第一篇:平行线的判定定理教学设计
平行线的判定定理 教学设计教学设计思想
对于一起探究先让学生交流分析思路和证题过程,再与教科书给出的思路和证明方法进行比较,最后形成统一认识,完善证明过程,对于“做一做”中的问题,学生独立完成,教师点拨、引导,获得平行线判定定理二的证明。
教学目标
知识与技能
能根据平行线的判定公理证明平行线的两个判定定理,并能简单应用这个两个判定定理;
概述证明的步骤、格式和方法;
感受几何中推理论证的严谨性,初步发展演绎推理能力。
过程与方法
经历探究证明定理的思路和证题过程,合作交流,进一步理解证明的步骤、格式和方法。
情感态度价值观
通过对知识形成过程进行反思,获得发现问题、解决问题的经验,发展数学问题意识和创新意识;
在探索的过程中学会与他人合作,并深深体会在解决问题的过程中与他人合作的重要性。
教学重点和难点 重点是判定定理的得出及其应用;
难点是定理证明的思考方法以及书写方法。
教学方法
启发引导、尝试研讨;
课时安排
1课时
教具学具准备
投影仪或电脑、直尺、三角板、幻灯片
教学过程设计
我们已经探究出“同位角相等,两直线平行”,这就是平行线的判定公理。根据这条公理,我们可以证明下面的定理。
平行线的判定定理一 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简记为:内错角相等,两直线平行)。
(一)一起探究
1.指出这个定理的条件和结论,并画出图形,结合图形写出已知和求证。
2.将定理的条件和结论与平行线判定公理的条件和结论比较,两个条件和两个结论各有什么相同和不同之处?定理和公理的条件之间有什么联系? 3.说说你的证明思路,试着写出证明过程。请阅读下面的证明思路与证明过程,并和自己的思路与证法进行比较。
已知:如下图;直线AB,CD被直线EF所截,∠1和∠2是内错角,并且∠l=∠2。
求证:AB∥CD。(见幻灯片)
分析:要想从内错角相等推出两直线平行,可先由内错角相等推出同位角相等,进而利用平行线判定公理得出两直线平行。事实上,根据对顶角相等和等量代换,容易从内错角相等得到同位角相等。
证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠23D∠3(等量代换)。
∴AB∥CD(同位角相等,两直线平行)。
让学生尝试探究证明定理的思路,进一步理解证明的步骤、格式和方法。
1.略。
2.定理和公理的条件不同,但结论相同。通过“对顶角相等”可以将定理的条件转化为公理的条件。
(二)做一做
1.请填写下面证明过程的依据。
已知:如下图,直线AB,CD被直线EF所截,∠1和∠2是同旁内角,并且∠1+∠2=180°。
求证:AB∥CD。(见幻灯片)证明:∵∠1+∠2=180°(),∠2+∠3=180°(),∴∠1=180°-∠2(),∠33D180°-∠2()。
∴∠l=∠3()。
∴AB∥CD()。
熟悉证明的格式,进一步体会推理的严谨性,并得到平行线的判定定理二。
2.请你试着再用其他方法证明上述命题。
由此,我们得到:
平行线的判定定理二 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简记为:同旁内角互补,两直线平行)。
(三)练习
1.请你说明图中用直尺和平移三角尺画出的两条直线L1和L2平行的理由。
2.已知:如图,a⊥c,b⊥c。求证:a∥b。
请你根据括号中推证的根据,在横线处填上推证的过程。
∵a⊥c(已知)
∴∠13D90°(垂直的定义)。
∵b⊥c(已知)∴__________________(垂直的定义)。
∴__________________(等量代换)。
∴__________________(同位角相等,两直线平行)。
3.请你用其它方法证明第2题的结论。
(四)小结
引导学生总结本节的知识点。
(五)板书设计
平行线的判定定理
平行线的判定定理一
一起探究
做一做
平行线的判定定理二
练习
第二篇:平行线的判定定理教学反思
篇一:平行线的判定教学反思
关于平行线的判定教学的反思
张玖忠
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。
突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。尽量做到形式多样,求实务本。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到了教学要求。一堂课下来,遗憾也有不少。比如学生不会书写推证过程。在这堂课上,由于刚开始,部分同学没有展示自己成果的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。篇二:平行线的判定教学反思
《平行线的判定》教学反思
杨军
本节课的做法是,对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件。
在教学过程中,我主要做到:突出学生是学习的主体,把问题尽量抛给学生解决。老师作为学习的组织者,引导者,合作者,做好牵针引线的工作。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。篇三:《平行线的判定》教学反思
《平行线的判定》教学反思
门坎初中 胡超
在本节课的课程设计中,我注重以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,除了做必要的引导外,问题的发现、解决,练习题的讲解尽可能让学生自己完成。
2、从生活问题引入,发现第一种识别方法,然后解决实际问题,在巩固联系中发现新的问题,激发学生在此探索,形成结论。练习题中注重图形的变化,在图形中为学生设置易错点,再及时纠错。
3、有意识地对学生的渗透转化思想,有意识地讲数学学习与生活实际相联系。
本节课对初一学生而言,本就是有一个艰难的起步,但这一堂课学生学得比较轻松。课后作业效果很好,基本达到了轻负荷,高质量的教学要求
一节课下来,不足之处也不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推理过程。在这一堂课上,部分同学没有展示自己的勇气。一方面与教学难度有关,另一方面也与我没能让他们完全放松有关。篇四:平行线的判定教学反思
《平行线的判定》教学反思
本节课的做法是,对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件。在教学过程中,我主要做到:突出学生是学习的主体,把问题尽量抛给学生解决。老师作为学习的组织者,引导者,合作者,做好牵针引线的工作。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。
《平行线的判定》教学反思
针对这节课的特点,我是这样设计的:
首先出示本节课的学习目标(重、难点)
本节重点:通过复习近平行线的判定定理,学会用平行线的判定定理来证明解答有关问题。
难点:证明的基本步骤及格式,步步有据的推理意识,体会推理证明的严谨性。
一、预习导学
通过简单的题目,让同学们回忆起有关判断两直线平行的有关的知识。
二、特别警示
根据本节内容特点,提醒同学们应注意的地方,证明的严谨性,步步有据,并且依据只能是有关概念的定义、所规定的公理及已经证明的定理,防止不假思索地把以前学过的结论用来作为证明的依据。
这里让同学们步步有据的目的是能在证明过程中养成良好的习惯,随着以后的学习及练习的熟练程度,可以逐步不写理由,但必须清楚。
三、议一议
对平行线判定方法的简单应用。
四、想一想
通过公理证明定理,同时让同学们理解一题多解的妙处
五、课堂练习
对所学知识的应用,同时考察学生的初步掌握情况,选取了一部分练习,巩固本节内容,题目难度适中。
六、课堂小结:由学生完成,组内交流,然后班内交流
七、自我测试:检查这节课同学们的掌握情况
八、探究提高
此题应该是一个作图题,但与这节课的内容息息相关,不仅通过作图复习了作图的方法步骤,同时也加深了对这节课的知识的理解。
通过上这节课我感觉讲解基本到位,练习难度适中,并基本达到练习的目的,但仍然存在很多不足的地方,如:课堂气氛不理想,没有完全体现学生的主体地位;课堂升华不高;讲解过多;探究学习引导不够,导致占用时间过多,从而使后面的环节有些仓促。如果在这几个方面处理的更好一些的话,效果会更好。以上我对这节课的一些想法和课后的一些感受,如有不当之处,还请各位老师批评指正,使我在以后的教学中能更加有的放矢、游刃有余。
《平行线的判定》教学反思
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问
题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;用几何画板设计游戏“米奇走迷宫”,在游戏中检验学生运用知识的熟练程度。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。
5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
本节课对初一学生而言,本是又一个艰难的起步。但这一堂课,学生学得比较轻松,课后作业效果也很好,基本达到“轻负荷,高质量”的教学要求。
一堂课下来,遗憾也有不少。比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。在这堂课上,部分同学没有展示自己的勇气,一方面与 教学内容的难度有关,另一方面也与我没能让他们完全放松下来有关。篇五:《平行线的判定》教学反思
《平行线的判定》教学反思
这节课我比较满意的是:
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用,《平行线的判定》教学反思
。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件,实际上是“平行线的判定”老内容新教法,我的体会最深之一就是怎样让学生自主探索直线平行的条件,这与以前的教学方法完全不同,我感觉这节课成功之处是:引导学生参与整个探索过程使学生真正理解和掌握“同位角”的概念,并能够用自己的语言概括出“同位角相等,两直线平行”这一重要结论。
2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。
3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会,教学反思
《平行线的判定》教学反思》在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
4、认真备课。备知识:熟悉这节课的内容以及有关知识。备学生:既要因材施教更要因生施教,上好一节课不能只看老师在规定的时间完成了教学内容更重要的是学生通过这节课学会了什么,也就是不要看老师按时(45分钟)教了什么而是看学生到时学会了什么。学生学会了知识,掌握了知识才能说老师这节课是成功有效的教学。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
第三篇:平行线及其判定教学设计
为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享平行线及其判定教学设计,希望大家在学习中得到提高。
教学目标 :
知识技能目标:①在具体情境中进一步丰富对两条直线互相平行的认识,并会用符号表示两条直线互相平行;②会用直尺和三角板画已知直线的平
行线,并在操作活动中探索,了解平行线的有关性质。
过程目标:①体验平行线概念的探究过程;②经历画平行线的方法,了解
平行线的性质;③善于发现问题,并能通过讨论交流解决问题。
情感目标:①体会合作讨论交流的力量,感受成功的快乐;②感受实践
出真知,体验动手操作与认知活动相结合的愉悦。
学习重点:
①探究平行线概念;②平行线画法
学习难点:
平行线概念的引入
教学过程:
一.【问题情境】
⒈生活中很多建筑由平行线或垂直线构成的,在下列图案中
(课本P163图案)哪些线互相平行?
⒉俗话说:处处留心皆学问。在日常生活中,有很多直线平行的实例,你能举例说明吗?
二.【合作互动,探究新知】
(一)平行线的定义
1、同学们能否在一张纸上画一条直线,然后把一支笔作为另一条直线,随意移动笔,观察笔与已知直线有几种位置关系?各种位置关系,分别叫 做什么?(完成后一位同学用两根木条在黑板上演示给大家看)
2、若作特别说明,我们只研究不重合的情形,则去掉重合这种情况,在同一平面上两条直线有几种位置关系?(用彩色 粉笔将(3)重合去掉)
3、若两直线不相交,则这两条直线在同一平面 内是什么位置关系? 板书:(留空)不相交的两条直线叫做平行线。
4、出示立方体框架,谁能指出立方体框架中哪些棱既不平行也不相交呢?为什么?
5、在留空之处用彩色粉笔填上在同一平面内。
6、可以这样理解平行线呢?(1)在同一平面内,不相交的两条线段叫平行线。(2)在同一平面内,不相交的两条射线叫平行线。(3)不相交的两条直线做平行线。(4)没有公共点的两条直线互相平行。(5)互相平行的两条直线没有公共点。
7、那么理解平行线时,必须注意什么?(强调三点)
8、你知道两条平行直线如何表示吗?如何用字母表示?
板书:直线a与直线b平行,记作a∥b,读作:直线a平行于直线b。
(二)平行线画法
1、我们已经知道什么叫平行线,那么用直尺和三角板或者一副三角板
如何画两条平行直线?
2、大家发挥想象每一步骤用一个字概括出来。
板书:一放、二靠、三推、四画
三.【把握质疑,巧于思考】
⒈观察课本P164图6-23
思考:(1)图中哪些道路与解放路平行?
(2)经过人民广场,并且与解放路平行的道路有几条?
(3)能否经过人民广场再修一条道路与解放路平行吗?
让学生从实际生活感知(板书)
①经过直线外一点,有且只有一条直线与已知直线平行。
②若两条直线都与同一条直线平行,那么这两条直线也互相平行。
⒉做一做:如图,A、B是直线l外的两点,⑴经过点A画与直线l平行的直线,这样的直线能画几条?
⑵经过点B画与直线l平行的直线,它与⑴中所画的直线平行吗?
⑶通过画图,你发现了什么?
以上就是数学网小编分享平行线及其判定教学设计的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!
第四篇:平行线的判定 教学设计[范文模版]
平行线的判定 教学设计
新学网首页 > 语文 > 数学 > 物理 > 化学
§5.2.2平行线的判定 【教学重点与难点】
教学重点:探索并掌握直线平行的判定方法 教学难点:直线平行的判定方法的应用 【教学目标】
1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法。
【教学方法】
通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
【教学过程】
一、复习旧知 引入新课
(设计说明:复习同位角、内错角、同旁内角的识别,为探究利用角的关系判断两直线平行做好准备,由平行公理推论自然引入新课。)
1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2)∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3)∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4)∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5)∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.如果 a∥ b ,b ∥c,那么_______,理由是_____________________.通过上节课的学习我们知道根据平行公理的推论可以判定两直线平行,除此之外,还有哪些方法可以判定两直线平行呢?这是我们这节课要研究的问题。由此导入新课(教学说明:能够熟练的从几何图形中熟练识别出同位角、内错角、同旁内角及它们是哪两条直线被哪一直线所截形成的,对利用角的关系判断两直线平行至关重要,因此在新课开始之前,对相关知识进行复习,是非常必要的;在复习过程中,要关注学生识别的熟练程度,及时地进行调整与补充。)
二、探索新知
(设计说明:利用问题引导学生探究平行线的判定方法,调动学生的求知欲,给学生提供自主探索、与合作交流的空间,培养学生主动参与数学活动的意识。)
1、平行线的判定方法1(1)问题:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用? 学生演示画图过程并分析出在画平行线的过程中,三角板是为画∠pHF与∠BGF相等。
问题:这两个角具有什么样的位置关系,我们是否得到一个判定两直线平行的方法? 教师引导学生正确表达平行线的判定方法1并板书。
方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为:同位角相等,两条直线平行。
(2)教师引导学生,结合图形用符号语言表达两直线平行的判定方法1: 如果∠1=∠2, 那么AB∥CD.教师强调判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可。
(3)简单应用.①教师表演木工用米尺画平行线过程,让学生说出用角尺画平行线的道理
教师规范说理过程:因为∠DCB与∠FEB是直线CD、EF被AB所截而成的同位角,而且∠DCB=∠FEB,即同位角相等,根据直线平行判定方法,从而CD∥EF。
提出问题:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又有怎样的关系时两直线平行呢?
2、判定方法2(1)问题:若上图中∠pHF=∠HGA,那么AB∥CD,为什么? 分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题的情景(两条直线被第三条直线所截),可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将以问题中的内错角相等转化为同位角相等。
可以先放手让学生尝试独立解决,后小组交流 师生共同规范说理过程: 因为∠pHF=∠HGA, 而∠BGF=∠HGA(对顶角相等), 所以∠1=∠2, 即同位角相等 因此AB∥CD(2)师生归纳判定两条直线平行的方法2,教师板书:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单记为:内错角相等,两直线平行。
教师引导学生结合图形用符号语言表达方法2:如果∠pHF=∠HGA,那么AB∥CD。
3、判定方法3 讨论:同旁内角数量上满足什么关系时,两直线平行? ①学生根据图像先排除相等,当∠4是锐角时,∠2是钝角才有可能使a∥b,进一步观察猜想:如果同旁内角互补时,两条直线平行,即如果∠2+∠4=180 °,那么a∥b。
②学生利用平行判定方法1或方法2来说明猜想正确.教师根据学生说理,再准确地板书:
因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1,即同位角相等,从而a∥b。
因为∠4+∠2=180°,而∠4+∠3=180°,根据同角的补角相等,所以有∠3=∠2,,即内错角相等,从而a∥b。
③师生归纳两条直线平行的判定方法3,教师板书:
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。简单记为:同旁内角互补,两直线平行。
结合图形用符号语言表达:如果∠4+∠2=180°,那么a∥b。
教师总结:我们在遇到一个新问题时常常利用已学的知识将其转化为已知的(或以解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,这也是我们今后推理常用的方法。
(教学说明:平行线的判定方法1是结合平行线的画法给出的,大部分学生可能会用直尺和三角板画平行线,但学生并不明白画图的原理,因此可能有部分学生并不能熟练的画图,也不能理解三角板从中所起的作用,因此在教学时,要给学生充分的回忆和分析的时间。判定方法2、3是采用了探讨问题的方式,引导学生通过自主探索、合作交流与分析去发现角与两直线平行之间的关系,在分析思考的过程中注意向学生渗透分析问题的方法。同时要特别关注三个结论的三种语言(文字、图形、符号)的相互转化,尤其是符号语言这是今后推理的基础。完成三个判定方法的探究后教师进行了了一个方法小结,有意识的让学生认识数学中的转化思想,让学生逐步得学会应用它。)
初步应用:
例:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 分析:垂直与直角总联系在一起.,至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与哪种判定方法的条件相同。
学生先口述判断与理由,教师纠正并规范板书两步推理过程: 因为b⊥a,c⊥a, 所以∠1=∠2=90°, 从而b∥c.教师说明:这个道理过程有两个因为……所以…….第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为”的内容,这个内容就是第一个“所以”中的∠1=∠2.这样处理是使说理表达更简练, 第二个“因为”、“所以”是根据同位角相等,两直线平行.例题讲解后,师提问:你还能利用其他方法说明b∥c吗? 教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2)同旁内角互补的方法写出理由.(1)(2)
如果∠1,∠2不是同位角,也不是内错角、同旁内角,如图(3), 教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由: 如图(3), 因为a⊥b,c⊥a, 所以∠1=90°,∠2=90°.因为∠3=∠1=90°, 从而b∥c(同位角相等,两直线平行).(3)(教学说明:此问题的难度不大,是平行线判定的应用方法可以有多种,鼓励学生用多种方法解决,现在对于推理证明的要求已经到了简单推理的层次,因此,在解决问题的过程中,不仅要关注学生说理的能力,还要关注学生是否能规范书写推理过程)
三、巩固训练 熟练技能(设计说明:通过形式不同的练习加强学生对知识的理解,训练学生灵活应用知识解决问题的能力)
一、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。()2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。()
二、填空
1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或________,那么________, 理由是______________;如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(1)(2)(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是()A.AB∥EF,CD∥EF B.∠5=∠A;C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是()A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EI C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°, 试判断直线a、b的位置关系,并说明理由.
第五篇:平行四边形判定定理教学设计
叙述式教学设计方案模板
《平行四边形的判定》教学设计
一、概述
《平行四边形的判定》是人教版中学数学八年级下册十九章第一节的第二课时。这一课的教学目的是让学生掌握平行四边形的判定方法,并能灵活运用提高学生的说理论证能力,发展学生的逻辑思维能力,让学生体会转化的数学思想感受数学的奥妙。
二、教学目标分析
知识与技能:使学生掌握平行四边形的判定定理,并能初步运用判定定理进行简单的论证和计算。通过定理的证明和应用的教学,使学生领会“数学直觉——操作验证——说理论证”的探究问题的方法,进一步提高学生分析问题、解决问题的能力。
过程与方法:经历探究过程,激发学习的兴趣,培养学生的逻辑思维能力和推理能力。通过定理的证明和应用的教学,使学生领会“直觉判断——探究试验——说理论证”的问题探究方法进一步提高学生分析问题、解决问题的能力。
情感、态度及价值观:在学习活动中体验数学知识与实际生活之间的联系,体会数学源于生活又服务于生活的道理。
三、学习者特征分析
数学学习活动是一个以学生已有知识和经验为基础的主动建构过程。学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发让学生亲身经历知识的形成过程。我在课堂教学中尝试采取多种手段引导每一个学生积极主动地参与学习过程。经过第一课时的学习学生已经初步掌握了平行四边形的定义和性质。同时经过近两年的学习学生的思维水平有了一定的提高,说理论证能力有所加强,具备用已有知识解决未知知识的能力。学生对于多媒体教学非常感兴趣,喜欢在多媒体环境中上课。课堂教学气氛活跃,学生思路开阔,思维活跃,具有较强的自主学习能力和协作学习能力。
四、教学策略选择与设计
本节课使用多媒体课件的演示功能,一方面激发学生的学习兴趣,另一方面将教学内容直观地呈现给学生,突破教学重、难点。在新知传授环节充分发挥学生的主动性、积极性和创造性,采用新课标倡导的“自主、合作、探究”新型学习方式让学生在探究、协作中自主建构知识意义。在创新扩展环节充分调动学生的发散性思维,培养学生的创新精神和创新意识。
五、教学资源与工具设计
利用多媒体这个教学硬件资料,结合所准备的课件来完成教学。
六、教学过程
1.创设情境,导入新课
师:同学们,上节课我们学习了平行四边形的定义和性质(出示平行四边形木框),请大家回顾一下上节课的知识。
学生自由回答平行四边形的定义和性质。
师:老师昨天从商店买了一块平行四边形的玻璃片,想做个漂亮的相框,可惜不小心碰到了墙壁,玻璃片的一个角碰碎了。请同学们想想,怎么样才能将玻璃片还原呢?有没有办法把原来的平行四边形重新画出来?(图1)【 图片】
学生思考讨论,尝试画图。
师:看来同学们对这个问题都很感兴趣,其实这就是我们这节课所要学习的内容——平行四边形的判定。
设计意图:复习近平行四边形的定义和性质,并采用“抛锚式”的教学策略,设计生活情境问题,激发学生的探究欲望,引入新知教学。
2.自主探究,协作交流
(1)提出问题,探索交流。
叙述式教学设计方案模板
例1:如图2,在四边形ABCD中,AB//CD且AB=CD。求证:四边形ABCD是平行四边形。
【图片】
师:同学们,上面的四边形是平行四边形吗?
生:是。
师:你是如何判断的呢?怎样证明它就是平行四边形呢?请同学们先自主探究,然后分组讨论尝试验证你的结论。
学生画图连线,尝试验证。小组合作,交流彼此想法,共同探究实验。
教师巡视,指名回答。
生:利用平行四边形的定义,连结AC或BD,构造全等三角形,说明角相等,从而证明AB//CD。师:说得非常好。要证明某个结论,我们必须有根据能利用已有的定理或定义来说明。从例1的解决中,我们看到其实在应用数学中常用一种问题解决方法,即“直觉判断——探究实验——说理论证”。那么除了判定定理1可以判断平行四边形外,是否还有其他的判定定理呢?(幻灯片出示判定定理1,提示学生判定定理1其实是性质1“平行四边形的对边平行且相等”的逆命题)
(2)补充和完善平行四边形判定定理。
师:请同学们应用例1的解决方法尝试探究解决例2和例3,找到平行四边形其他判定定理。例2:在四边形ABCD中,AB=CD AD=BC。求证:四边形ABCD是平行四边形。
生1:例2可转化为平行四边形的定义。
生2:可转化为判定定理1。
生3:两组对边分别相等的四边形是平行四边形可作为判定定理2。(幻灯片将平行四边形判定定理2显示成红色。)
例3:证明:对角线互相平分的四边形是平行四边形。
教师引导学生用不同方法求解。
生1:例2可转化平行四边形定义或判定定理
1、判定定理2。
生2:可以利用判定定理3证明。(幻灯片出示三种证明过程并将判定定理3显示成红色。)
设计意图:学生独立思考,并能用不同的方法求解,培养学生数形结合和转化的思想,从而提高学生分析问题和解决问题的能力。
(3)总结平行四边形判定定理。
师:同学们分析得非常正确,数学需要我们有严密的思维。学习数学可以培养我们严谨的学习作风。本节课我们学了平行四边形的三个判定定理。总结并板书——
判定定理1:一组对边平行且相等的四边形是平行四边形。
判定定理2:两组对边相等的四边形是平行四边形。
判定定理3:对角线互相平分的四边形是平行四边形。
3.方法迁移巩固运用
【图片 】
题1:已知:如图3,在平行四边形ABCD中,E、F是对角线BD上的点且BE=DF。
求证:四边形AECF是平行四边形。
题2:如图4,AB、CD相交于点O,AC//BD AO=BO
E、F分别为OC、OD的中点。求证:四边形AFBE是平行四边形。
学生以小组为单位展开讨论,用不同的方法解决问题。
教师巡视,并及时给予指导,抽查学生回答解题的思路师生共同评价。
设计意图:设计例题,让学生运用问题探究的方法尝试解决问题,并体会一题多解的方
叙述式教学设计方案模板
法,从而巩固新知培养学生知识的迁移运用能力。
4.回归问题,创新拓展
师:学习了平行四边形的判定定理,下面让我们再回到最开始老师遇到的“还原玻璃片”问题。现在,请同学们先自主思考,然后小组讨论使用什么方法可以将老师碰碎的玻璃片还原为平行四边形。
学生自主画图,小组讨论。教师巡视全班相机指导。
师:其实生活中还有很多类似的问题,需要我们应用数学知识和数学思维去思考并解决。下面也是生活情境应用题,请同学们发挥想象力,运用我们所学的数学知识去解决它。应用题:李木匠在制作家具的过程中,遇到一个难题。他想把一块平行四边形的板子切成四个面积相等的平行四边形,请同学们帮木匠想想办法,看看有几种分法 ?
学生根据平行四边形的定义、性质以及判定定理,思考划分的方法。教师鼓励学生尝试不同的方法解题。
设计意图:设计练习题检测学生的课堂学习效果,并结合生活中的实际情境问题,引导学生应用平行四边形的判定定理去解决实际问题,培养学生的数学知识应用意识和创新思维。
5.畅谈收获,课堂小结
师:通过本节课学习你有什么收获?
生1:做数学题可以用不同方法,我们要寻求简单的方法。
生2:我明白了转化的数学思想,我们可以用已学过的知识去解决生活中的问题。
师:同学生们总结得很好。这节课我们不但证明了三个判定定理,而且能够灵活运用。让我们看到了集体的力量,体会了转化的数学思想。希望大家共同努力解决一个又一个难题。
七、帮助和总结
总结以上几个环节的设计,环环相扣,由浅入深,由表及里,与学生的认识规律相符。通过这一节学习,学生不仅掌握了平行四边形的两个判定定理,还初步培养了分析问题,解决问题的能力。学习过程中,愉快的合作学习,多角度的展开思维活动,无形中培养了学生的创新精神,是利于学生知识、能力、情感发展的。