高中数学教学案例模版

时间:2019-05-13 06:06:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学教学案例模版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学教学案例模版》。

第一篇:高中数学教学案例模版

案例模版

1、教学设计背景

2、教学设计思路

2.1设计理念

2.2教学重点与难点

2.3学法与教学用具

3、课堂教学实录

3.1新课导入

3.2独学、对学、群学

3.3课堂展示

3.4课堂作业

4、教学反思

5、教学评析

第二篇:高中数学教学案例

高中数学教学案例:指数函数的图像与性质

一、提出问题:

新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

二、教材中的地位:

本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

三、设计背景:

在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让学生感到数学离我们的生活太远,那么将很难激发他们的学习兴趣。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

四、教学目标:

(一、)知识:

理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

(二、)过程与方法:

由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

(三、)能力:

1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

五、教学过程:

由实际问题引入:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

分裂次数与细胞个数

1,2;2,2×2=22;3,2×2×2=23;„„„„;x,2×2×……×2=2x

归纳:y=2x

问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842„„„„经过x年,剩留量y=0.84x

寻找异同:

你能从以上的两个例子中得到的关系式里找到什么异同点吗?

共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

那么,今天我们来学习一个新的基本函数:指数函数

得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?

若a=0,当x>0时,恒等于0,没有研究价值 当x≤0时,无意义。

若a<0,当x=1/2,1/4„„„时是无意义的,没有研究价值。

若a=1,则=1,是一个常量,也没有研究的必要。

所以有规定且a>0且a≠1。

由定义,我们可以对指数函数有一初步熟悉。

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R.研究函数的途径:由函数的图像及性质,从形与数两方面研究。

学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势,„)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。

最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

要求学生描述出指数函数图像的特征,并试着描述出性质。

数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。

总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

第三篇:高中数学教学案例(范文模版)

高中数学教学案例:指数函数的图像与性质

提出问题:

新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

教材中的地位:

本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

设计背景:

在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

教学目标:

一、知识:

理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

二、过程与方法:

由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条

件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性

质解决实际问题。

三、能力:

1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进

一步体会数形结合的思想方法。

2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

教学过程:

由实际问题引入:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

分裂次数与细胞个数

1,2;2,2×2=22;3,2×2×2=23;„„„„;x,2×2×……×2=2x

归纳:y=2x

问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原

来的84%,那么经过x年后剩留量y与x的关系是什么?

经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842„„„„经过x年,剩留量y=0.84x

寻找异同:

你能从以上的两个例子中得到的关系式里找到什么异同点吗?

共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数

是常数;不同点:底数的取值不同。

那么,今天我们来学习新的一个基本函数:指数函数

得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比

例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

若a<0,当x=,„„„时是无意义的,没有研究价值。

若a=1,则=1,是一个常量,也没有研究的必要。

所以有规定且a>0且a≠1。

由定义,我们可以对指数函数有一初步熟悉。

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无

理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法

则都适用,所以指数函数的定义域为R.研究函数的途径:由函数的图像的性质,从形与数两方面研究。

学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经

验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势,„)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导

学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊

到一般。

我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

要求学生描述出指数函数图像的特征,并试着描述出性质。

数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应

该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精

加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不

一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使

学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设

问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操

作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重

于过程的探究及在此过程中所形成的一般数学能力。

教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导

下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课

堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

第四篇:高中数学教学案例

教学精细化管理有三个层面的涵义。

1.“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。

2.“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。

3.“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。

情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。

一、教学设计

1、创设一个现实问题情境作为提出问题的背景;

2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?

3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。

二、教学过程

1、设置情境

利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。

2、提出问题

师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:

(l)船应开往B处还是C处?

(2)船从A开到B、C分别需要多少时间?(3)船从A到B、C的距离分别是多少?

(4)船从A到B、C时的速度大小分别是多少?(5)船应向什么方向开,才能保证沿直线到达B、C? 师:大家讨论一下,应该怎样解决上述问题?

大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。

师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。

生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:

生:船从A开往C的情况如图3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED = ∠EAF = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。

师:请大家想一下,这两个问题的数学实质是什么?

部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。师:请大家讨论一下,如何解决这两个问题?

生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。

生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。

生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。

师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?

3、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。

师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系?

多数小组很快得出结论:a/sinA = b/sinB = c/sinC。师:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?

众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。

师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。

几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。

生:想法将问题转化成直角三角形中的问题进行解决。

生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。

师:在三角形中有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:

1、三角形的面积不变;

2、三角形同一边上的高不变;

3、三角形外接圆直径不变。

师:据我所知,从AC+CB=AB出发,也能证得结论,请大家讨论一下。生:要想办法将向量关系转化成数量关系。

生:利用向量的数量积运算可将向量关系转化成数量关系。生:还要想办法将有三个项的关系式转化成两个项的关系式。

生:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量AC)垂直的向量与向量等式的两边分别作数量积。

师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。

三、教学总结

在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。

创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问引向深入。

教学精细化管理有三个层面的涵义。1.“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。

2.“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。

3.“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。

情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。

一、教学设计

1、创设一个现实问题情境作为提出问题的背景;

2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?

3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。

二、教学过程

1、设置情境 利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。

2、提出问题

师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:

(l)船应开往B处还是C处?

(2)船从A开到B、C分别需要多少时间?(3)船从A到B、C的距离分别是多少?

(4)船从A到B、C时的速度大小分别是多少?(5)船应向什么方向开,才能保证沿直线到达B、C? 师:大家讨论一下,应该怎样解决上述问题?

大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。

师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。

生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:

生:船从A开往C的情况如图3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED = ∠EAF = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。

师:请大家想一下,这两个问题的数学实质是什么?

部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。

师:请大家讨论一下,如何解决这两个问题? 生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。

生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。

生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。

师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?

3、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。

师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系?

多数小组很快得出结论:a/sinA = b/sinB = c/sinC。师:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?

众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。

师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。

几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。

生:想法将问题转化成直角三角形中的问题进行解决。

生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。

师:在三角形中有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:

1、三角形的面积不变;

2、三角形同一边上的高不变;

3、三角形外接圆直径不变。

师:据我所知,从AC+CB=AB出发,也能证得结论,请大家讨论一下。生:要想办法将向量关系转化成数量关系。

生:利用向量的数量积运算可将向量关系转化成数量关系。生:还要想办法将有三个项的关系式转化成两个项的关系式。

生:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量AC)垂直的向量与向量等式的两边分别作数量积。

师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。

三、教学总结

在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。

创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问引向深入。

第五篇:高中数学教学反思案例

高中数学教学反思案例

篇一:高中数学>教学反思案例

一、对数学概念教学的一点反思

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、辨证的等方面去展开。

下面以函数为例:

1、从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。

2、从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。方程的根可以作为函数的图象与轴交点的横坐标;不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。„„

教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

二。对>数学教学方法的几点启示

本人从事高中数学教学工作将近30年的时间了。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上40分钟的学习效率,这对于刚接触高中新课改教学的我来说,也是一个很重要的课题。要搞好高中数学新课改,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和>素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂40分钟的学习效率,在有限的时间里,出色地完成教学任务,不能穿新鞋走老路。

1、要有明确的教学目标

教学目标分为三大目标,即认知目标、情感目标和动作技能目标。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

2、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。

3、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显着特点:一是能有效地增大每一堂课的课容量,从而把原来40分钟的内容在35分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

4、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

5、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

6、充分发挥学生主体作用,调动学生的学习积极性

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。

在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

7、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

8、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的。只有这样,学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

篇二:高中数学教学反思案例

**年**月**日,我有幸参加了市局举办的拟晋中小学中、高级职务教师继续教育>培训的学习活动,并随后参加了中小学教师远程培训,完成了为期12 周课程的学习任务。参加视频会议的专家和老师,多数是来自教学一线的。在这段集中培训时间,每天的感觉是>幸福而又充实的,因为每一天都要面对不同风格的专家,每一天都能听到不同类型的讲座,每一天都能感受到思想火花的冲击。在这几周的培训期间,我始终热情高涨,积极学习,聆听专家讲座;用心去领悟他们的观点,吸取精华,真心探讨。回顾培训历程的足迹,发现自己不仅专业方面得到了很大的提高,而且教育观念也得到了洗礼,教育科学理论的学习得到了升华。

这次的远程培训经历使我>收获颇多,只字片语难以尽述,通过这次培训,在网络和各位专家和学者的思想进行了碰撞,对今后教学工作有了很大启发,在这里我想谈谈关于数学教学的反思。

一、强调教法、学法、教学内容以及教学媒介的有机整合。

教学设计的难点在于教师把学术形态的知识转化为适合学生探究的认知形态的知识。学生的认知结构具有个性化特点,教学内容具有普遍性要求。如何在一节课中把二者较好地结合起来,是提高课堂教学效率的关键。

对一名数学教师而言,教学反思首先是对数学概念的反思。

对数学概念的反思——学会数学的思考。对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。而对于数学教师来说,他还要从“ 教” 的角度去看数学去挖掘数学,他不仅要能“ 做”、“ 会理解”,还应当能够教会别人去“ 做”、去“ 理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例:从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系:方程的根可以作为函数的图象与轴交点的横坐标;不等式的解就是函数的图象在x 轴上所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样,几何内容也与函数有着密切的联系。通过多角度、全方位的讲解,借助多媒体辅助教学,让学生真正理解函数的概念,让学生学会自主学习,类比函数概念学不仅会对数学概念的理解和应用,还要掌握学习数学的方法。

二、质疑反思的培养通过现状调查,看出在目前的数学教学中缺乏有目的、有意识,具有针对性的培养学生对问题的质疑与解决问题、认识问题后的反思。学生的质疑反思能力是可以培养的,要有目的设计、训练。因此要培养质疑反思能力必须做到:(1)明确教学目标。要使学生由“ 学会” 转化为“ 学会—— 会学—— 创新”。(2)在教学过程中要形成学生主动参与、积极探索、自觉建构的教学过程。(3)改善教学环境。(4)优化教学方法。

教师在教学生时,不能把他们看作“ 空的容器”,按照自己的意思往这些“ 空的容器” 里“ 灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多“ 制造” 一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“ 挤” 出来,使他们把解决问题的思维过程暴露出来。数学教育不仅关注学习结果,更关注结果是如何发生、发展的。从教学目标来看,每节课都有一个最为重要的、关键的、处于核心地位的目标。高中数学不少教学内容适合于开展研究性学习。从学习的角度来看,教学组织形式是教学设计关注的一个重要问题。如果我们能充分挖掘支撑这一核心目标的背景知识,通过选择、利用这些背景知识组成指向本节课知识核心的、极富穿透力和启发性的学习材料,给学生自由想象和质疑的空间,提炼出本节课的研究主题,那么就需要我们不断提高业务能力和水平。

三、反思教育教学是否让不同的学生得到了不同的发展应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等。通过这次远程培训,我更深的从各位教育专家的讲座案例中体会到,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次迈进。平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量。对于学习有困难的学生,则要降低学习要求,努力达到基本要求。布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别特别难的题目可以不做练习。

新课程提出教师的教要“以学生的学为中心”,教师是课堂“舞台”上的“导演”,是学习数学的组织者、引导者与合作者,而培养理性思维能力是数学教育的主要目标。但学生的日常经验还不能支撑全部数学,因此数学教学要把隐藏在背后的理性思考激活,要把数学的文化价值点穿,帮助学生体会“蓦然回首,那人却在灯火阑珊处”的数学解题意境,学生才会喜欢数学。

此次远程培训,让我受益匪浅,聆听了多位教育专家和学者的讲座,我深深的感受到:教师的工作不仅是一项崇高的事业,更是一项心与心交流的事业。同时对我的教学有较大的促进和影响,在数学教学中需要反思的地方很多,只有在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。要学会在工作中学习,在学习中工作!路漫漫其修远兮,吾将上下而求索!

篇三:高中数学教学反思案例

本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。

本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。

下载高中数学教学案例模版word格式文档
下载高中数学教学案例模版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学教学案例研究

    【中学数学教案】高中数学教学案例研究 ————《椭圆的标准方程》 一、案例概述: 作为高中数学教师,我们每天都在上课,因此也应该每天都去思考如何更为有效的实施课堂教学,为......

    高中数学教学案例[精选5篇]

    创造性地使用新教材感悟与案例探讨 西安市第三十八中学(王艳丽) [问题] 新课程下的课堂教学应使学生真正成为学生的主体,教师只是一个指导者与合作者。正是为了很好地贯穿这一......

    高中数学教学案例反思[范文大全]

    高中数学教学案例反思(一)作为一名高中数学教师来说 不仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果,更为关......

    高中数学教学案例反思

    高中数学教学案例反思 本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课......

    高中数学教学案例研究

    高中数学教学案例研究 ————《椭圆的标准方程》 一、案例概述: 作为高中数学教师,我们每天都在上课,因此也应该每天都去思考如何更为有效的实施课堂教学,为此我和同行们以......

    高中数学教学设计模版及案例 (500字)

    教学情境一:( 问题引入 )在abc中,已知两边a,b和夹角c,作出三角形。 联系已学知识,可以解决这个问题。 对应问题1. 第三边c是确定的,如何利用条件求之? 首先用正弦定理试求,发现因a、......

    高中数学教学反思案例(5篇)

    作为一名高中数学教师,上好每一节课并不是其工作的终结,在进行教学活动的时候,反思也是一门大学问。下面是小编为大家整理的高中数学教学反思案例,希望对大家有所帮助。  ......

    高中数学探究性教学案例及反思

    ——谈“简单的线性规划问题”教学设计 设计人:郭勇 探究式教学是新课程改革课堂教学的主要方式之一,我们通过“简单的线性规划问题”教学案例,对探究活动中的问题进行讨论。......