高中数学探究性教学案例及反思

时间:2019-05-12 20:55:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学探究性教学案例及反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学探究性教学案例及反思》。

第一篇:高中数学探究性教学案例及反思

——谈“简单的线性规划问题”教学设计

设计人:郭

探究式教学是新课程改革课堂教学的主要方式之一,我们通过“简单的线性规划问题”教学案例,对探究活动中的问题进行讨论。

1、问题的提出 1.新课程必修5课本第91页的“阅读与思考”——错在哪里? 若实数x,y满足1xy3(i)求4x+2y的取值范围.

1xy1错解:由①、②同向相加可求得: 0≤2x≤4 即 0≤4x≤8 ③

由②得 —1≤y—x≤1将上式与①同向相加得0≤2y≤4 ④ ③十④得 0≤4x十2y≤12 以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.

(2)[辨析]通过讨论,上述解法中,确定的0≤4x≤8及0≤2y≤4是对的,但用x的最大(小)值及y的最大(小)值来确定4x十2y的最大(小)值却是不合理的.x取得最大(小)值时,y并不能同时取得最大(小)值。由于忽略了x和 y 的相互制约关系,故这种解法不正确.(其中有小部分学生仍处于迷惑之中。)(3)[激励]此例有没有更好的解法?怎样求解?(4)[提问1](2)中的描述能否从形(即从几何)方面直观得到解释?请同学们想一想:不等式组(i)的几何意义是什么?(许多同学心头一亮,跃跃欲试。)教师趁机把动手的机会让给学生,要求他们打开几何画板进行探究。(教师巡视,指点,并注意收集信息的返馈。)最后利用展示台交流,达成共识:不等式组(i)表示的平面区域是一个以A(1,0),B(2,1),C(1,2),D(0,1)为顶点的正方形区域,而由不等式组(i)得到0≤x≤2,0≤y≤2表示的区域是一个以O(0,0),E(2,0),F(2,2),G(0,2)为顶点的正方形区域,显然由原不等式组(i)导出x,y范围,使得区域变大了。确定的0≤4x≤8及0≤2y≤4独立表示时是对的,但合起来求其交集时所表示的可行域的范围明显变大了,在错误的可行区域求4x+2y的取值范围,难怪做错了。(学生沉浸在做数学的快乐中。)此时趁热打铁,继续探究:

(5)[提问2]既然我们已经完成了把不等式组(i)从数向形的转化,那么这个问题能不能从数形结合上得到完整的解决呢?也就是说:问题转化为:求4x+2y 在约束条件不等式组(i)下的值域。(学生开始寻找4x+2y的几何意义)有些同学做了这样的尝试:f(x,y)=4x+2y 关于x和y的二元一次函数。函数在直角坐标系里又表示什么呢?学过的有关二元一次的只有二元一次方程表示直线了。终于,经过学生的一番思考探究之后,找到了条件与结论之间的内在联系,把问题提问2转化为:

求Z=4x+2y 在约束条件不等式组(i)下的最大值和最小值。

而y2xZ,此时Z的几何意义是直线Z=4x+2y的纵截距的一半。故截距越大,Z的值越大。(有些思维比较活2的,省去f(x,y)=4x+2y 这一步的思考,有些基础比较差的虽想到了f(x,y)=4x+2y这一步,就无法更进一步了。此时教师巡堂,及时发现问题,加强个别指导。)探究到此,后面的解答过程学生通过平移直线不难得到。现在让学生们相互交流、补充,总结出此类问题的一般解法即:

图解法:画---移---求----答

2、教学过程

2.1合作探究归纳出线性规划的有关概念:

经过上面的探究过程,再来合作探究归纳出本节课的概念,是相当自然的:

①线性约束条件;②线性目标函数;③线性规划问题;④可行解、可行域和最优解。2.2知识的应用 课堂练习:课本练习1 先引导设问:

① 指出线性约束条件和线性目标函数;

② 用几何画板画出图形,要求学生指出可行域; ③ 说出三个可行解; ④ 求出最优解。

一、某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?

(1)用不等式组表示问题中的限制条件:(2)画出不等式组所表示的平面区域:

(3)若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?

 数学问题:确定未知变量(决策变量)。教师巡视,引导:把实际问题 文字语言 转化 符号语言(建立线性规划模型)运用图解法求解。

(利用实物投影显示列不等式组中的各种错误,由学生找出,并指正。)如:学生易忽视x≥0和y≥0的关系。解答:(实物投影显示参考答案)变式

探究:课本第89页的探究活动

(1)在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,应当如何安排生产才能获得最大利润?在换几组数据试试。

(2)由上述过程,你能得出最优解与可行域之间的关系吗?

教师引导学生利用几何画板来进行自我探究,如右图。学生在换了好几组a、b的值之后,都得到了在多边形(可行域)的顶点A或B处取到。于是有些学生得出了这样的结论:当a>0,b>0时,最优 解在表示可行域的多边形顶点处取到,且唯一。但不用多久,马上有同学指出:不全面,因为 当目标函数的斜率和直线AB平行时,最优解有 无穷多个。教师抓住机会,表扬了这两位学生的 优点,鼓励学生继续探索。最终,经过交流讨论,得出下列结论:

① 可行域就是二元一次不等式组所表示的平面区域,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. ② 如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大值或最小值,最优解一般就是多边形的某个顶点.到底哪个顶点为最优解,可有两种确定方法:一是将目标函数的直线平行移动,最先通过或最后通过的顶点便是。当表示线性目标函数的直线与可行域的某条边平行时,其最优解可能有无数个.最后,教师观察到有个学生欲言又止,就问他,他说:他在探索的过程中,发现似乎与可行域的边界直线的斜率有关,只是还没有搞清楚。

教师对提出问题的同学表扬了一番。并顺其意:布置了课外思考题:能否能否通过比较围成可行域的直线的斜率与目标函数的斜率大小关系来判断最优解?

让全班同学回去继续探索,可以多找些资料。2.3自我总结,提炼升华

让学生回忆并小结、提炼本节课学习内容: ① 线性规划问题的图解法步骤。② 解决实际问题时候注意隐含条件的挖掘。③ 解决线性规划问题的相关结论。

作业:课后探究:①留意周围的生产问题,能否转化为线性规划问题,进行优化?(要求:不一定得出最终的答案。)②能否通过比较围成可行域的直线的斜率与目标函数的斜率大小关系来判断最优解?

3、课后反思

(1)探究式教学是建构主义学习理论的一种教学实践模式。探究式课堂的特点是学生通过合作交流、转化

自主探究获得新知识。本课在“问题的提出”部分通过对课本《“阅读与思考”——错在哪里?》一文的探究,让学生在获得探究体验的基础上,通过合作交流形成共识。

(2)在例一及变式探究中,利用《几何画板》创设了一个动态的数学实验室,让学生自己通动鼠标操作,来改变a,b值,探究出一般性的结论。探究式教学与传统的接受式教学和训练式教学相比,更具问题性、实践性和开放性,将学生置身于动态、开放、生动的学习环境中,有利于学生的自主学习和自主探索,对培养他们的数学素养和创新精神,无疑具有深远的意义。

(3)本课利用了信息技术,比如《PowerPoint 2003》,《几何画板》等来设计探索情境,创造开放性学习环境,满足了不同学生的需要,体现了个性化的学习,目的是努力使每一位学生都能得到成功的体验,有效地促进不同层次学生的发展。培养学生做数学的能力、总结归纳的能力。同时让学生体会到了主动探究的重要性与趣味性。

(4)为了体现以学生发展为本的理念,本课的最后抛出一个课后探究性问题,既是对本节课有关内容的延伸、拓展,回应了本节课内容,又是为下继内容作些铺垫、畜势,让学生有“意尤未尽”之感。

第二篇:高中数学探究性教学尝试

高中数学探究性教学尝试

评论发布者:霍建青 发布时间:2014-07-27 22:41:17 现在信息社会已为大家公认,知识经济也成共识,从而培养学生的创新精神和实践能力正成为教育的重要目标。世纪交替修订的数学教学大纲和新颁布的数学课程标准都有明确的规定:“教师应帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的经验。”这就清楚地表明今后的数学教学必须以探究为主要方式。

一、创设情境,探究学习

研究开始于问题,问题产生于情境。所以设计一个好的情境和问题是能否激发学生探究兴趣和明确探究方向和目标的首要问题。情境应当是学生熟悉的、最好是现实的,并从情境中所提出的引起学生求知欲的、且能指向目标的、明确的问题。教材中的情境通常具有一般性,这就要求教师根据本地和学生实际来设计。例如:农村学校设计与当地经济、科技发展有关的情境和问题,这不仅使学生感到数学的有用,而且可以激发起学生用科技知识发展家乡经济的愿望,反过来又促进学生学习数学的主动性和积极性。实施九年义务教育,主要是在农村,普及初中教育,如果我们一心主要想着为学生的升学而教学,且不说搞题海战术、模拟考试等做法有背教育教学原理,也是与实施义务教育以普遍提高劳动者的素质的初衷不相适宜。由于过去对农村重视不够,所以更需要有志者设计一些适应农村需要的情境资料。

再如:学生都喜欢参与活动,将一张边长为16厘米的正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去,剪6次一共剪出多少个小正方形? 当然,情境也可以是数学自身的,比如,研究平行线的性质,就可以设计相交的两条直线,其中一条直线绕它上面的一点旋转,让学生观察这条旋转直线与另一条直线的位置有什么变化?在学生弄清了这个情况后,就可以让他们进行操作,绕着一点画直线,观察它

和另一条直线位置关系的变化并得出结论。有条件的学校,应当用《几何画板》或图形计算器等现代信息技术手段来进行研究,这将大大提高数学教学的质量。

二、整理探究结果,促进探究学习

从历史上说,几何从开始证明,经几百年的努力整理出欧几里得体系,这不仅使几何知识得以相传,而且使他们的思维得到训练。从数学来说,其真理性在于逻辑证明,因此,公理化成为数学活动不可或缺的一个组成部分。当然,公理化必须考虑学生的人知水平。如何处理好数学理论、社会需要和学生认知三者的关系,仍是数学教育研究的一个核心问题。

无论如何,从心理学有条理的东西容易记忆也便于应用着一点来说,一定的逻辑系统是必要的。

在情境中经过探索得出结论后,还需要有一个对这些结论进行整理以形成逻辑系统的阶段,这个阶段对数学来说是不可或缺的,我们必须在上一阶段的基础上,对提出的结论进行去粗存精、去伪存真、由此及彼、由表及里,抽象成概念和原理,并用定义、定理和定律、法则来表述,再进一步把他们用符号来表示,再通过他们的内在联系,整理成一个逻辑系统。

三、理解探究过程,完成探究作业

课后做适当作业是必要的,虽然在课堂上主要是教师讲,学生听但课外作业是要求学生独立完成的,因为它是学生掌握和运用知识,形成技能和发展能力的阶段,也是养成自主学习能力和习惯的阶段。但是实际上也存在着缺陷,最大的就是降低了学生的自主性。为了易教易学,在讲完知识之后,配置了相当多也由教师讲解的例题,造成了学生主要是模仿例题做习题,降低了学生独立思考的锻炼机会,更甚的是发展出所谓的题型教学和模拟考试等大运动量的题海战术,不仅出现了高分低能的现象,更为严重的是造成了学生过重的学习负担和心理问题。所以,我在布置作业时在保证所有学生达到基本要求的同时,为有数学才能的学生再做一些富有挑战性的问题,也就是因材施教,使不同的学生真正都能得到生动活泼的、主动的发展。

四、把握探究尺度,发展自主空间

自主空间多大为宜,用我们通常的形象说法,就是“跳一跳,摘得到”,而这跳一跳能跳的多高,则是因人而异的,与他原有的基础和思维能力训练有关,探索教学首先是要设计一个好的情境和问题的原因所在,而所谓“好”的标准之一,就是创设一个恰当的自主探索空间;其次,教师的适时帮助是必要的,以为学生自主探索就不需要教师的引导,或知识是学生自已建构而放弃帮助的观点和做法可能都是不合适的。当然,这种帮助,主要是指引、点拨和鼓励,使他们有信心朝着目标继续探索。打个比方,应当象妈妈教自己孩子走路那样,既不是抱着不放,也不是放任不管,走歪了指一下,跌倒了服一下,不走了哄一下,真走不动了,这次训练就完成了。

此外,同学之间需要展开交流。这不仅是检验、纠正和完善个人的需要,也是培养学生口头表达自己思想和倾听别人意见的能力和态度的需要。现在教学中已经可以看到同学间的交流活动,可能是时间关系,交流未能充分展开而流于形式。这是需要改进的,以使课堂教学真正成为既能学生自主探究、又能师生、生生合作互动,以培养适应现在社会生存的发展的人。

总之,这样的教学,学生学到的不仅是数学知识和方法,而且再获得知识技巧的活动过程中,逐渐学到了获取数学知识的思想和方法,亦即培养了学生的独立获取知识的能力和探索发现创造的能力.

第三篇:高中数学教学反思案例

高中数学教学反思案例

篇一:高中数学>教学反思案例

一、对数学概念教学的一点反思

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、辨证的等方面去展开。

下面以函数为例:

1、从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。

2、从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。方程的根可以作为函数的图象与轴交点的横坐标;不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。„„

教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

二。对>数学教学方法的几点启示

本人从事高中数学教学工作将近30年的时间了。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上40分钟的学习效率,这对于刚接触高中新课改教学的我来说,也是一个很重要的课题。要搞好高中数学新课改,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和>素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂40分钟的学习效率,在有限的时间里,出色地完成教学任务,不能穿新鞋走老路。

1、要有明确的教学目标

教学目标分为三大目标,即认知目标、情感目标和动作技能目标。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

2、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。

3、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显着特点:一是能有效地增大每一堂课的课容量,从而把原来40分钟的内容在35分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

4、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

5、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

6、充分发挥学生主体作用,调动学生的学习积极性

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。

在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

7、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

8、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的。只有这样,学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

篇二:高中数学教学反思案例

**年**月**日,我有幸参加了市局举办的拟晋中小学中、高级职务教师继续教育>培训的学习活动,并随后参加了中小学教师远程培训,完成了为期12 周课程的学习任务。参加视频会议的专家和老师,多数是来自教学一线的。在这段集中培训时间,每天的感觉是>幸福而又充实的,因为每一天都要面对不同风格的专家,每一天都能听到不同类型的讲座,每一天都能感受到思想火花的冲击。在这几周的培训期间,我始终热情高涨,积极学习,聆听专家讲座;用心去领悟他们的观点,吸取精华,真心探讨。回顾培训历程的足迹,发现自己不仅专业方面得到了很大的提高,而且教育观念也得到了洗礼,教育科学理论的学习得到了升华。

这次的远程培训经历使我>收获颇多,只字片语难以尽述,通过这次培训,在网络和各位专家和学者的思想进行了碰撞,对今后教学工作有了很大启发,在这里我想谈谈关于数学教学的反思。

一、强调教法、学法、教学内容以及教学媒介的有机整合。

教学设计的难点在于教师把学术形态的知识转化为适合学生探究的认知形态的知识。学生的认知结构具有个性化特点,教学内容具有普遍性要求。如何在一节课中把二者较好地结合起来,是提高课堂教学效率的关键。

对一名数学教师而言,教学反思首先是对数学概念的反思。

对数学概念的反思——学会数学的思考。对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。而对于数学教师来说,他还要从“ 教” 的角度去看数学去挖掘数学,他不仅要能“ 做”、“ 会理解”,还应当能够教会别人去“ 做”、去“ 理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例:从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系:方程的根可以作为函数的图象与轴交点的横坐标;不等式的解就是函数的图象在x 轴上所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样,几何内容也与函数有着密切的联系。通过多角度、全方位的讲解,借助多媒体辅助教学,让学生真正理解函数的概念,让学生学会自主学习,类比函数概念学不仅会对数学概念的理解和应用,还要掌握学习数学的方法。

二、质疑反思的培养通过现状调查,看出在目前的数学教学中缺乏有目的、有意识,具有针对性的培养学生对问题的质疑与解决问题、认识问题后的反思。学生的质疑反思能力是可以培养的,要有目的设计、训练。因此要培养质疑反思能力必须做到:(1)明确教学目标。要使学生由“ 学会” 转化为“ 学会—— 会学—— 创新”。(2)在教学过程中要形成学生主动参与、积极探索、自觉建构的教学过程。(3)改善教学环境。(4)优化教学方法。

教师在教学生时,不能把他们看作“ 空的容器”,按照自己的意思往这些“ 空的容器” 里“ 灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多“ 制造” 一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“ 挤” 出来,使他们把解决问题的思维过程暴露出来。数学教育不仅关注学习结果,更关注结果是如何发生、发展的。从教学目标来看,每节课都有一个最为重要的、关键的、处于核心地位的目标。高中数学不少教学内容适合于开展研究性学习。从学习的角度来看,教学组织形式是教学设计关注的一个重要问题。如果我们能充分挖掘支撑这一核心目标的背景知识,通过选择、利用这些背景知识组成指向本节课知识核心的、极富穿透力和启发性的学习材料,给学生自由想象和质疑的空间,提炼出本节课的研究主题,那么就需要我们不断提高业务能力和水平。

三、反思教育教学是否让不同的学生得到了不同的发展应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等。通过这次远程培训,我更深的从各位教育专家的讲座案例中体会到,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次迈进。平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量。对于学习有困难的学生,则要降低学习要求,努力达到基本要求。布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别特别难的题目可以不做练习。

新课程提出教师的教要“以学生的学为中心”,教师是课堂“舞台”上的“导演”,是学习数学的组织者、引导者与合作者,而培养理性思维能力是数学教育的主要目标。但学生的日常经验还不能支撑全部数学,因此数学教学要把隐藏在背后的理性思考激活,要把数学的文化价值点穿,帮助学生体会“蓦然回首,那人却在灯火阑珊处”的数学解题意境,学生才会喜欢数学。

此次远程培训,让我受益匪浅,聆听了多位教育专家和学者的讲座,我深深的感受到:教师的工作不仅是一项崇高的事业,更是一项心与心交流的事业。同时对我的教学有较大的促进和影响,在数学教学中需要反思的地方很多,只有在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。要学会在工作中学习,在学习中工作!路漫漫其修远兮,吾将上下而求索!

篇三:高中数学教学反思案例

本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。

本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。

第四篇:高中数学教学案例反思

高中数学教学案例反思

(一)作为一名高中数学教师来说 不仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果,更为关注结果是如何发生,发展的.我们可以从两方面来看:一是从教学目标来看,每节课都有一个最为重要的,关键的,处于核心地位的目标.高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看,教学组织形式是教学设计关注的一个重要问题.如果我们能充分挖掘支撑这一核心目标的背景知识,通过选择,利用这些背景知识组成指向本节课知识核心的,极富穿透力和启发性的学习材料,提炼出本节课的研究主题,这样就需要我们不断提高业务能力和水平.以下就是我结合高中教师培训联系自己在平时教学时的一些情况对教学的一些反思。

一、对数学概念的反思——学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界.而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的,历史的,关系的等方面去展开。

以数列为例: 从逻辑的角度看,数列的概念包含它的定义,表示方法,通向公式,分类,以及几个特殊的数列,结合之前学习过的函数来说,它在某种程度上说,数列也是一类函数,当然也具有函数的相关性质,但不是全部.从关系的角度来看,不仅数列的主要内容之间存在着种种实质性的联系,数列与其他中学数学内容也有着密切的联系.数列也就是定义在自然数集合上的函数。

二、对学数学的反思

对于在数学课堂每一位学生来说,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学,教师会说要因材施教.可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等.每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次迈进.平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量.对于学习有困难的学生,则要降低学习要求,努力达到基本要求.布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别特别难的题目可以不做练。

总之,在上好一堂的同时,结合新课程的教学理念进行相应的教学反思可以不断提高业务能力和水平,从而更好的服务于学生。

高中数学教学案例反思

(二)对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于数学教师来说,他还要从教的角度去看数学去挖掘数学,他不仅要能做、会理解,还应当能够教会别人去做、去理解,因此教师对教学概念的反思应当从逻辑的、历史的、辨证的等方面去展。

1。从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。

2。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。

方程的根可以作为函数的图象与轴交点的横坐标;

不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;

同样的几何内容也与函数有着密切的联系。

教师在教学生是不能把他们看着空的容器,按照自己的意思往这些空的容器里灌输数学这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多制造一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题挤出来,使他们解决问题的思维过程暴露出来。

二、对数学教学方法的几点启示

本人从事高中数学教学工作将近30年的时间了,在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上40分钟的学习效率,这对于刚接触高中新课改教学的我来说,也是一个很重要的课题,要搞好高中数学新课改,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。

注意知识前后的联系,形成知识框架,其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系,课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道,课堂教学不但要加强双基而且要提高智力,要发展学生的创造力。

不但要让学生学会,而且要让学生会学,特别是自学,尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂40分钟的学习效率,在有限的时间里,出色地完成教学任务,不能穿新鞋走老路。

1、要有明确的教学目标

教学目标分为三大目标,即认知目标、情感目标和动作技能目标。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

2、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。

3、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切,现代化教学手段的显着特点一是能有效地增大每一堂课的课容量,从而把原来40分钟的内容在35分钟中就加以解决,二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率,三是直观性强,容易激发起学生的学习兴趣。

有利于提高学生的学习主动性,四是有利于对整堂课所学内容进行回顾和小结,在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点,同时通过投影仪,同步地将内容在瞬间跃然幕上,使学生进一步理解和掌握本堂课的内容,在课堂教学中。

对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成,可能的话教学可以自编电脑课件,借助电脑来生动形象地展示所教内容,如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

4、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求,所谓教学有法,但无定法教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法,数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识,而在立体几何中,我们还时常穿插演示法。

来向学生展示几何模型,或者验证几何结论,如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度,这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明,此外我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。

在一堂课上,有时要同时使用多种教学方法,教无定法贵要得法只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

5、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

6、充分发挥学生主体作用,调动学生的学习积极性

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。

在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

7、切实重视基础知识、基本技能和基本方法

众所周知近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、()基本技能、基本方法的教学,教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生,其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律。

就让学生去做题,试图通过让学生大量地做题去悟出某些道理,结果是多数学生悟不出方法、规律,理解浮浅记忆不牢只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。

如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误,不少学生说现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低,可见在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

8、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的。只有这样,学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到备 教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

高中数学教学案例反思

(三)本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。

一、将数学教学内容的学术形态转化为学生易于接受的教育形态

在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角” 的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。

1、创设故事情境

一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位――弧度。如此引入很.自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。

2、探索角新的度量方法

可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样? 为了探索这个问题,把学生分成若干小组,思考下列问题:

① 1度的角是如何规定的?

② 用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?

③ 用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?

④ 如何定义圆心角的大小?说明这种度量的好处。

要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。

这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

二、由重结果走向重过程

新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识 的形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。

[案例2] 等比数列的前n项和公式的探求。

为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。

已知等比数列{ an}的公比为q,求这个数列的前n项和Sn。即Sn=a1+a2+a3+an

(1)知识回顾。

类比学过的等差数列的前n项和公式,不难想到等比数列前n项和Sn也希望能用a1、an,n或q来表示。

请同学们回答:对于等比数列,我们已经掌握了哪些知识?

①等比数的定义,用式子表示为:

②还可以用一系列整式表示:

a2=a1q

a3=a2q

a4=a3q

an =an-1q

③等比数列的通项公式:n=1.n-1(n≥2)

(2)新知探求

联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?

(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)

要用a1、n、q来表示Sn=a1+a2+a3+an应先将a2,a3,an用a1、n、q来表示。

即:Sn=a1+a1q+a1q+a1qn-1

注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对Sn化简求和?

(经过一番思考)对Sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程。

方法一:用“错位相减法”推导

方法二:用“迭加法”推导

方法三:用“等比定理法”推导

这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。

第五篇:高中数学教学案例反思

高中数学教学案例反思

本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。

一、将数学教学内容的学术形态转化为学生易于接受的教育形态 [案例1]弧度制的教学 在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角” 的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。

1、创设故事情境

一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。

在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位——弧度。如此引入很.自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。

2、探索角新的度量方法

可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样?

为了探索这个问题,把学生分成若干小组,思考下列问题: ① 1度的角是如何规定的? ② 用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗? ③ 用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化? ④ 如何定义圆心角的大小?说明这种度量的好处。

要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。

这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

二、由重结果走向重过程

新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识 的形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。[案例2] 等比数列的前n项和公式的探求。

为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。已知等比数列{

an}的公比为

q,求这个数列的前n项和Sn。即Sn=a1+a2+a3+、、、+an。

(1)知识回顾。

类比学过的等差数列的前n项和公式,不难想到等比数列前n项和Sn也希望能用a1、an,n或q来表示。

请同学们回答:对于等比数列,我们已经掌握了哪些知识?

①等比数的定义,用式子表示为: ②还可以用一系列整式表示:

a2=a1q

a3=a2q

a4=a3q、、、an =an-1q、、、③等比数列的通项公式:n=1.n-1(n≥2).aaq(2)新知探求

联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?

(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)

要用a1、n、q来表示Sn=a1+a2+a3+、、、+an应先将a2,a3,···,an用a1、n、q来表示。

即:Sn=a1+a1q+a1q+、、、+a1qn-1 注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对Sn化简求和?

(经过一番思考)对Sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程.方法一:用“错位相减法”推导 方法二:用“迭加法”推导

方法三:用“等比定理法”推导

这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。

下载高中数学探究性教学案例及反思word格式文档
下载高中数学探究性教学案例及反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学探究性学习指导反思2011—2012

    高中数学探究性学习指导反思2011—2012 探究性学习,是指在教师指导下学生自主发现问题、探究问题、获得结论的学习活动。探究性学习具有开放性、自主性、探究性和实践性的特......

    探究性教学教学案例

    探究性教学案例 1、请大家用课桌上的长方体学具与非长方体学具进行对照,从面、棱、顶点三方面研究长方体的特征,并把研究的结果记录下来。 2、学生在独立探究的基础上,进行合作......

    探究性教学案例

    探究性教学案例——《草船借箭》 设计理念 探究性教学是一个崭新的课题,当前还处在一个探讨、摸索的过程之中。就内容而言,它是指学生在教师指导下,从学习生活和社会生活中选择......

    高中数学教学反思案例(5篇)

    作为一名高中数学教师,上好每一节课并不是其工作的终结,在进行教学活动的时候,反思也是一门大学问。下面是小编为大家整理的高中数学教学反思案例,希望对大家有所帮助。  ......

    高中数学教学反思案例[精选五篇]

    高中数学教学反思案例 黄振东 2016/8/28 对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于数学教师来说,他还要从教的角度去看......

    高中数学教学活动反思案例

    高中数学教学活动反思案例 我们必须转变教育观念,以学生为本,以学生的发展作为教学改革的出发点,走出一条优质高效、可持续发展的新路。 1、关注学生的“预习”,淡化课堂笔记。......

    高中数学教学案例

    高中数学教学案例:指数函数的图像与性质 一、提出问题: 新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的......

    高中数学教学案例模版

    案例模版1、教学设计背景 2、教学设计思路 2.1设计理念 2.2教学重点与难点 2.3学法与教学用具 3、课堂教学实录 3.1新课导入 3.2独学 、对学、群学 3.3课堂展示 3.4课堂作业......