第一篇:平行线的性质 教学设计方案)
平行线的性质 教学设计方案
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习习近平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).
1.如图1,(1)∵(已知),∴().
(2)∵(已知),∴().
(3)∵
2.如图2,(1)已知
(2)已知
,则
(已知),∴
,则 与
与
().
有什么关系?为什么?
有什么关系?为什么?
图2
图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是多少度?
学生活动:学生口答第1、2题.
是,第二次拐的角
师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:
[板书]2.6平行线的性质
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考.
的平行线,结合画图过程思考画出的平
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线得同位角、,利用量角器量一下; 与 有什么关系?
,使它截平行线
与
,学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书]两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力
第二篇:平行线的性质教学设计方案(定稿)
《平行线的性质》教学设计方案
教学目的
1.掌握平行线的三条性质,应用平行线的性质进行简单的推理和计算; 2.培养学生动手能力、观察分析能力和进行简单的逻辑推理能力。教学重点
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。教学难点
能区分平行线的性质和判定,平行线的性质与判定的混合应用。教学过程
一、课前回顾
让学生回顾并回答判断两直线平行的三种方法,即利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。
二、课堂活动
(一)活动介绍
全班分成若干个小组,在老师的引导下进行测量活动。测量在两条平行线被第三条直接所截时,同位角、内错角、同旁内角之间是怎样的关系。
(二)活动工具
小木条、笔纸、作图工具(量角器、直尺、三角尺)、剪刀。
(三)活动过程
1、分成若干小组,各个小组进行分工;
2、作两条直线被第三条直线所截,标识出同位角;
3、猜想同位角的特点;
4、利用量角器度量同位角的度数,并记录;
5、剪出一对同位角,叠合,记录并总结结论;
6、返回步骤2,分别标识内错角、同旁内角,分别记录他们的度数和结论。
(四)活动总结
由各个小组进行活动总结。得出在两条平行线被第三条直接所截时,同位角、内错角、同旁内角之间是怎样的关系的结论。
三、理论证明
该环节由老师讲解。
平行线的性质一:两条平行线被第三条直线所截,同位角相等。理论证明如下:
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD。
求证:∠1=∠2. 证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2. ∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的。∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等。理论证明如下:
已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.
证明:∵ AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补。理论证明如下:
已知:如图2-34,直线AB、CD被EF所截,AB∥CD. 求证:∠2+∠4=180°. ∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).
四、布置作业
1.如图,AB∥CD,∠1=102°,求∠
2、∠
3、∠
4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠
1、∠
3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
第三篇:平行线的性质 教学设计方案
平行线的性质 教学设计方案(二)教案
作者:佚名 资源来源:网络 点击数:
627 更新时间:2005-7-30
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习习近平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).
1.如图1,(1)∵
(已知),∴
().
(2)∵(已知),∴().
(3)∵
2.如图2,(1)已知
(2)已知,则
(已知),∴
,则 与
与
().
有什么关系?为什么?
有什么关系?为什么?
图2
图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角第二次拐的角 是多少度?
是,学生活动:学生口答第1、2题.
师:第3题是一个实际问题,要给出质.板书课题:
[板书]2.6平行线的性质
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线
的平行线
,结合画图
的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性过程思考画出的平行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考.
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线平行线 与,得同位角
、,利用量角器量一下;
与
,使它截 有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书]两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
教师根据学生回答,给予肯定或指正的同时板书.
[板书]∵
∵(已知),∴
(两条直线平行,同位角相等).
(等量代换).(对项角相等),∴
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等.
简单说成:西直线平行,内错角相等.
师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.
师生共同订正推导过程和第三条性质,形成正确板书.
[板书]∵(已知),∴
(两直线平行,同位角相等).
∵(邻补角定义),∴(等量代换).
即:两条平行线被第三条直线所截,同旁内角互补.
简单说成,两直线平行,同旁内角互补.
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵相等).∵知),∴上.)(已知),∴
(已知见图6),∴
(两直线平行,同位角
(已
(两直线平行,内错角相等).∵
.(两直线平行,同旁内角互补)(板书在三条性质对应位置
尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):
如图7,已知平行线
、被直线
所截:
图7
(1)从道,可以知道 是多少度?为什么?(2)从
,可以知道
,可以知 是多少度?为什么?(3)从 是多少度,为什么?
【教法说明】练习目的是巩固平行线的三条性质.
变式训练,培养能力
完成练习(出示投影片3).
如图8是梯形有上底的一部分,已知量得角各是多少度?
,梯形另外两个
图8
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.
【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找
和
的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.
[板书]解:∵直线平行,同旁内角互补).∴
(梯形定义),∴,(两
.∴ .
变式练习(出示投影片4)
1.如图9,已知直线
(1)
(2)
(3)
经过点,,.
等于多少度?为什么?
等于多少度?为什么?、各等于多少度?
2.如图10,、、、在一条直线上,.
(1)时,、各等于多少度?为什么?
(2)时,、各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式.
【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.
(四)总结、扩展
(出示投影片1第1题和投影片5)完成并比较.
如图11,(1)∵(已知),∴().
(2)∵(已知),∴().
(3)∵(已知),∴().
学生活动:学生回答上述题目的同时,进行观察比较.
师:它们有什么不同,同学们可以相互讨论一下.
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.
【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.
巩固练习(出示投影片7)
1.如图12,已知 .(1)是 和
上的一点,是 上的一点,,平行吗?为什么?
图12
(2)是多少度?为什么?
学生活动:学生思考、口答.
【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.
八、布置作业
(一)必做题
课本第99~100页A组第11、12题.
(二)选做题
课本第101页B组第2、3题.
作业答案
A组11.(1)两直线平行,内错角相等.
(2)同位角相等,两直线平行.两直线平行,同旁内角互补.
(3)两直线平行,同位角相等.对顶角相等.
12.(1)∵
(已知),∴
(内错角相等,两直线平行).
(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).
B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).
∵上).又∵∵(已知),∴
(两直线平行,同位角相等),.∴
.
(同 .又
(已证),∴(平角定义),∴
3.平行线的判定与平行线的性质,它们的题设和结论正好相反.
第四篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第五篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力