪些问题?
众生:知三求一,即已知三角形的两边与一边的对角,可求另一边的对角;已知三角形的两角与一角的对边,可求另一角的对边;已知三角形中两边与它们的对角四个元素中的两个元素,可研究另外两个元素的关系。
师:请同学们用正弦定理解决本节课开始时大家提出的问题。
三、教学反思
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
创设数学情境是“情境——问题”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“正弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第五章第十二节研究性课题的第二个问题,笔者将其加工成一个具有实际意义的决策型问题。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。在进行教学设计时,笔者曾考虑以“直角三角形”作为情境,考虑到学生据此不易形成目标问题,而且问题缺乏向量背景,不容易想到用向量方法解决问题,故未采用这个方案。
“情境——问题”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。要引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问绰向深入。
本课中,在教师的启导下,学生首先提出的问题是:船应开往B处还是C处?答案取决于船从A到达B、C的时间;船从A到达B、C的时间,又取决于船从A到达B、C的距离和船的速度的大小;而船能否到达B、C,又取决于船的航向。这些都是具有实际意义的问题,去掉问题的实际意义得出过渡性数学问题,抓住过渡性问题的数学实质,将其上升为一般性数学问题,即目标问题。学生还提出了一个超前性问题:三角形中三条边与一个角之间有什么关系?这是笔者在设计教案时未想到的,笔者除了对提出此问题的学生给予表扬和肯定外,还要求同学们课后认真研究这个问题,这个问题已经自然地成为教学“余弦定理”的情境。
使用计算器处理复杂、烦琐的数字运算是新教材的一个重要特点。本课中通过使用计算器,使“正弦定理在非直角三角形中是否成立”的探究性试验成为可能。这说明计算器在探索、检验规律方面也能发挥重要作用。在启导学生证明正弦定理时,笔者没有限制学生的思路,使学生通过自己的努力发现了多种证法,其中每一种证法都比教材上给出的证法要简单。但没有能够自然地启发、引导学生发现和选择向量方法,是一个遗憾。
第四篇:正弦定理教材分析
《正弦定理》教材分析
一、内容结构
(1)正弦定理是高中新教材人教A版必修⑤第一章第一节第一部分的内容。本节旨在基于高二已学的三角知识,通过对三角形边
角关系的研究,发现并掌握三角形中的边长与角度之间数量关
系,引出正弦定理。
(2)一个三角形,有六个元素:三个角三条边。知道其中的几个元
素求其它元素的过程,即为解三角形。由于三角形内角和为180
度,故而只需建立二边二角的关系,就能解决所有解三角形的问题。而其中二边二角的关系即为正弦定理。这个过程是对三
角知识的应用;也是对初中解直角三角形内容的直接延伸。
(3)教材证明正弦定理时,应用了前面所学“正弦函数定义”的知
识,很好的解决了“已知两角一边或两边一角求其他边角”的问题。教材的编排循序渐进,有效的把所学知识融会贯通,使
学生更容易接收。
(4)正弦定理本身的应用十分广泛,同学们在下一节中即将学习领
悟到。因此做好该节内容的教学,使学生通过对任意三角形中
正余弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题方法,体会由“定性研究到定量研究”这种数
学思想,对于下一节内容的学习有极大的帮助。
二、教学目标
1.知识与技能目标:
(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;
(2)掌握简单运用正弦定理解三角形、初步解决与测量与几何计算
有关的实际问题的方法。
2.过程与方法目标:
(1)通过对正弦定理的探究,培养学生发现数学规律的思维能力;
(2)通过对正弦定理的证明和应用,培养学生运用数形结合思想方
法的能力;
(3)通过对实际问题的探索,培养学生从数学角度观察问题、提出
问题、分析问题、解决问题的能力;
3.情感态度与价值观目标:
(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培
养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣。
(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值。
三、地位与作用
《新课程标准》要求通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理,并
能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理等知识和方法解决一些与测量和几何计
算有关的生活实际问题。
利用正弦定理解三角形,可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,避免了许多繁杂的运算,从而使许多复杂的问题得以解决。
四、教学建议
1.创造性使用教材。
数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课的教学,应该从问题情境做引入,通过对数学实验的操作,使学生领悟证明方法。教师可以对教材作一定程度的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。
2.深刻挖掘教材。
深刻挖掘教材中体现的数学思想。作为教师,首先一定要清楚正弦定理在解三角形思维体系中的地位与作用,引导学生发现三角形的6个元素知三求三的所有情况;使学生理解需要已知哪些量,就可以解决所有关于三角形的所有问题。
这样做的好处是:
(1)使学生知道建立正弦定理的必要性、合理性和重要性,帮助学
生建构数学知识;
(2)提炼数学思想,提高学生解决问题的能力;
(3)在解决三角形的实际问题时,让学生知道要测量出什么量,才
能计算出所的要求的量实际问题。
3.从学生的角度出发设计课堂。
从学生的角度出发设计课堂,从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,课堂设计要紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。
第五篇:正弦定理教学设计
教学设计
一、内容及其解析
1.内容: 正弦定理
2.解析: 《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的学习内容,比较系统地研究了解三角形这个课题。《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。
二、目标及其解析
目标:(1)正弦定理的发现;
(2)证明正弦定理的几何法和向量法;(3)正弦定理的简单应用。解析:先通过直角三角形找出三边与三角的关系,再依次对锐角三角形与钝角三角形进行探
讨,归纳总结出正弦定理,并能进行简单的应用。
三、教学问题诊断分析
正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。
四、教学支持条件分析
学生在初中已学过有关直角三角形的一些知识和有关任意三角形的一些知识,学生在高中已学过必修4(包括三角函数与平面向量),学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型完成教学目标,是切实可行的。
五、教学过程
(一)教学基本流程
(一)创设情境,引出课题
①在Rt△ABC中,各边、角之间存在何种数量关系? 学生容易想到三角函数式子:(可能还有余弦、正
a切的式子)bc sinC1sinAsinBc b c
②这三个式子中都含有哪个边长?
c
学生马上看到,是c边,因为 sinC1B C a c③那么通过这三个式子,边长c有几种表示方法?
abc
sinAsinBsinC
④得到的这个等式,说明了在Rt△中,各边、角之间存在什么关系?(各边和它所对角的正弦的比相等)⑥此关系式能不能推广到任意三角形?
设计意图: 以旧引新, 打破学生原有认知结构的平衡状态, 刺激学生认知结构根据问题情境进行自我组织, 促进认知发展.从直角三角形边角关系切入, 符合从特殊到一般的思维过程.(二)探究正弦定理
abc
猜想:在任意的△ABC中, 各边和它所对角的正弦的比相等, 即:
sinAsinBsinC
设计意图:鼓励学生模拟数学家的思维方式和思维过程, 大胆拓广, 主动投入数学发现过程,发展创造性思维能力.三角形分为锐角三角形、直角三角形和钝角三角形,对于直角三角形,我们前面已经推导出这个关系式是成立的,那么我们现在是否需要分情况来证明此关系式? 设计意图:及时总结,使方向更明确,并培养学生的分类意识
①那么能否把锐角三角形转化为直角三角形来求证? ——可以构造直角三角形
②如何构造直角三角形?
——作高线(例如:作CD⊥AB,则出现两个直角三角形)
ab
③将欲证的连等式分成两个等式证明,若先证明,sinAsinB
那么如何将A、B、a、b联系起来?
——在两个直角三角形Rt△BCD与Rt△ACD中,CD是公共边: 在Rt△BCD中,CD= asinB,在Rt△ACD中,CD= bsinA
ab
asinBbsinA
sinAsinBbcsinB sinC? ——作高线AE⊥BC,同理可证.设计意图:把不熟悉的问题转化为熟悉的问题, 引导启发学生利用已有的知识解决新的问题.c
若△ABC为钝角三角形,同理可证明:
sinAsinBsinC
(三)例题分析,加深理解
例题:在△ABC中,已知C=48.57º,A=101.87º,AC=2620m,C 求AB.(精确到1米)
解:B=180º-A-C= 180º- 48.57º -101.87º =29.56º0
abc
bc由得cbsinC2620sin48.573982 sinBsinCsinBsin29.560
abc
2R sinAsinBsinC
正弦定理推论(1)a2RsinA,b2RsinB,c2RsinC
abc
B正弦定理推论(2)sinA,sin,sinC
2R2R2R
正弦定理:
解决类型:(1)已知三角形的任意两角与一边,可求出另外一角和两边;
(2)已知三角形的任意两边与其中一边的对角,可求出另外一边和两角。
(四)目标检测
1.一个三角形的两个内角分别是30和45,如果45角所对的边长为8,那么30角所对边的长是2.在△ABC中,
(1)已知A75,B45,c,则a,b
(2)已知A30,B120,b12,则a,c
3.在△ABC
中,b
cC60,则A ____________
4.在△ABC中,b3,cB30,则a=_____________ 5.在△ABC中,b2asinB,则BC=________________
(五)小结
(1)在这节课中,学习了哪些知识?
正弦定理及其发现和证明,正弦定理的初步应用
(2)正弦定理如何表述? abc
sinAsinBsinC
(3)表达式反映了什么?
指出了任意三角形中,各边与对应角的正弦之间的一个关系式
学案
1.1正弦定理
班级姓名学号
一、学习目标
(1)正弦定理的发现;
(2)证明正弦定理的几何法和向量法;(3)正弦定理的简单应用。
二、问题与例题
问题1:在Rt△ABC中,各边、角之间存在何种数量关系? 问题2:这三个式子中都含有哪个边长??
问题3:那么通过这三个式子,边长c有几种表示方法??
问题4:得到的这个等式,说明了在Rt△中,各边、角之间存在什么关系? 问题5:那么能否把锐角三角形转化为直角三角形来求证? 例1.(三)例题分析,加深理解
例题:在△ABC中,已知C=48.57º,A=101.87º,CAC=2620m,求AB.(精确到1米)
三、目标检测
1.一个三角形的两个内角分别是30和45,如果45角所对的边长为8,那么30角所对边的长是2.在△ABC中,
(1)已知A75,B45,c,则a,b
(2)已知A30,B120,b12,则a,c
3.在△ABC
中,b
cC60,则A ____________
4.在△ABC中,b3,cB30,则a=_____________ 5.在△ABC中,b2asinB,则BC=________________
配餐作业
一、基础题(A组)
1、在△ABC中,若a=,b=,A=300, 则c等于()A、2B、C、25或D、以上结果都不对 2.在△ABC中,一定成立的等式是()A.asinA=bsinBB.acosA=bcosB
C.asinB=bsinAD.acosB=bcosA 3.若
sinAcosBcosC
则△ABC为abc
A.等边三角形C.有一个内角为30°的直角三角形
()
B.等腰三角形
D.有一个内角为30°的等腰三角形
4.△ABC中,∠A、∠B的对边分别为a,b,且∠A=60°,a()A.有一个解B.有两个解C.无解5.在△ABC中,a=26,b4,那么满足条件的△ABC
D.不能确定,b=22,B=45°,则A等于6.在△ABC中,若c2,C60,a
3,则A 3
二、巩固题(B组)
7.在△ABC中,B=1350,C=150,a=5,则此三角形的最大边长为 8.在锐角△ABC中,已知A2B,则的9.在△ABC中,已知tanA
a
取值范围是. b
1,tanB,则其最长边与最短边的比为. 2
310.已知锐角三角形的三边长分别为2、3、x,则x的取值范围是.
三、提高题(C组)
11.在△ABC中,a+b=1,A=600,B=450,求a,b
12△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,试判断△ABC的形状。
13.为了测量上海东方明珠的高度,某人站在A处测得塔尖的仰角为75.5,前进38.5m后,到达B处测得塔尖的仰角为80.0.试计算东方明珠塔的高度(精确到1m).