新人教版小学数学四年级下册《三角形三边关系》教学案例、反思5篇

时间:2019-05-12 20:07:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新人教版小学数学四年级下册《三角形三边关系》教学案例、反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新人教版小学数学四年级下册《三角形三边关系》教学案例、反思》。

第一篇:新人教版小学数学四年级下册《三角形三边关系》教学案例、反思

探究活动要精心设计、有效引导

新人教版小学数学四年级下册《三角形三边关系》教学案例、反思

【案例背景分析】

新课程标准注重培养学生的创新精神和探究实践能力。在教学中精心设计数学活动并进行有效引导,让学生真正经历探索和发现的研究过程,不仅能使学生学到数学知识,接触到一些研究数学的方法,同时可以使学生体会到探索发现的乐趣,获得成功的喜悦!在教学三角形三边的关系这一内容时,我把重点放在学生的探索上,精心设计了数学活动,收到了良好的效果。

本节内容是人教版四年级下册82页三角形三条边的关系。教学设计的目标主要有两个:一是通过量一量、摆一摆等实验活动,探索并发现三角形任意两边的和大于第三边。二是在实验过程中,培养学生自主探索、合作交流的能力。

本节内容是在学生认识了三角形特性特征的基础上学习的。我认为“形”的教学重在培养和发展学生的空间观念,必须让学生通过实际动手操作,并在操作中进行思考和想象,从而获得体验和感受。因此在教学中我把重点放在小组活动上,通过拼摆三角形的活动,使学生将操作、思考、想象结合起来,体会三角形中任意两边之和大于第三边。【教学片段】

(一)从生活场景入手,激发探究欲望。课件出示下图 邮局

小华家

学校

师:“从小华家到学校有哪几条路?”

生:两条。一条是从家到邮局再到学校,另一条是直接从家去学校。师:小华去学校走哪一条路比较近?”

生:由家直接到学校(下面一条)比较近。

师:同学们想一想,小华家、邮局和学校三个地点用路线围成了一个什么图形呢? 生:同学们回答的非常对。(课件展示去掉三个建筑物),仅保留下三角形。

师:在上一节的学习中我们了解了三角形的特性,今天我们要继续自己来探索发现藏在这简单的图形里的其它数学奥秘。

(二)分组活动,适时引导,探寻规律。

在这一过程中,师让学生拿出准备好的7根小棒(小棒的长度分别为:9厘米、8厘米、7厘米、5厘米、3厘米、3厘米、3厘米),并提出问题:如果任意给你们三根小棒当作三条线段,一定能围成一个首尾相连的三角形吗?(有的学生说“能”,有的学生说“不能”)让我们动手实验一下吧!提出小组活动要求:

1、从7根小棒中任选三根。

2、记录每一根的长度。

3、看一看能否用选定的三根小棒首尾相连地围成一个三角形?把每次研究结果记录下来。让学生展示和报告本组的实验记录,说一说活动结果。(有些小棒能围成,有些围不成)此处有意识找摆不成三角形的情况让学生上台展示一下。

师:通过刚才的小组活动你有什么发现?(不是任意的三根小棒就能围成三角形。)

师:你认为什么原因导致这三根小棒不能摆成三角形?(有一根太短了或太长了)我们一起再来看一看能围成的三角形的三条边,你们有什么发现?(小组讨论)

在小组讨论一会儿后,我接着提出:如果把一条边叫a,一条边叫b,一条边叫c。能用算式说说你们的发现吗?

经过讨论,同学们很快写出:a+b>c;a+c>b;b+c>a。师生共同总结出:三角形中任意两边的和大于第三边,并把总结板书在黑板上。

……

至此,本节探究任务已顺利完成。

……(练习略)【教学反思】

通过这一节课的教学,我对如何更好的组织数学探究活动有以下几点体会:

1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。

数学教学应结合生活实际问题和从学生已有的知识出发,使学生能在认识、学习和使用数学知识的过程中,初步体验到数学知识之间的联系,进一步感受到数学与现实生活的密切联系,增强学好数学的信心,培养应用数学的意识和能力。学生在生活中已经明确知道的拐弯要比走直路远,利用这一生活经验,我在这一课的开始借鉴了课本中把学生从家到学校多路选择的场景来激发学生的兴趣,使学生感觉更亲切自然。但是在这儿我有意识的对课本原图作了一些改变,取消了原图中经过商店的一条道路,目的是让学生更容易把三点之间的道路抽象成三角形,跟本节内容更容易过渡衔接,跟以前教学本节内容时相比,我认为效果还是不错的。

2、小组活动要精心设计,力求有序有效、目的明确、可操作性强。

新课程标准认为,数学的知识、思想和方法应由学生在现实的数学活动中加以理解,通过实践活动,让学生获得更多的直接经验,从而激发学生的求知欲、增进自信心,从学生已有的生活经验和已有的知识出发,给学生提供观察、操作、实验、讨论、及独立思考的机会,通过共同的讨论交流,从而得出结论。因此,在数学活动中,要充分给予学生动手和思考的空间,同时要保证学生活动的有序性,从而实现活动的有效性。为了达到这一效果,我在这节课数学活动的设计中,注意了教师引导,在活动中从“有什么发现”到“为什么这样”逐层提出问题,让学生始终明确方向,有动手的强烈欲望,从而避免了以往教学过程中部分学生重结论轻过程,甚至直接去课本中寻找结论的现象,进一步培养了学生深入探究的习惯和能力。

3、汇报交流过程中,教师要注意把握重点,选例有针对性。

每次活动过程中及结束后,必然存在讨论交流的过程,这其中包括小组内的交流和在全班汇报交流。汇报不是小组交流的重复,在汇报过程中要看抓住具有代表性的例子,在存疑处适时引发下一次的实验活动及讨论过程。本课在小组汇报实验结果后,我先选择不能组成三角形的两组小棒组织学生讨论,并在大屏幕上动态演示,学生的注意力很自然地引导到研究三角形两边之和与第三边之间的关系。在此基

础上,再一次组织小组讨论,研究其他几组能围成三角形的小棒的长度有什么共同点。通过比较分析,学生自然而然地发现了“三角形任意两边之和大于第三边”的规律。

三角形三边的关系”教学设计与反思

[背景与导读]:“三角形三边的关系”是人教版课程标准实验教材四年级下册“三角形”中的第三课时,该课时是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,即三角形任意两边的和大于第三边。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。教学中,教师根据小学生喜欢玩的天性,首先设计让学生搭建三角形的动手操作活动,使学生一开始就进入学习状态,同时也可产生认知冲突,为后面的学习铺好路。在教师的引导下,当学生发现三角形三边的关系后,教师这时再出示书上的一组数据让学生判断,训练学生灵活运用知识的能力,接下来教师出示书上的情景图,让学生学会运用知识解决实际问题,这一环节的设计,主要是引导学生学会看书,毕竟书本是我们学习最直接的资料之一,我们应好好的加以运用。本节课的后半部主要是出示一些实际问题,让学生在解决问题地过程中理解、掌握本节课的重点。

[片断一]:动手操作,产生问题

师:前面我们已经认识了三角形,知道三角形是由三条线段首尾相连围成的封闭图形,今天,老师想让同学们利用你们桌上的木条亲手搭建一个个的三角形,要求是每个三角形只能用三根木条,你们想不想试一试?

学生:想!

师:下面请同学们分小组开始活动。(学生分小组活动)

师:每个小组利用桌上的六根木条共搭建了几个三角形? 学生:我们搭建了一个三角形。

师:剩下的三根木条能搭建成一个三角形吗? 学生:不能。

师:你们知道剩下的三根木条为什么不能搭建成一个三角形吗?你发现了什么?

学生1:我发现剩下的三根木条怎么连也连不到一起。学生2:我们也是这样的。

师:“剩下的三根木条怎么连也连不到一起”说明了这三边在长短上有某种关系,你们能找出这三边在长短上有什么样的关系吗?

学生1:我们将较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来还没有另外一根木条长。

学生2:我们把较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来不是没有另外一根木条长,而是同另外一根一样长。

学生3:我们发现的结论与学生(1)相同,我们是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

学生4:我们发现的结论与学生(2)相同,我们也是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

师:下面我们将能拼成三角形的三边分开,象上面一样比较一下这三条边在长度方面有什么关系?

(学生活动后汇报)

学生1:我发现较短的两条边加起来比最长的一条边长,同刚才的结论正好相反。

学生2:我发现我这个三角形的任意两边加起来的和都比第三边长。

学生3:我的发现同学生(2)一样,也是这个三角形的任意两边加起来的和都比第三边长。

学生4:“任意两边”是什么意思?我不太懂。

学生5:“任意两边”就是指三角形三边中的每两条边加起来的长度都比剩下来的第三条边的长度长。

学生4:原来是这样的。(学生都有同感)

学生6:也就是说,任意一个三角形,它的三条边都存在这样一个特征:三角形的任意两边之和都大于第三边。

学生7:我想应该是这样的吧。因为我们的三角形不一样,但我们得到的结论都是一样的。

学生8:我看到书上也有同样的结论。(学生都翻书看)

[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,教师有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。

[片断二]:及时练习,形成能力

师:同学们刚才表现得非常棒,你们棒在不仅爱玩,而且能在玩中发现数学问题,通过自己的思考、探讨,你们也能解决问题。这就是我们今天一起学习的三角形的另外一个特征,现在你能运用三角形三边的关系判断给出的三条边能否组成一个三角形吗?

学生:能!

师:请同学们翻书到第86页,自己独立做第4题。(学生做完后汇报展示,并说明判断的方法)

学生1:(1)、(2)、(4)这三组中的线段能拼成一个三角形,(3)中的线段不能拼成一个三角形,我是把每组中的三条线段两两相加,再与剩下的第三条线段相比较,其中(1)、(2)、(4)这三组中的线段每两条线段之和都大于第三条线段,所以它们能拼成一个三角形,而(3)中2+2〈6,所以这组中的三条线段不能拼成一个三角形。

学生2:我的结论同学生(1)一样,但我的判断方法与他不同,我是先找出较短的两条边,比较它们的和与剩下的第三条边的大小,如果和大一些,则能拼成三角形,如果和小一些,则不能拼成三角形。

学生3:学生(2)的方法只是一种巧合,他没有判断任意两边之和大于第三边,所以这种方法不行。

(学生对学生(2)的方法产生了争论,学生讨论一会儿后)

学生4:学生(2)的方法是对的,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,这也就更进一步说明这个三角形的任意两边之和大于第三边。

学生5:看来在判断某三条边能否拼成一个三角形时,用学生(2)的方法既快又对。

[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中老师充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们也欣喜地发现,通过练习,学生还在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。学生的能力不可限量啊!

[片断三]:结合实际,学会运用

师:通过刚才的练习,你们不仅掌握了判断某三条边能否拼成一个三角形的方法,并且还找出了最佳的判断方法。从这里可以看出,只要同学们肯动脑思考,一定会取得令人满意的结论。下面请同学们观察小明上学示意图(电脑出示书第82页示意图),如果小明想走离学校最近的路,你认为他会选择那条路上学?

学生:他会走中间这条路。师:你们是怎样判断的?

学生1:因为中间这条路是直的,其它的路是弯的,所以中间这条路最短。学生2:如果小明走通过邮局到学校这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的三边关系可以知道,小明家到邮局,邮局到学校这两条边之和一定大于第三边,即中间这条路,所以中间这条路最短。

师:思考问题既要靠直觉,更要学会用所学的知识解决问题,就像学生(2)一样。另外请问从这副图还可以看出连接两点的线中,哪条线最短?

学生:线段最短。

[反思]:教材是学习的载体,教学中教师应充分发挥教材的育人作用,挖掘教材的教育功能,而不要把教材撇开一边。从上面可以看出,这副图既能让学生领悟知识与实际的结合,又能从中学到另外的知识,可谓一举多得。

[片断四]:拓展延伸,丰富充实

师:通过上面的学习,老师欣喜地发现同学们不仅能自主、能动地学习新知,而且能将所学的知识用于解决实际问题之中。下面老师这儿有几道题不知怎样解答,谁能帮一帮老师?(电脑出示题目)

题目一:已知两条线段a、b,其长度分别是2.5cm与3.5cm。另有长度分别为1cm、3cm、5cm、6cm、9cm的五条线段,其中能够与线段一起组成三角形的有哪几条?

学生1:长度分别是3cm、5cm的两条线段中任意一条线段能与a、b组成一个三角形,因为3+2.5>3.5,2.5+3.5>5。

学生2:长度分别是1cm、6cm、9cm的三条线段中任意一条线段不能与a、b组成一个三角形,因为1+2.5=3.5;2.5+3.5=6;2.5+3.5<9。

题目二:用长度为2cm、2cm、6cm、6cm、6cm这五条线段中的任意三条线段拼成一个三角形,你能拼成几种不同的形状?拼成的三角形有什么特点?

学生1:我用长度为2cm、6cm、6cm三条线段能拼成一个三角形,这个三角形有两条边的长度相等。

学生2:我用长度为6cm、6cm、6cm三条线段能拼成一个三角形,这个三角形三条边的长度都相等。

学生3:我用长度为2cm、2cm、6cm三条线段不能拼成一个三角形,因为2+2<6,所以他们不能拼成三角形。

师:刚才学生

1、学生2所说的三角形是两种较特殊的三角形,这些三角形我们将在下次课中学习研究。

题目三:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

学生1:我想最多可以由9根火柴棒组成。学生2:我觉得最多可以由8根火柴棒组成。┈┈

师:同学们敢于大胆猜想,勇于发表自己的意见,这很好。不过同学们如果能通过实践,讲究事实依据,用理由来说服人那就更好了!

(学生分小组讨论、拼摆)

学生1:我们通过实践知道,最长边最多可以由7根火柴棒组成。

学生2:我们通过讨论知道,最长边最多可以由7根火柴棒组成。此时另外两条较短的两条边的和为8,大于最长边7,根据三角形三边的关系可知,此时能拼成三角形,且最长边由7根火柴棒组成,为最多。

师:同学们今天表现非常棒,不仅能猜想,而且能通过实践,利用所学知识解决实际问题,老师为你们骄傲,我相信,只要同学们一如既往,灿烂的明天一定会与你拥抱。

[反思]:数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间,如此定会别有洞天。

第二篇:四年级数学上册《三角形三边关系》教学反思

《三角形的三边关系》是在学生初步了解三角形一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但对三角形“边”的研究却是首次接触,短短的四十分钟之内要让学生从抽象的几何图形中发现三角形三边的关系,并加以应用并非那么容易。备课时,我一直在思考:如何让学生既学到知识又能渗透解决问题的方法?为实现这一目标,我引导学生围绕“任意三条线段能不能围成三角形?”“什么样的三条线段围不成三角形?”“三角形的三边之间有什么关系?”“是否所有的三角形都存在任意两边的和大于第三边这个规律?”四个问题进行探索与思考活动,问题层层深入,思考步步提升。让学生在经历观察、猜想、验证、归纳等数学活动中归纳得出“三角形任意两边之和大于第三边”这一结论。下面我从四个方面反思本节课的成功与不足:

一、直接导入,准确锁定。

从老朋友到三角形的概念,再进行的围三角形的比赛,一切起来是那样的平淡无奇,却殊不知,孩子们的情绪虽还在比赛的成败兴奋或沮丧,思维却早已被直接而准确的锁定在:三角形三边的长度之间可能存在某种关系,那究竟是怎样的关系呢?让同学们带着问题,大胆猜测结论,教师适时组织数学活动,引导学生探索发现规律,因为每个问题都是从学生的角度出发是顺应学生思维发展方向的,所以每个学生都想参与研究,并且始终抱着积极的心态来参加数学活动。师生共同探究,大家畅所欲言,我特别注意给有不同意见的学生创设发言的机会,确保同学们不仅学到知识,锻炼表达的能力,更能锻炼胆量,是大部分学生的潜能得到充分的发展。

二、挖掘内涵,层层解读。

新课改理念下的数学课堂,小组合作探究已成为了一种必不可少的数学活动。而如何组织能引发学生积极探索、深入思考的有效探究却是我们经常遇到的难题。我在导入后、探究前设计的阅读活动要求则给学生解除了探究前的疑惑,指明了活动的要求与方向。一句:在进行活动之前,认真阅读活动要求至关重要!你们读懂了什么?放慢了课堂的节奏,却有效提升了操作探究活动的研究实效,可谓是守得云开见月明!我们都知道,对教学活动来说,“受人以鱼不如授人以鱼,也就是说”“方法”比“知识本身”更重要。因此,在教学中,我特别注重了数学思想方法的渗透。探究活动环环相扣,经历了发现问题----动手操作----验证猜想----归纳结论----应用结论的过程,数学思想方法的渗透为学生的长远发展注入活水。

三、梅开二度,智慧拓展。

如果说以上两个环节的精彩还只是初春的花开一季,那练习题设计就可以说是梅开二度了!基础练习——有手势判断哪组线段可以围成一个三角形孩子们有了前面深入的探究,经历了第一组的判断后便迅速的得出了结论:只要最短的两边和大于第三边就可以围成。在独立完成后的合作辨析中,学生的分析、归纳之数学素养得以螺旋提升,此处数据的选择也足见教师的智慧与用心。紧接着的生活运用、拓展延伸则体现了三角形的这种三边关系的特性在生活中的应用,情境真实、生动、开放,延伸既有广度也有深度。

四、驾驭课堂的能力需要提高

纵览整堂课,我看到了孩子们观察数据、分析问题、归纳总结、验证结论的数学素养得到了广泛而深刻的培养。当然,这节课也有很多需要反思的地方,比如:在学生进行探究时应积极参与其中,对学生的自主验证,归纳结论不够放手;未能更游刃有余的利用生成资源,因势利导;教学语言要更简洁,更准确。总之,通过这节数学课,我对教材的理解更加深刻了,对课堂中出现的问题更加清楚了,需要改进的地方还有很多,只有课堂中不断磨练自己,才会有更大的进步。

第三篇:三角形三边关系教学反思

让数学课既“有营养”又“好吃”

字数:2592 字号: 【大 中小】

《三角形三边关系》是苏教版数学四年级下册的教学内容,“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。教材在例题之后编排了以下几道习题。

【教材呈现】

原题1:下面哪组线段可以围成一个三角形?为什么?

面画“√”。

原题2:一个三角形,两边的长分别是12厘米和18厘米,第三条边的长可能是多少厘米?在合适的答案下

原题3:先量出下面两根小棒的长度,再想一想,能和它们围成三角形的第三根小棒的长可能是多少厘米?

原题4:从学校到少年宫有几条路线?走哪一条路最近?

在实际教学中,逐一解决以上习题固然能巩固“三角形任意三边之和大于第三边”这一知识点,加深对三角形三边关系的理解。但是,总是以小棒为载体,运用结论进行判断和选择,学生始终感觉在进行数学训练,兴趣淡然,体会不到这一知识内涵的丰富性以及在生活中的广泛应用。为此,我对练习进行了重新设计。

【教学片段】

师:这节课我们一起研究了三角形的三边关系,知道了三角形任意两边之和都是大于第三边的。这个知识在生活中用处可大着呢!不信,你看!

第一组:

师:木匠王师傅要找三根木料做一个三角形,他挑出了这样三根,能做出来吗?出示:

生:不能,因为第二根加第三根小于第一根。

师:只判断这两根就确定啦?

生:我觉得只要有两条边的和小于第三边就肯定不行了。

师:那你为什么不先判断第一根加第二根,或者第一根加第三根呢?

生:第一根最长,再加一根更长,肯定大于第三根。

师:那能不能围成,最关键是看什么?

生:两条短一些的边加起来大于最长的边。

师:哦!难怪你们这么快,原来还有这个窍门啊!

第二组:

师:王师傅试了试,果然做不成三角形。无奈之下,换了一根。这回,能做起来吗?

出示:

生:还是不能,因为第二根加第三根的和等于第一根,还是围不成。

师:为什么选7+3来判断?

生:因为7和3是较短的。这一组如果符合要求,其余的也一定符合要求!

师:说得真棒!

第三组:

师:王师傅两次都没做起来,有些不高兴了,他拿起锯子,把最长的一根锯掉了一段!这回,他成功了吗?

出示:

生(很失望):还是没有!

师:怎么又失败了呢?这最长的一根已经被锯短了呀!

生:不对,因为这一锯,让第二根成为最长的了,3厘米加3厘米小于7厘米,两条短边加起来小于最长的边,还是做不成!

第四组:

师:王师傅一气之下,把这根锯短的扔掉了,他决心重新寻找!你们能给王师傅一些建议?(取整数)

出示4:

生:5厘米。

师:可以吗?

生判断:3厘米+5厘米>7厘米,能围成三角形。

生:8厘米也可以。

师:行吗?其他学生判断。

……

师:大家你一言我一语,都有道理!王师傅想,你们要是能给我个范围就好了!

生交流,汇报。

生:我认为只要大于4厘米小于10厘米都可以。

师:为什么?

生:如果正好是4厘米,那么3+4=7,围不成,所以要比4厘米多;如果正好是10厘米,那么3+7=10,也围不成,所以要比10厘米少。

师:看来,第三根的长度除了要比两根之和短,还有什么要求?

生:两边之和大于第三边,两边之差小于第三边。

师:有了大家的建议,王师傅终于找到了合适的木料!

生不禁欢呼……

第五组:

师:王师傅完成了任务!一看时间,不早了,得赶紧回家!

出示:

师:王师傅从木料场回家,有几条路可走?他会选择哪一条路呢?

生:中间一条。

师:为什么?

生:两边的路是弯曲的,中间的是直的,两点之间线段最短。

师:用我们今天学的知识能解释吗?

生:中间一条路和两边的路合在一起,可以看作两个三角形。每个三角形中,两边之和又是大于第三边的,所以中间的路最近。

【设计思考】

特级教师吴正宪提出,要让孩子享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合孩子的美味?本节课,主要做了以下思考:

有“营养”,要有明确的目标定位。课前,我首先对教材中安排的4道习题进行了研究。题1是根据每组中3条线段的长度判断它们是否能围成三角形,巩固对三角形三边关系的认识,强化对三角形特征的认知。题2引导学生根据给定的三角形的两条边,讨论第三边的长度所在的区间,并选择合适的第三边的长度,使学生更深刻地理解三角形的三边关系,培养思维的条理性和严密性,发展空间观念。题3要求先测量长度,再判断能与之围成三角形的第三根小棒的长度。促使学生在寻求第三根小棒长度的过程中,初步形成三角形两边长度的差小于第三边的认识,进而加深对三角形三边关系的认识与理解。题4则是让学生应用三角形的三边关系解决简单的实际问题,使学生在解决问题的过程中不断加深对三角形三边关系的理解。

以上习题的训练目标成为我练习设计的首要定位,即:无论以何种形式呈现,内在的达成目标应该是既定不变予以落实的。

有“营养”,要有助于提升思维能力。

教材习题是通过不同的要求,达成学习目标的,但每道题在独立练习时,目标指向性比较单一,一道题解决一个问题。而关于三边关系的知识,内在联系是非常紧密的,三条边中任意一条边长度的改变都有可能引起整体的变化。是否可以通过“变式”来沟通知识的联系,让学生在不断的思维转换中加深对三边关系的理解?这一想法成为练习设计的落脚点。于是梳理不同类型三角形的特点并有机串联,第一组是两边之和小于第三边的类型,通过追问,引导学生得出判断的简便方法,只要判断两条短边之和大于第三边即可。第二组呈现两边之和等于第三边的情形,用于巩固。第三组则在第二组的基础上,将最长的变为最短的,此举,从形式上来看,只是改变了一根小棒的长度,但从本质上讲,此时三角形三边的长短关系则发生了变化,较短边不再是前两组的7和3,而是3和3,这就促使学生重新审视三边长度整体把握后再作判断。第四组只给定两根小棒的长度,思考第三根小棒的长度区间,不仅考虑两根之和大于第三边,还要考虑两边之差小于第三边。最后一组将知识应用于生活。此环节没有出示过多的习题与要求,只是在一组练习的基础上通过不断地变式,由浅入深,逐步提升思维含量,培养学生的思维能力。

“好吃”,要能激发儿童兴趣。

很多学生抱怨数学冰冷、枯燥、无趣,那往往是因为我们将原本鲜活的内容生硬地呈现在了学生面前。课堂上,学生为了做题而做题,数学与生活成了两张皮,学生丝毫体会不到所学的数学知识离开了课本在生活中能有何应用?儿童的心理特征决定了只有有趣的,才是他们愿意学的。激发学习兴趣,理应成为教师课堂教学的重要任务。上述案例中,笔者反复思量,寻找与三边关系紧密结合的生活原型,创造性地设置出木匠王师傅做三角形的情境,学生在帮助王师傅寻找合适木料的过程中,积极性被充分调动起来,体会到了问题解决后的愉悦之情。

“好吃”,要站在儿童立场解决问题。

所谓儿童立场,简单地说,就是教师要能够换位思考,把自己当作儿童,以儿童的眼光看待事物,以儿童的视角考虑问题。我们常常以成人的眼光审视严谨系统的数学,并以自己习惯了的教学方式将数学“成人化”地呈现在学生面前。课堂上,常常忽视了童年期学生心理、特点和学习规律,失去了儿童的情趣。上述案例中,教者就抓住了儿童爱听故事的年龄特点,为数学问题创设生活情境,在情境中生动地讲述故事,王师傅找木料,换木料,锯木料,扔木料,一波三折,环环相扣。当王师傅总是找不到合适的木料时,学生们不禁发出一阵阵叹息,继而迅速投入到紧张的思考中。当王师傅在大家的帮助下终于完成任务,学生们竟不约而同地发出“耶……”的欢呼声!课堂上,既有人物情感的相互交融,又有学生思维的深度撞击,师生互动,生生互动,在分析、讨论、质疑、归纳过程中,学生对于三角形三边关系的认识不断丰富,理解更加深刻。有位老师听课后不觉感叹:数学课上成了“故事课”,不要说学生,连我们也意犹未尽啊!

作为教师,我们要读懂教材、读懂学生、读懂课堂,用心研究,尽可能地丰富习题内涵,让习题承载多重训练目标。同时用智慧创造,让学生在兴趣的指引下,思维不断得到提升。唯有“营养”与“好吃”兼而有之,才能烹饪出学生喜欢的数学课堂。

第四篇:人教版数学四年级《三角形三边关系》教学反思

人教版数学四年级《三角形三边关系》教学反思

《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:

一、关注学生亲身经历

本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。

二、练习设计层层深入

本节课我设计了三个练习:

1、判断能否围成三角形。

2、小明从家到学校走哪条路最近?

3、寻找第三根小棒。

4、如何将一根铁丝截成三段,且能焊成三

脚架?

评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。

但是从教学过程中我也反思了自己的不足之处。没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。其实这是判断三角形三条边的关系时一种最优化的方法。在教学中,我们不能束缚在教材的条条框框中,而忽视了班上少部分同学的灵感和智慧。在课堂中,如果我能及时捕捉这一信息,并因势利导,我相信本节课,不仅能找出三角形三条边的关系,还能找出能否三角形的三条线段的最优化方法,一定会为本节课增色不少。

《三角形的三边关系》教学反思

《三角形的三边关系》主要让孩子们在动手操作、测量、讨论的活动中,经历探索三角形三边关系的过程。进一步认识三角形,了解三角形三边之间的关系,知道三角形任意两遍之和大于第三边。本节课是让学生以小组活动动手操作的形式充分感知三角形的三边关系。我认为有以下几点和我的教学设计是相符的,达到了预期的效果。比如:(1)学生的独立思考与合作交流结合在一起。

在组织活动之前,我提出问题“如何围成一个三角形"让学生有了自己的认识后,在小组合作解决,最后全班共同交流看法,使学生学会了怎样去解决问题,并在

这一过程中学会了怎样表达于怎样倾听。

(2)在实际应用方面,提供空间让学生发挥自己的方法解决问题,并对他提供展示的机会,由于学生的思考角度不同,解决问题的方法也是多样化的,让学生通过思考交流,比较各自方法的特点,选择一种适合自己的方法,去解决问题。

(3)用学生喜欢的游戏作练习,吸引学生的兴趣,在快乐的氛围中学到了知识。体验学习数学的挑战性和数学结果的确定性。

整个教学过程可以说较好的达到了预期的效果,但某些环节确实需要进一步的改进于思考。如:(1)让学生在自主计算、亲身比较的过程中,感受锐角三角形两遍之和大于第三边在这个环节我下的力度有一点大,使课堂有一点延时。

(2)有的学生对给出的小棒没能充分运用,说明孩子们在解决问题时有时思考是不灵活的。在平日的教学中我们就要多鼓励学生发表自己的意见,不规定固定的模式。

《三角形三边的关系》教学反思

“三角形三边的关系”是“三角形”中的第三课时,三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的任意两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。

在教学中,我根据小学生喜欢玩的天性,首先设计让学生围三角形的动手操作活动,使学生一开始就进入学习状态,同时也使学生产生认知冲突,为后面的学习铺好路。

1、苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。” 在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的三条线段不一定都能围成三角形”这一知识却似懂非懂。另外,“三角形任意两边的和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论。再次,学生的操作材料都有一定的粗细,在实践操作时难免产生误差,此时,可恰当地运用多媒体动态演示,能有效地突破教学难点。既满足了学生的这种需要,也让学生在高昂的学习兴趣中学到了知识,体验到了成功。

2、课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中我充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我也欣喜地发现,通过练习,学生还在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。学生的能力不可限量啊!

3、教材是学习的载体,教学中我充分发挥教材的育人作用,挖掘教材的教育功能,而不把教材撇开一边。从上面可以看出,这副图既能让学生领悟知识与实际的结合,又能从中学到另外的知识,可谓一举多得。

4、良好的教育一定要致力于学生用自己的眼睛去观察,用自己的心灵去感悟,用自己的头脑去判别,用自己的语言去表达,要能使一个人成为真正的人,成为他自己,成为一个不可替代的大写的“人”。本节课,我在教学中充分体现了这一观点。先是设计了“围三角形”这一环节,让学生在动手操作中用自己的眼睛去观察,接着设计汇报展示这一环节,让学生用自己的语言去表达,在听别的同学汇报时,让学生用自己的头脑去判别,用自己的心灵去感悟。在后面的教学中,我继续抓住这一教育思想对学生施教,让学生在学习中感受到了生命的存在与价值,体验到了自己主动建构知识的快乐,取得了满意的教育效果。

《三角形三边的关系》教学反思

根据新课标理理念“学生是学习的主人,把课堂还给学生,课堂是学生交流知识,获得能力,体验情感的摇篮”。一堂课的亮点应是“从学生思维的起点、兴趣的切入点开始,让学生一气呵成,从而学会学习”。本堂课的设计主要是从学生的角度出发,思路为“创设情景——激发学习欲望——创设实验——鼓励学生动手、观察、猜想——几何画板演示——理论验证——分层过关应用——鼓励学生大胆发表自己的想法——课堂小结”。

通过创设情景,同学们带着实际问题,迫不及待地积极动手实验,大胆猜想结论,然后师生合作论证,这时几何画板起到恰到好处的演示作用,让结论从特殊升华为一般。习题中的设计注重围绕三边关系满足的条件展开,并在等腰三角形中设计对底边和腰的分类讨论。学生参与探索知识,掌握得快,反应也快。学生认真练习,教师特别给有不同答案的学生创设上台发言的机会,分析出错的原因。同学们不仅能学到知识,锻炼表达能力,更能锻炼胆量,给学生留下较深印象

《三角形三边的关系》教学反思

推荐《三角形三边的关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的三条线段不一定都能围成三角形”这

一知识却似懂非懂。另外,“三角形任意两边的和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论,并且找到简单的判断方法。

本节课的教学,我认为重点在于探究的过程与方法。通过动手用三根小棒围三角形(有的能围成,有的围不成),引导学生进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律。本节课,我设计了一连串的问题:“都用三根小棒去围三角形,为什么1、2、3号能围成一个三角形,4、5号却怎么也围不成三角形?”、“要围成三角形,它的三边长度有什么关系?”引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。同时结合多媒体教学的优势,突破教学难点。因为三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。课件应用,能动态呈现出来,学生看得比较清楚。例如:在验证“当较短的两根小棒长度之和等于第三根” 和“当较短的两根小棒长度之和小于第三根”能否围成三角形的猜想时,有些小组没经历过实际操作过,可能猜想时意见不一,而且因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。利用课件引导学生明白当较短的两根小棒的端点搭在一起时,就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。

课堂上我也尽量把学生作为学习的主体。整节课的新授部分,以学生创作的作品作为整个学习的素材。通过观察、分析这些学生的作品,初步得出“三角形两边的和大于第三边。”并进一步修改得出“三角形任意两边的和大于第三边。”,继续结合学生作品理解“任意”,并且自己随意画一个三角形进行验证,找出简单的判断方法,即“较短两边的和大于第三边。”

人教版数学《三角形三边关系》教学反思

一、教学中的成功体验

1.创设情境,让学生主动参与教学。为每个小组提供4根小棒:3厘米、4厘米、8厘米、9厘米,让学生从4根小棒中任意取3根,试着摆三角形。并设计“从中你有什么发现?”这样的问题情境,为学生自主学习搭建一个平台,让学生在更自由、更广阔的空间中去合作、探索和发现。

学生在小组的合作与探究中发现:四根小棒通过不同的组合,在出现的四种情况中,有两种情况摆不成三角形,有两种情况能摆成三角形,事实推翻了学生头脑中以前的错误认知,激起了思维的矛盾,使学生不得不重新认识三角形三边之间的关系。这种重新认识是学生对三角形三边关系认识上的第一层次。我抓住这一契机巧妙设疑:为什么这样的三根小棒不能摆成一个三角形,怎样的三根小棒才能够摆成一个三角形呢?学生经历摆的过程直观的发现,两根小棒长度之和小于或等于第三根小棒时,不能摆成三角形,只有大于第三根小棒时,才能摆成三角形,得出了三角形两边之和大于第三边的结论。从而初步认识了三角形三边的关系。这种初步认识是学生对三角形三边关系认识上的第二层次,也是学生思维发展必然经历的一个阶段。原本以为这样的回答会得到我的肯定,然而,我的反应仅仅是“是吗?”二字,这使学生敏感的意识到这种表达可能有问题,问题出在哪呢?学生不得不深思。我适时引导学生思考,前两种情况中的三根小棒为什么摆不成三角形?你认为,对于三角形三边关系,怎样表达更严密?最后学生终于发现:三角形任意两边之和大于第三边。对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。这种深化的认识和理解是学生对三角形三边关系认识上的第三层次。

2.应用练习,思维创造的起点。“出示四组数据的小棒,让学生判断能否摆成三角形“这一练习的设计,让学生判断后并做出合理的解释,应该说已经达到了对知识进行巩固应用的目的,但我又针对两种摆不成三角形的情况提出:“把其中的哪根小棒替换一下,就能摆成一个三角形?这样的小棒有多少根?你能用一句话表示出所有这样的小棒吗?”等一连串的问题,使学生的思维再度倾起波

澜,学生进一步认识到将较短的边变得太长时又会造成新的两边长度之和小于或等于第三边的情况,从而将学生的思维引向深入。

在教学过程中,我改变过去那种教师重知识的传授,学生重课本知识接受的旧观念。努力创新情境,增强学生的问题意识,由行动生问题,由问题生假设,由假设生验证,由验证生新价值。让学生在实践中生动的学,主动的探究,从而提高学生的学习能力,创造性研究的能力,为学生的终身学习打下基础。

3.在课堂学习过程中,学生也能改变过去那种只是被动接受的学习方式,而是自主参与整个过程,主动地去获取新的知识。

二、教学中需要进一步探索的教学方法

1.部分学生不善于通过自我探索获得知识,提高能力,部分学生也不太善于与他人合作学习。因此,在今后的教学过程中,如何培养学生“自主探索,乐于与他人合作学习”的好习惯,如何改变学习方式,还需要做深入的研究。

2.提出问题是创新的关键,由于长期接受学习的影响,学生更习惯回答老师的问题,而不习惯对老师和课本提出问题,如何引导学生提出问题也需要进行深入的研究。

三角形三边关系的教学反思

三角形边的关系是在认识了三角形的“分类”和“内角和”的基础上进行教学的。教学重点主要是探讨:任意三根小棒能否围成三角形?研究“三角形三边的关系”得出“较短两边之和大于第三边”我不急于给学生答案,而是经过讨论验证后用“任意”代替“较短”,这样学生更清晰。本节课我主要是让学生经历一个探究解决问题的过程,引导学生先发现问题、提出假设、实验验证、得出结论、实践应用的过程。我在教学中,关键是抓住“任意的三条线段能不能围成一个三角形?”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?

初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。我这样设计要体现了以下三点:

1、创设问题情景,以疑激思。

学生的积极思维往往是由问题开始,又在解决问题中得到发展。因此,课堂一开始,我是让学生拿出课前准备好的四组小棒,让学生动手摆一摆并提出“是否任意三条线段就一定能围成三角形呢?”设置悬念,引起学生的积极思考,让学生对三角形三边的关系产生好奇,引发学生探究欲望,从而去探索解决问题的方法。

2、实现数学知识的再创造。

“再创造”是指创设合适的条件,让学生在学习数学的过程中,经历一遍发现、创新的过程,即根据自己的体验,用自己的思维方式重新创造有关的数学知识。它是数学学习活动的灵魂。因此在教学中,我有意设置一些动手操作,共同探讨的活动,尽可能多些时间给学生创造展示自己思维的空间和时间,千方百计地让学生参与到知识形成的全过程,从而实现数学知识的“再创造”。如这节课中我设计了让学生动手拼三角形,小组讨论三角形边的关系,通过实践操作、观察、思考学生亲自体验“任意两边之和大于第三边”这一结论的普遍性。使学习真正成为学生自主的活动,也为学生提供了获得成功的机会。

3、密切数学知识与现实生活联系。

苏霍姆林思激曾经说过:源于生活的教育是最无痕的教育。数学离不开生活,数学知识源于生活而最终服务于生活。本节课我结合学生已有的生活知识和生活经验,创设学生熟知的、贴近他们生活实际的教学活动情境,架起现实生活与数学学习的桥梁,使学生从周围熟悉的事物中学习,感受数学与现实生活的联系。如新授后我让学生解答成长书的25页“小林去学校那条路近?”练习中的“盖三角形房架”等都是从生活经验出发,让学生感受到生活中处处有数学,数学就在我们身边。

第五篇:人教版小学数学四年级下册《三角形三边的关系》教学设计

教学设计

人教版小学数学四年级下册《三角形三边的关系》教学设计 教学目标:

1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。

教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。

教学准备:教学课件、不同长度纸条若干张、实验表格。教学过程:

一、设疑导入

1、师:上一节课我们认识了三角形,谁来说一说什么样的图形叫三角形?

那么任意给你三条线段是不是都能围成一个三角形呢?这节课我们继续研究有关三角形的知识。

2、出示情境图。

师:请同学们看屏幕,小明从家到学校共有几条路线?(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从家经过邮局去学校;从家直接到学校;经过商店去学校。)

师:伸出手来指一指,比划一下。(感知三条不同的路线)师:仔细观察走哪条路最近呢?为什么?

(学生会说出中间这条路线最近,但原因说不清楚。)看屏幕(课件将折线、曲线拉直与中间的线段比较更形象)师:看来同学们的观察是正确的。如果再来这样的一条,又一条,师用手比划另两条不同的路线你认为最短的路线是哪一条?

(学生会说出:还是中间这条路线最近)

3、师:看来两点之间所有连线中线段最短,这条线段的长度叫两点间的距离。看屏幕读结论

4、同学们再观察这幅路线图你能找到我们学过的的图形吗?(学生会说有一个三角形)

师:小明家、学校、邮局三地用路线围成了一个三角形。在这个三角形里,直接去学校的路程是三角形的一条边,经过邮局去学校的路程又是这个三角形的什么呢?

师:看到这里,你们猜猜看,三角形三条边之间会有怎样的关系呢?(也就是两条边加起来的和与另一条边有什么关系?)

(学生通过观察会猜出:三角形两边的和大于第三条边)师:是不是所有是三角形的三条边都有这样的关系呢?也就是两条边加起来都大于第三条边呢?如果小于或等于的时候又是什么情况?就是我们这节课要研究的内容。揭示课题:三角形三边的关系。

二、自主探究 我们先来做个实验

1、动手实验1:用三张纸条围一个三角形。

师:同学们的桌上都有一些不同长度的纸条,把每张纸条看作一条线段,请大家随意拿三张来围一围,看看有什么发现?(小组合作)

预设:每个小组可能会任意选择3张纸条去摆三角形,结果发现:用长5cm,7cm和15cm的三张纸条,没有围成;用长5厘米、7厘米和12厘米的三张纸条,也没有围成;用长5厘米、12厘米和15厘米的三张纸条可以围成三角形;用长7厘米、12厘米和15厘米的三张纸条可以围成三角形.教师可以让学生汇报:

师:通过刚才围三角形,你发现了什么?

生:发现有的三条线段能围成三角形,有的三条线段不能都围成三角形。

师:你认为是什么原因导致这三条线段不能围成三角形。生:(有一根太长或太短)

师:通过刚才是实验,我们可以发现三角形三条边在长短上有一定的关系,究竟怎样的三条线段才能围成一个三角形?让我们再来做一个实验。

2、动手实验2:进一步探究怎样的三张纸条才可以围成三角形。1)师:用信封中的三张纸条围一个三角形:每组中有四个信封,1号同学用1号信封、2号同学用2号信封...其中一位同学操作时其他同学注意观察看能否围成一个三角形并思考为什么?

课件展示实验要求让一名学生读实验要求。2)生动手操作师巡视

3)完成的小组请坐好,哪个小组来展示你们的实验结果 学生汇报展示、交流:

4)师总结:实验结果有两种情况1、2组的线段不能围成三角形;

3、4组的线段能围成三角形。对于不能围成三角形的两组线段中其一有两条线段两端不能相连。另一组当两条线段两端连起来时就形成一条线段。

5)课件演示每一组线段围三角形的情况。

6)师:看来能否围成三角形与三角形两边的和与第三边的大小有关系。下面我们一起来看看每一组中的三条线段围三角形的情况。

7)归纳发现总结规律: 不能围成三角形(1)5 7 15 5+7<15 5+15>7 7+15>5(2)5 7 12 5+7=12 5+12>7 7+15>5 能围成三角形(3)5 12 15 5+12>15 5+15>12 12+15>5(4)7 12 15 7+12>15 7+15>12 12+15>7 对比这四组中每两边长度的和与第三边的长度比较你发现了什么? 生发现:

两边之和大于第三边,能围成三角形

师:也就是说存在一组两边的和大于第三边时,就能围成三角形?

看不能围成三角形的两组中的关系式都存在两组两边的和大于第三边但并不能围成三角形。

对于三角形的三边关系,怎样表达更严密?生讨论后汇报、交流,引导学生明确:给定的3条线段,不管哪两条线段相加的和都比第三条线段大,就能确定这3条线段一定能围成一个三角形。

进一步引导学生抽象出:三角形任意两边的和大于第三边。师生共同归纳、课件展示三角形三边的关系

8)小结:看三条线段能否围成一个三角形,看每两条线段的和是否大于第三条线段,也就是三条线段两两相加再与第三条线段比较。两两相加需要列出三个算式比较麻烦。有没有更简便的方法列出一组关系式就能判断是否围成一个三角形呢?小组内讨论交流

汇报:生:先找出较短的两条边看它们的与第三条边比大小,如果和大一些,能拼成三角形;如果和相等或小一些,则不能拼成三角形,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边。

师:这是为什么呢?

生:因为三条边中若用最大的边与其他两边分别相加时一定大于第三边的。最大的边本身大于另外两条边,再加上一条边就更大于第三边了。

师:是的,你理解的非常透彻。所以我们在判断三条边能否围成三角形时往往只要看较短的两条边的和能否大于三条边,这种方法既快又对。

(通过谈收获,说方法,提疑问,学生间互相补充,共同完善,有利于培养学生的学习能力,有利于帮助学生形成自我反思的意识)

三、拓展应用:

1、用今天学过的知识说一说,为什么中间的路线最短?

2、下面的三条线段可以围成一个三角形吗?能的打“√(单位:厘米)(1)4,3,2

(2)3,1,2(3)3, 3, 3

3、将两条短的边相加与最长的边相比,如果大于,就能围成三角形。

在能拼成三角形的各组小棒下面画“√”(单位:cm)

(1)

cm

cm cm

()(2)3 cm cm

cm

()(3)2

cm

cm cm

()(4)3

cm

cm cm

()注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。

4、我能行

(1)任意三条线段都能围成一个三角形()

(2)因为a+b>c所以a.b.c三边可以围成三角形()

(3)小明想要给他家的小兔做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是6分米第三根木条可以是多少分米?(取整数)

(设计意图:联系生活实际,充分挖掘教材资源,练习设计层层深入,既巩固了新知,又拓展了学生的思维,培养了学生的创新意识和解决问题的能力)

师: 通过刚才的练习,你们不仅掌握了判断某三条边能否围成一个三角形,并且还找出了最佳的判断方法,可见只要大家肯动脑筋,一定会取得令人满意的结论的。

四、回顾总结

同学们,今天学到了什么知识?你最大的收获是什么? 板书设计: 三角形三边的关系

不能围成三角形 能围成三角形

(1)5 7 15 15 5+7<15 512>15 5+15>7 515>12 7+15>5 1215>5(2)5 7 12 15 5+7=12 7+12>15 5+12>7 7+1512 7+15>5 12+15>7

3)5 12 +++4)7 12 >((

下载新人教版小学数学四年级下册《三角形三边关系》教学案例、反思5篇word格式文档
下载新人教版小学数学四年级下册《三角形三边关系》教学案例、反思5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四年级数学下册《三角形三边的关系》教案(精选五篇)

    四年级数学下册《三角形三边的关系》教案 [背景与导读]:“三角形三边的关系”是人教版课程标准实验教材四年级下册“三角形”中的第三课时,该课时是在学生初步了解了三角形的......

    四年级下册数学学案-《三角形三边的关系》人教版

    《三角形三边的关系》教学设计成绵路小学黄金惠黄金惠学一、说教材《三角形三边的关系》是人教版义务教育课程标准实验教科书四年级下册第5单元的重要内容之一。教材先安排......

    《三角形三边的关系》教学反思

    三角形三边关系教学反思《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学......

    《三角形三边关系》的教学反思

    《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来......

    《三角形三边的关系》教学反思

    今天早上在教学评估活动中,我讲授了《三角形三边的关系》一课,我对这一节课有以下点反思:1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。数学教学应结合生活实......

    《三角形三边关系》课后教学反思

    《三角形三边关系》教学内容:“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生......

    四年级下册《三角形三边的关系》教学设计人教版

    教学目标: 1,通过量的量,放一个摆,计算操作员等实验活动,探索找到两边三角形和大于第三边,并应用这种关系解释一些生命现象,解决一些简单的生活问题。 2,在实验过程中培养学生的......

    四年级《三角形的三边关系》教学设计

    四年级《三角形的三边关系》教学设计 四年级《三角形的三边关系》教学设计 教学内容:四年级下册第62面 教学目标:1、学生能够理解两点之间线段最短及两点间距离的含义,并在操......