定子调压调速技术在炼钢天车的应用

时间:2019-05-12 04:33:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《定子调压调速技术在炼钢天车的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《定子调压调速技术在炼钢天车的应用》。

第一篇:定子调压调速技术在炼钢天车的应用

定子调压调速技术在炼钢天车的应用

工作单位:酒钢炼轧厂炼钢设备保障作业区作

者:裴 兴 怡

定子调压调速技术在炼钢桥式起重机的应用

摘要:本文主要介绍了三相异步电机的工作原理和调速方法,在调速方法中重点分析对比了转子串电阻调速和晶闸管定子调压调速的基本原理和两种调速方法的各自特点。通过分析对比得知定子调压调速技术在今后的设备改造中将是一种既节约费用,又简单易行的技术方案,同时对炼钢天车技术改造提供了有力的技术支持。

关键字:定子调压调速 机械特性 串电阻 晶闸管 引言:

三相异步电动机的调速经过了长期的演变过程,人们在电动机的调速和转矩控制上做过了大量的研究,尝试过使用各种不同形式的调速方法,随着大功率和高开关频率的半导体器件的开发研制成功,以及现代数字技术的普及应用,为我们提供了驱动控制电动机的新的方法。目前桥式起重机电机调速控制应用最多的是三相绕线式电动机转子串电阻调速,下面就介绍一下用于转子串电阻调速与晶闸管定子调压调速的基本工作原理与优缺点。三相异步电动机工作的基本原理 1.1 基本公式

从电网输入电动机的功率

三相异步电动机调速 2.1 转子串电阻调速

主要介绍用于起重机起升机构用的两挡反接控制,机械特性如图1 所示。两挡反接制动是指起升机构在满载或75%负载下,可以达到满速下降的目的。在返回停止工作时可达到准确停车,避免在满载情况下下滑而造成意外事故。上升1、2、3 挡人为逐级切除电动机转子电阻,使电动机由机械特性1、2、3 过渡到机械特性4 上,电动机高速运转。满载慢速下降电动机工作在特性5上,电机转子串进一定的电阻值,使电动机处于反接制动状态。轻载下降电动机工作在特性6 上,此时电动机转子串进全部电阻,使电动机的机械特性变得更软。电动机工作在反接制动状态。

虽然在上面两种反接制动状态下能够得到一定的低速,但是不能长时间运行,否则会造成电机发热严重,此时电机的机械特性都比较软,负载转矩瞬间产生的任何波动都会使电机失去控制,将造成严重后果。所以在操

作控制时不允许长时间运行在特性5、6上,要在短时间内切掉转子电阻,使电动机工作在再生发电状态下。绕线式异步电动机转子串电阻调速为开环调速,速度波动比较大,轻载时调速范围比较小,也就是说在载荷较小时起升各挡之间速度变化不明显。下降控制时比较复杂,需要操作人员密切关注机构的运行方向。另外下降过程中无论负载大小,都得不到稳定的低速运行,所以在对下降控制要求较高的冶金及其它行业就不能满足调速要求了。

2.2 晶闸管定子调压调速 2.2.1 调压调速基本原理 由异步电动机的电磁转矩表达式

可知,当电动机各参数及电源频率不变时,且当转差率s 一定时,电动机输出转矩T与电机定子电压U1成正比。当改变定子电压时,可以得到一组人为的机械特性曲线,如图2 所示。

由图2 可以看出,为了在一定的负载转矩下,通过降低定子电压得到低速运转是可能的。但是在降低定子电压得到低速时,由于转差率s 将增大,因此电动机电流随着s 的增大而增大。这样转差功耗就全部消耗在电动机内部,从而致使电动机发热严重。另外由图猿可见,带恒转矩负载TL 时,普通的笼型异步电动机变电压时的稳定工作点为A、B、C,转差率s 的变化范围不会超过0~sm,调速范围很小。为了能在恒转矩负载下扩大变压调速范围,须使电机在较低速下稳定运行而又不致过热,就要求电动机转子绕组有较高的电阻值。图3 给出了高转子电阻电动机变电压时的机械 特性,显然在恒转矩负载下的变压调速范围增大了,所以异步电动机变电压调速时,采用普通电机的调速范围很窄,为了减少电机发热及扩大调速范围,须采用高转子电阻的电机。

晶闸管定子的调压调速装臵,是通过在定子上串联反并联晶闸管并控制其导通角来实现的,可以实现三相绕线转子异步电动机低速稳定运行。但这种调压调速是开环系统,其特性硬度不够,速度波动率大。为了提高其调

速性能可采用有双闭环(速度环和电流环)反馈调压调速控制系统,闭环调速时电动机的机械特性曲线如图4 所示。显而易见闭环系统下的机械特性硬度提高了,速度波动率大大减小。

闭环调压调速系统动态过程为当电动机稳定运行在要求的速度时,一旦负载增大,电机会在较大负载拖动下进行减速,速度反馈值也随之降低,闭环系统给定值不变,速度调节器的输入由于速度反馈的下降而增大,经过速度调节器调节控制晶闸管,增加晶闸管导通角,因而电动机定子电压提高,电动机力矩也增大,电动机开始加速,当速度升至要求值时,速度反馈与给定值相等,速度调节器输出值不再变化,晶闸管导通角不变,电

动机电压也不再升高,电动机力矩与负载力矩达到平衡,电动机又稳定运行于给定值确定的速度值。这种速度调节器为PID调节器,由于积分的作用,所以速度与给定值相等,属无静差调速系统。2.2.2 晶闸管定子调压调速特点

定子晶闸管调压调速闭环系统已在近年得到较广泛的使用。

应用了以上所述的闭环调压调速原理,设计生产的用于起重机电动机的调速装臵,具体特点如下。

1)这种调压调速装臵是专业化设计产品,专门用于驱动起重机的起升机构和运行机构,对起重绕线式电动机进行控制。

2)该装臵是数字化调速设备,由于在设计时充分考虑简便和实用,所以用户在使用时特别方便。该装臵的参数少,而且直观简单,当使用时在保证正确接线的基础上,只需要调整电动机电流参数就可进行正常工作,无须长时间调试和调整。

3)该装臵正反向切换采用交流接触器进行,这样设计就彻底避免了环流发生的可能性,因而也不必采用快速熔断器保护晶闸管的设计方法。用两组晶闸管控制正反向在实际使用中经常产生环流,因而必须采用快速熔断器进行保护。这样在使用时,就必须经常更换快熔,造成故障率提高,给使用维护带来不便。

该装臵由于无环流发生的可能性,再加上晶闸管选择上的考虑,因此只需用带电子脱扣器的断路器保护即可,方便使用。

该装臵控制接触器切换时,是在无电压无电流的情况下进行的,这样在接触器的选择上就可按接触器的约定发热电流进行,在寿命的选择上,只考

虑机械寿命即可。

另外,利用正反向接触器控制电动机比较直观可靠,容易判断故障,同时我们利用正反向接触器辅助触头与制动器进行连锁,就非常可靠的保证了制动器只有在电动机带电的情况下才能开闸,使运行及控制更加可靠。4)由于调压调速控制系统采用速度闭环,所以必须设臵速度检测环节。该装臵抛弃了原有的容易损坏的测速发电机和安装困难对环境要求高的脉冲偏码器的测速方法,采用电动机转子频率反馈进行测速,这样就大大降低了改造难度,降低了使用故障,调速比能够达到1:10。2.2.3 用于起升机构控制逻辑功能简介

用于起升机构的控制系统如图5 所示,机械特性如图6所示。

1)电源电路断路器1Q1 用于对主起升机构电动机及调压调速装臵提供短路及过载保护。

2)数字式定子调压调速装臵是一个速度闭环的现代化交流调速系统,无需测速发电机和编码器,而是采用电动机转子频率作为速度反馈信号。当设定电动机低速运行时,通过自动调节电动机定子电压,使电动机稳定运行在设定速度上。由于是闭环调速系统,所以,电动机的运行速度不会因为负载的变化而变化,速度波动率很小。

3)正、反向接触器1KM11与1KM21 用于控制电动机的运行方向。正反向接触器的动作均由THYROMAT 控制,其动作顺序为机构上升运行时,正向接触器1KM11吸合,电动机加上了正向相序,使电动机处于正向电动状态,带动机构正向起升。上升1、2、3挡为低速调速挡,速度分别设定为10%、20%、30%,上升4 挡为全速挡,此时输出全电压,控制电

动机以额定速度运行。机构下降运行1—3挡时,首先正向接触器1KM11吸合,通过调节电动机定子电压,使电动机处于反接制动状态,靠负荷拉动机构下降运行,以获取低速运行。当吊运负荷重量很轻,无法拉动机构下降运行时,会自动进行检测。当在1.5 s内,机构还未运转,就自动判断负荷为轻载,在零电流的情况下控制正反向接触器的切换,使反向接触器1KM21 吸合,让电动机处于反向电动状态,达到设定速度。若由于某种原因吊运的负荷变重,会自动控制正反向接触器回复到反接制动状态。下降4 挡时,控制反向接触器吸合,使电动机处于反向电动状态,当负载重时,电动机速度超过同步速处于再生发电制动状态。

控制手柄由下降4 挡回复到下降1—3挡时,会自动控制正反向接触器在零电流的情况下迅速切换,让电动机迅速进入反接制动状态,制动负荷进入下降低速状态。

4)转子接触器在每个电动机的转子上均串接了电阻,用于消耗电机低速运行时产生的热能,电阻器分为四段。上升调速挡时,1KM43吸合切除最后一段电阻,加大电机启动力矩。上升4 挡时,通过THYROMAT 控制另外两个转子接触器1KM42、1KM41分别在50%,75%速度下闭合,分别切除

5)控制电路中还具有零位、失压、限位等保护功能。

结语

该定子调压调速装臵目前应用于炼钢EF跨20#天车、FG跨10#天车起升系统拖动,运行稳定故障率低,设备维护工作量小,这种调压调速装臵的使用能够有效地降低起重机的机械冲击,从而使起重机的运行更加稳定、可靠。

参考文献:

[1] 《电机学》第二版 史乃 主编 机械工业出版设

[2] 《电力拖动自动控制系统---运动控制系统》第三版 陈伯时 主编 机械工业出版社 [3] 《电机及拖动基础》第三版 顾绳谷 主编 机械工业出版社 [4] 《电气与可编程控制技术》 邓则明 主编 机械工业出版社

第二篇:变频调速在天车的应用分析

PLC-变频器在桥式起重机中的应用分析

引言

随着电力电子技术的发展,PLC、变频器等自动化产品在电力拖动领域得到了广泛应用。起重机械采用PLC-变频器调速逐渐得到推广和普及,PLC程序控制取代传统的继电-接触器控制逐渐成为起重机械电气控制的主流;用变频电动机或异步电动机取代绕线电机,再配合先进的现场总线技术和人机界面系统,提高了设备控制精度和稳定性,降低了故障率,且节能效果显著,易于检修维护,成为提高企业生产效率的好途径。

1 起重机械的组成及负载特点

起重机械最基本的工作机构有以下四种:即起升机构、小车机构、大车机构。起升机构是主要功能机构,其正反转工作变换比较频繁,每次的起吊重量差别比较大,且具有恒转矩负载的特点。起重机械的起升机构由电动机、减速器、卷筒等部分组成,其作用可将原动机的旋转运动转变为吊钩的垂直升降运动,实现吊具垂直升降的目的功能不可缺少的部分。

由于重物在空中具有位能,重物上升时,是电动机克服各种阻力(包括重物的重力、摩擦阻力等)而做功,属于阻力负载;重物下降时,由于重物本身具有按重力加速度下降的能力(位能),因此,当重物的重力大于传动机构的摩擦阻力时,电动机成为了能量的接受者,故属于动力负载。但当重物的重力小于传动机构的摩擦阻力时,重物仍须由电动机拖动下降,仍属于阻力负载。

为使重物在空中停止在某一位置,在起升机构中还必须设置制动器和停止器等控制部件。为了适应不同吊重对作业速度的不同要求,起升速度应能调节,并具有良好的微动控制性能。微动速度一般在0.25~0.4m/min范围。

通过对起升机构分析不难发现,其工作中的主要有三种转矩:

(1)电动机的转矩TM,即由电动机产生的转矩是主动转矩,其方向可正可负;

(2)重力转矩TG,即由重物及吊钩等作用于卷筒的转矩,其大小等于重物及吊钩等的复合重量G与卷筒半径r的乘积:

TG=G·r(1)

TG的方向永远是向下的。

(3)摩擦转矩T0,即由于减速机构的传动比较大,减速机构的摩擦转矩(包括其他损失转矩)不可忽视。摩擦转矩的特点是,其方向永远与运动方向相反。

2 变频调速的基本原理与电动机的机械特性 2.1 变频调速的基本原理

一般三相异步电动机调速方法有:(1)改变磁极对数p来改变电机转速,所得到的转速只能是3000、1500、1000…,为有级调速;(2)改变转差率s调速,常用的方法是改变定子电压调速和滑差电机调速,该方法转子损耗较大,效率低;(3)改变定子电源频率f1,其调速属于改变同步转速n1调速,由于没有人为的改变s,转子中不产生附加的转差功率损耗,所以效率高。其是一种较为理想的调速方法,但变频调速需要较复杂的控制电路组成。

三相异步电动机同步转速为(2)

式中,p——磁极对数;

f1——定子电流频率,即电源的频率,f1=50Hz;

s——转差率,即同步转速与转子转速二者之差与同步转速的比值。

由于交流电的频率,T为交流电的周期。变频调速就是改变逆变器输出交流电压的周期,就可以改变交流

电压的频率f。所谓改变周期,实际上是在控制电路上采用晶闸管,通过改变晶闸管的导通时间,实现交流电周期的改变。导通时间越短,输出交流电压周期越短,频率越高。即从控制上,用改变晶闸管门极驱动信号的频率控制逆变器输出电压的频率f1,从而实现电动机工作速度的调节。2.2 电动机变频调速的机械特性

起重机械各部分的拖动系统,一般都需要调速,在变频调速问世之前,已经发明了多种调速方法,获得了广泛的应用。例如:增大或改变转子回路内电阻的调速、电磁调速电动机等等。比较常见的是采用绕线转子异步电动机,调速方法是通过滑环和电刷在转子回路内串入若干段电阻,由接触器来控制接入电阻的多少,从而控制了转速。

n = n0-k(Ra + Ri)T(3)式中,n——电动机的输出转速;

n0 ——电动机理想空载转速;

k——比例系数;

Ra——电枢电阻;

Ri——回路内串电阻;

T ——电枢电流切割磁力线所产生的电磁转矩。

从图2不难发现,由于回路内串电阻的存在,其电动机的机械特性变软,输出速度降低;而机械特性越软,电动机的负载能力越差。

电动机采用变频调速,一方面可以实现节能,另一方面可以保持较硬的机械特性,负载能力较好。下面就起升过程中的电动机工作状态说明变频调速对机械特性的影响情况。

(1)重物起吊上升时,其旋转方向与电枢电流产生的转矩方向相同,即电动机受正向转矩作用,其机械特性在第1象限,如图3中之曲线①和所示,工作点为A点,转速为n1;

当通过降低频率而减速时,在频率刚下降的瞬间,机械特性已经切换至曲线②了,工作点由A点跳变至A’点,进入第二象限,其转矩变为反方向的制动转矩,使转速短时下降,并重新进入第一象限,至B点时,又处于稳定运行状态,B点便是频率降低后的新的工作点,这时,转速已降为n2。

(2)空钩(包括轻载)下降时,吊钩自身是不能下降的,必须由电动机反向运行来实现。此时电动机的转矩和转速都是负的,故机械特性曲线在第三象限,如图4中之曲线③,工作点为C点,转速为n3;

当通过降低频率而减速时,在频率刚下降的瞬间,机械特性已经切换至曲线④、工作点由C点跳变至C’点,进入第四象限,其转矩变为正方向,以阻止吊钩下降,所以也是制动转矩,使下降的速度减慢,并重新进入第三象限,至D点时,又处于稳定运行状态,D点便是频率降低后的新的工作点,这时,转速为n4。

(3)重载下降时,重物将因自身的重力而下降,电动机的旋转方向是反转(下降)的,但其转矩的方向却与旋转方向相反,是正方向的,其机械特性如图5的曲线⑤所示,工作点为E点,转速为n5。这时,电动机的作用是防止重物由于重力加速度的原因而不断加速、达到使重物匀速下降的目的。在这种情况下,摩擦转矩将阻碍重物下降,故重物在下降时构成的负载转矩比上升时小。

2.3 电动机变频调速与原拖动系统调速的机械特性比较

(1)重物上升时,两种调速方式其机械特性都在第一象限,如图6所示,曲线①表示变频调速时的机械特性,转速为nl。曲线②表示通过转子电路串入电阻来实现调速时的机械特性,即电压调速。从两条曲线可以看出,工作点由A点对应A’点,电动机的转矩大为减小,拖动系统因带不动负载而减速,直至到达B点时,电动机的转矩重新和负载转矩平衡,工作点转移至B点,转速为降n2,负载能力相对于变频调速变化明显。

(2)轻载下降时两种调速方式其工作特点与重物上升时相同,只是转矩和转速都是负的,机械特性在第三象限,如图6的曲线③和曲线④所示。

(3)重载下降时,原拖动系统的电动机从接法上说,是正方向的,产生的转矩也是正的。但由于在转子电路中串入了大量电阻,使机械特性倾斜至如曲线⑤所示。这时,电动机产生的正转矩比重力产生的转矩小,非但不能带动重物上升,反而由于重物的拖动,电动机的实际旋转方向是负的,其工作点在机械特性向第四象限的延伸线上,如图中E点所示,这时,转速为n5。这种工作状态的特点是:电动机的转矩是正的、却被重物“倒拉”着反转。解决这种现象的途径只能是选择较大的功率,这无形便增加了设备成本。

与变频调速方式(如图5所示)相比较,在重载下降时,两种调速方法的工作点都在第四象限,但电动机的工作状态是不同的。

3 采用变频调速需要注意的问题

(1)重物起吊时起动转矩Ts较大,通常在额定转矩 TN的150%以上。考虑到在实际工作中可能发生的电源电压下降以及短时过载等因素,一般情况下,起动转矩 Ts应按照额定转矩TN的150%~180%来进行选择:

Ts =(150% ~ 180 %)TN(4)

(2)起升机构工作过程中,在重物刚离开泊位上升的瞬间以及在重物刚到达新泊位下降的瞬间,负载转矩的变化是十分激烈的,应引起注意。

(3)起升装置在调整缆绳松弛度时,以及移动装置在进行定位控制时,都需要点动运行,应充分注意点动时的工作特性。

(4)在重物开始升降或停止时,要求制动器和电动机的动作之间,必须紧密配合。由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需要一定的时间(约6s),而电动机转矩的产生或消失是在通电或断电瞬间就立刻反映的。因此,两者在动作的配合上极易出现问题。如电动机已经通电,而制动器尚未松开,将导致电动机的严重过载;反之,如电动机已经断电,而制动器尚未抱紧,则重物必将下滑,即出现溜钩现象。起重机械变频调速采取的措施

4.1 选择合适的变频器容量

在起重机械中,因为升、降速时的电流较大,应求出对应于最大起动转矩和升降速转矩的电动机电流。

通常,起重机械用变频器容量按以下步骤求出:

(1)恒定负荷上升时的电动机容量PMN(kW)(5)

式中,GN——额定重量(kg),具体计算时,应考虑须有125%的过载能力;

v——额定线速度(m/min):

η——机械效率。

(2)变频器容量

变频器的额定电流可由下式求出:

变频器额定电流>电动机额定电流×(6)式中,k1——所需最大转矩÷电动机额定转矩;

k2——1.5(变频器的过载能力);

k3——1.1(余量)。4.2 溜钩的预防措施

起升机构中,由于重物具有重力的原因,如没有专门的制动装置,重物在空中是停不住的。为此,电动机轴上必须加装制动器,常用的有电磁铁制动器和液压电磁制动器等。多数制动器都采用常闭式的,即:线圈断电时制动器依靠弹簧的力量将轴抱住,线圈通电时松开。

为了有效地防止溜钩,某些新型变频器设置了一些独特的制动功能,如:

(1)零速全转矩功能变频器可以在速度为0的状态下,电动机的转矩也能达到额定转矩的150%。这就保证了吊钩由升、降速状态降为零速时,电动机能够使重物在空中暂时停住,直到电磁制动器将轴抱住为止,从而防止了溜钩。

(2)直流强励磁功能变频器可以在起动之前和停止时,自动进行强直流励磁。使电动机有足够大的转矩(可达额定转矩的200%),维持重物在空中的停住状态,以保证电磁制动器在释放和抱住过程中不会溜钩。

4.3 变频调速系统的控制

起重机械拖动系统的控制动作包括:吊钩的升降及速度档次、变幅功能等,都可以通过可编程序控制器(PLC)进行无触点控制。

5 结 语

异步电动机变频调速的电源是一种能调压的变频装置,应用时常采用由晶闸管元件或自关断的功率晶体管器件组成的变频器。除起重机械外,变频调速已经在许多领域内获得广泛应用。可以预见,随着生产技术水平的不断提高,变频调速必将获得更大的发展。

参考文献

1.王进.施工机械概论.北京:人民交通出版社,2002

2.李发海,王岩.电机与拖动基础(第二版).北京:清华大学出版社,2001

3.陈洪礼.交流电动机的近代调速系统.内蒙古:内蒙古大学出版社,1992

4.郑堤,唐可洪.机电一体化设计基础.北京:机械工业出版社,2002

第三篇:交流变频调速技术在天车的改造

(一)前言

1、交流电动机传统调速控制技术介绍

随着我国工业生产的快速发展,对起重机调速性能要求在不断提高,由于起重机使用的电动机都是三相异步绕线式电动机,调速的方法比较单一,对起重机使用的绕线式电动机传统的调速方法有以下几种:

定子调压调速——控制加于电动机定子绕组的电压:

当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值较大的绕线式电动机,或者在绕线式电动机上串联频敏电阻。在电子的调压调速技术诞生之前,这两种方法是在定子调压中主要使用的方法。

绕线式异步电动机转子串入附加电阻调速:

绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。这种方法是使用最为广泛的一种调速方法,目前还有很多起重机在使用这种方法。

绕线转子异步电动机转子串电阻调速,缺点是绕线转子异步电动机有集电环和电刷,要求定期维护,由集电环和电刷引起的故障较为常见,再加上大量继电器、接触器的使用,致使现场维护量较大,调速系统的故障率较高,而且调速系统的综合技术指标较差,对机械的冲击很大,已不能满足工业生产的特殊要求,特别是象我厂这样的冶金企业。

2、交流变频调速技术的发展及优势

随着电力电子技术、微电子技术和控制理论的发展,电力半导体器件和微处理器的性能不断的提高,交流变频驱动技术也得到了飞速的发展,应用越来越广泛,作为交流调速系统中重要部分的变频器技术也取得了显著的发展,并逐渐进入了实用阶段。目前,变频器不但在传统的电力拖动系统中得到了广泛的应用,而且几乎扩展到了工业生产的所有领域,并且在许多的家电产品中也得到了广泛的应用,例如像变频空调、变频微波炉、变频电冰箱等。

通过改变交流电频率的方式实现交流电控制的技术就叫变频技术。而变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通

过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。

利用变频器控制对交流电动机进行控制相对传统控制有许多的优点:如节能;容易实现对现有电动机的调速控制;可以实现大范围内的高效连续调速控制;容易实现电动机的正反转切换;可以高频度的起停运转;可以进行电气制动;可以对电动机进行高速驱动;可以适应比较恶劣的工作环境;用一台变频器对多台电动机进行调速控制;变频器的电源功率因数大,所需电源容量小,可以组成高性能的控制系统等。

在采用了变频器的交流拖动系统中,异步电动机的调速控制是通过改变变频器的输出频率实现的。因此,在进行调速控制时,可以通过控制变频器的输出频率使电动机工作在转差率较小的范围内,使电动机获得较宽的调速范围,并可达到提高运行效率的目的。

变频器驱动系统是通过改变变频器的输出频率来达到调速目的的,当变频器把输出频率将至电动机的实际工作频率以下时,负载的机械能将被转换成电能,并回馈到变频器,而变频器则可以利用自己的制动回路将这部分能量以热能消耗或回馈给电网,并形成电气制动。与传统的机械制动相比,电气制动可靠性好、维护简单、对机械系统有较好的保护。但是应该注意到一点,由于在静止状态下,电气制动并不能使电动机产生保持转矩,所以在某些场合还必须与机械制动器配合同时使用。

在使用电网电源对异步电动机进行起动是,电动机的起动电流会很大,通常为额定电流的3~5倍,而采用变频器对异步电动机进行起动时,由于可以将输出频率将至一个很低的值起动,电动机的起动电流很小,对电机会起到较好的保护。

可以看出随着交流变频调速技术在工业界的广泛应用,为交流异步电动机驱动的桥式起重机大范围、高质量地调速提供了全新的方案。它具有高性能的调速指标,可以使用结构简单、工作可靠、维护方便的鼠笼异步电动机,并且高效、节能,其外围控制线路简单,维护工作量小,保护监测功能完善,运行可靠性较传统的交流调速系统有较大的提高。所以,采用交流变频调速是桥式起重机交流调速技术发展的主流。

(二)起重机的简介 1、80/20T起重机的结构与特点

80/20T桥式起重机是炼钢厂经常使用的一种适用于液体金属的起重机,起升高度可达24m,主起升最大起吊重量为80T,副起升的最大起吊重量为20T。该车采用“四主梁结构”,一般由起升机构、小车走行机构、大车走行机构组成。小车部分分为主小车

部分和副小车部分。主小车部分包括:主起升运行系统和主小车运行系统;副小车部分包括:副起升运行系统和副小车运行系统。起重机大车运行机构的驱动方式采用四机构驱动,即大车两侧各有两台电动机和减速机,分布在大车的四个角,每个主动车轮各用一台电动机驱动,使用变频器控制时就要采用一拖二的控制方式,整车共需两台变频器,桥式起重机较多采用制动器、减速器和电动机组合成一体的“三合一”驱动方式。本车的电动运行机构由五个基本独立的拖动系统组成。①大车拖动系统:拖动整台起重机顺着车间做“横向”运动(以操作者的坐向为准)。②主小车拖动系统:拖动吊钩及重物顺着桥架做“纵向”运动。③副小车拖动系统:拖动吊钩及重物顺着桥架做“纵向”运动。④主吊钩拖动系统:拖动重物作吊起或放下的上下运动。重物在空中具有位能,是位能负载。其特点是:重物上升,电机克服各种阻力(包括重物重力,磨擦阻力等)做功,属于阻力负载;重物下降时,当重物重力大于阻力时,电机是能量的接受者,此时负载属于动力负载,但当重物重力小于阻力时,重物下降还要靠电机的拖动,此时负载仍是阻力负载。⑤副吊钩拖动系统:同主起升部分是一样的,只是吊运的重量不同。

相对于提升机构控制,桥式起重机在大车拖动以及小车拖动方面对于变频器的控制要求比较低,所以本文重点介绍安川系列变频器在提升(主起升系统)机构控制上的应用并且对平移(大车系统)机构的设计进行了介绍。提升机构的运转具有大惯性,四象限运行的特点,与其他传动机械相比,对变频器有着更为苛刻的安全和性能上的要求。2、80/20T运行特征

(1)桥式起重机应具有大的启动转矩,通常超过150%的额定转矩,若考虑超载实验等因素,至少应在起动加速过程中提供200%的额定转矩;

(2)由于机械制动器的存在,为使变频器输出转矩与机械制动器的制动转矩平滑切换,不产生溜钩现象,必须充分研讨变频器启动信号与机械制动器动作信号的控制时序;

(3)当起升机构向下运行或平移机构急减速时,电动机将处于再生发电状态,其能量要向直流电源侧回馈,必须根据不同的现场情况研讨如何处理这部分再生能量;

(4)起升机构在抓吊重物离开或接触地面瞬间负载变化剧烈,变频器应能对这种冲击性负载进行平滑控制。

(三)起升机构组成

1、起升机构电动机

电动机型号:YTSP 355M-10 110KW 转速:600r/min;定子电流:215A

调速频率范围:0~50HZ 为了满足80T变频调速桥式起重机的安全稳定的运行,选择电动机应满足的要求:具有高启动转矩、低速满转矩、高绝缘等级、宽调速范围、高效率和高可靠性等。起升、大车和小车运行机构的驱动电动机均选用变频调速三相异步电动机,经过载荷换算和机械效率计算各运行机构驱动电动机的数据如下: 电机容量的选择 P≧GV/6120η

该起重机的起升速度是每分钟10米,机械效率是0.7 电机容量=(8000KG×10m)/(6120×0.7)

=186KW 考虑到电机的自身损耗和其他损耗,以及对变频器选择方面的考虑,我们选取两台功率为110KW的电动机作为主起升机构的驱动电机。

2、起升机构变频器

为了能满足行车式起重机运行特点,即具有高启动转矩、低速满转矩、快速的转矩上升时间和抱闸顺序控制等功能的高性能工程型变频器,变频调速系统由主令控制器或电位器作为输入给定,通过变频调频电控设备、限位开关、制动器等配合使用,来控制起重机的起升机构等交流变频异步电动机起、制动、可逆运转与调速。我们选用的是安川CIMR-G7电流矢量控制变频器。下面就变频器容量的选择做以下介绍:

变频器的容量必须大于负载所需求的输出,即: P0=K×PM/η×cosφ

式中:K—过载系数1.33;

PM—负载要求的电动机轴输出功率,kW; η—电动机效率 0.85; cosφ—电动机的功率因数 0.9。

起升机构要求的起动转矩为1.3~1.6倍的额定转矩,考虑到需有125%的超载要求,其最大转矩需有1.6~2倍的额定转矩,以确保其安全使用。对于拖动等额功率电动机的变频器来说,可提供长达60s、150%额定转矩的过载能力,因此过载系数k=2/1.5=1.33。

经过计算,我们得出每台变频器的容量为175KW,故,选择的变频器为安川CIMR-G7 180KW变频器,共用两台。

在变频器容量选定后,还应做电流验证,即:

ICN≥kIM

式中:k—电流波形修正系数(PWM调制方式时取1.05~1.1);

ICN—变频器额定输出电流,A; IM—工频电源时的电动机额定电流,A;

80T变频调速行车式起重机是双驱动的起升机构,起升机构由两台电动机驱动一台减速机,带动两个钢丝绳卷筒进行转动,再经过动滑轮组多级减速提升吊钩。该车的减速机为行星式差速减速机,在一台电机出现故障时,可以单独使用另一台电机进行正常的吊运工作。图2为安川变频器外部接线图;图3为起升机构变频器控制回路运行原理图;图4为主回路运行原理图。

图2 安川变频器外部接线图

图3

起升机构控制回路运行原理图

图4

起升机构主回路运行原理图

3、工作原理

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均

可控制的交流电源以供给电动机。

变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成,图5和图6所示为典型的变频器主回路和控制回路原理图。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

图5 变频器主回路原理图

图6 变频器控制回路原理图

变频器选择从控制回路端子输入运转频率指令,运转指令由主令控制器提供。通过主令控制器的触点闭合顺序,将控制信号输入到变频器的多段速端子1、2、5、6、7、8,其中1、2端子是正反向控制信号,5、6、7、8端子是调速信号,为了和主令控制器闭合表相对应,选择使用:频率指令

1、频率指令

2、频率指令

4、频率指令8 和点动频率。

之后,要进行参数设置,对起升机构的参数设置,和平移机构是有很大不同的,主要涉及到重物在吊运过程中的零速度力矩的问题。所以,在进行一些必要参数设置的同时,对电动机零速度和低速度下,重力负载曲线的设置是必不可少的。起升机构变频器参数的设置主要有以下几方面:驱动方式设置、制动停车方式设置、多段速运行频率设定、电动机的电压和频率选择的设定、重力负载曲线的设置、电动机保护的设置、低速

度高转矩的频率设置等。

在对参数设置完成后,由控制器给入输入信号后,变频器便根据设定好的频率和参数进行工作,起升机构采用一拖一的开环V/f控制方式控制方式,可以满足生产实践的需要。

在图纸可以看到这样一个继电器,它称为:固态继电器。加装它的原因是因为变频器的多功能输出点(M1、M2)功率不够大,直接驱动抱闸接触器(ZDC)容易造成输出点的损坏。通过它来控制制动器接触器,延长了变频器内部接点的使用寿命。

在变频器电源输入端子(R、S、T)和电源之间,配有断路器Q1和AC电抗器。其中断路器Q1的容量为变频器额定电流的1.8倍,感应电流在30mA以上,可以检出对人体有危险的高频漏电流,防止事故的发生;而其AC电抗器和变频器内的电抗器以及输出侧的滤波器可有效改善电源侧的功率因数,降低对外界的干扰。另外,在制动器接触器侧为了安全考虑,也安装了断路器Q2,来给制动器接触器供电。

4、起升机构一些主要参数的设置

A参数:A1-02 速度控制模式

B参数:B1-01 选择频率指令;B1-02 选择运行指令;B1-03 选择停车方式; C参数:C1-01 加速时间设定;C1-02 减速时间设定 D参数:D1-01~~D1-17 频率指令设定

E参数:E1-01 设定输入电压;E1-03 设定V/F曲线 H参数:H1-01~~H1-10 多功能接点输入设定 H2-01~~H2-05 多功能接点输出设定 H3-01~~H3-12 模拟量输入设定 H4-01~~H4-08 模拟量输出设定

L参数:L2-02 瞬时停电补偿时间;L2-03 最小基极封锁时间;

L4-01 频率检出值;L4-02 频率检出幅;L4-03 频率检出幅度(+/-)

5、制动电阻

当采用变频器传动的起升机构拖动位能性负载下放或平移机构急减速、顺风运行时,异步电动机将处于再生发电状态。逆变器中的六个回馈二极管将传动机构的机械能转换成电能回馈到中间直流回路,并引起储能电容两端电压升高。若不采取必要的措施,当中间直流回路电容电压升到保护极限值后变频器将过电压跳闸。

在高性能的工程型变频器中,对连续再生能量的处理有以下两种方案: 8

(1)在中间直流回路设置电阻器,让连续再生能量通过电阻器以发热的形式消耗掉,这种方式称为动力制动;

(2)采用再生整流器方式,将连续再生能量送回电网,这种方式称为回馈制动。动力制动方式控制简单、成本低,但节能效果不如回馈制动。回馈制动方式虽然节能效果好,能连续长时制动,但控制复杂、成本较高。应该注意的是,只有在不易发生故障的稳定电网电压下(电网压降不大于10%),才可以采用回馈制动方式。在再生发电制动运行时,电网电压的故障时间大于2ms,则变频器控制板用“低电压”故障切断并断开网侧接触器,退出回馈制动运行,从而造成制动不能连续进行的故障。这样就需要进行电气制动,也就是配置制动单元和制动电阻,制动单元的容量是根据变频器的容量进行选择的,而制动电阻的阻值就需要进行计算了。

制动电阻容量的计算:

(1)制动电阻的容量=电机的容量(2)制动电阻的阻值计算: RB≦U2/PM

式中:RB-制动电阻阻值(Ω)

U-变频器直流回路电压(V),选取700V

PM-电机容量(KW)

带入各种数据,制动电阻阻值=700x700/110000=4.45Ω。

(四)平移机构的简介

1、平移机构的简介

80/20T变频调速行车式起重机的平移机构分大车机构、主小车平移机构及副小车平移机构,除了大车机构采用一拖二的传动方案外,其他两种机构均采用一拖一的传动方案。由于起重机平移机构的转动惯量较大,为了加速电动机需有较大的起动转矩,因此行车式起重机平移机构所需的电动机轴输出功率Pm应由负载功率Pj和加速功率Pa组成,即: Pm≥Pj+Pa

由于大车平移机构采用一台变频器拖动两台电动机的通用V/F开环频率控制方式,因此在变频器容量选择时,还要满足以下公式: Icn≥knIm

式中:k—电流波形修正系数(PWM调制方式时取1.05~1.1)

Icn—变频器额定输出电流,A

Im—工频电源时单台电动机的额定电流,A

n—一一台变频器拖动的电动机数量

按照上述选型、计算公式进行换算,大车变频器选定为 安川CIMR-G7 55KW,由于大车走行机构是四台电动机,所以大车变频器为两台;一台主小车变频器选定为安川CIMR-G7 22KW;一台副小车变频器选定为安川CIMR-G7 15KW。

平移机构的工作原理同起升机构的原理基本相同,只是部分参数的设置与主起升变频器的设置不相同,主要是重力负载曲线的设置、电动机保护的设置、低速度高转矩的频率设置等。由于起升机构和平移机构在运行过程中的负载情况不同,所以起升机构的参数更为复杂一些,因此,在设置平移机构参数时,这些参数的设置没有起升机构那么严格的要求。

首先,重力负载的曲线设置,可以选择任意的曲线,基本上就可以满足使用的要求;其次,电动机保护的设置,保护值的调整只需要将一些必要的保护设置好就可以,不像起升机构设置的全面;第三,由于平移机构的工作时的转矩不需要像起升机构运行时那么大的转矩,因此,这部分的参数设置基本上可以忽略不计。

2、平移机构一些主要参数的设置

A参数:A1-02 速度控制模式

B参数:B1-01 选择频率指令;B1-02 选择运行指令;B1-03 选择停车方式; C参数:C1-01 加速时间设定;C1-02 减速时间设定 D参数:D1-01~~D1-17 频率指令设定

E参数:E1-01 设定输入电压;E1-03 设定V/F曲线 H参数:H1-01~~H1-10 多功能接点输入设定 H2-01~~H2-05 多功能接点输出设定 H3-01~~H3-12 模拟量输入设定 H4-01~~H4-08 模拟量输出设定

图5平移机构变频器运行原理图。

(五)变频器的安装调试

1、变频器的安装

(1)安装使用环境

变频器应避开油腻,风棉,尘埃等有浮游物的环境,安装在干燥清洁的场所,或安装在浮游物无法侵入的全封闭型柜内。安装在柜内时,变频器周围环境温度要在允许温度范围之内,变频器正常使用的环境温度容许值为0~40℃,但80/20T变频调速起重机主要用于吊装液体金属(钢水或者铁水),环境温度比较高,尤其是在夏季,环境温度能够达到50~60度,对于变频器来说不能满足变频器使用环境温度的要求。由于不能把变频器的环境温度限制在其允许值以下,因此只能在环境温度上进行解决,通常采用下述方法来保证它们的正常运行:第一,降低电控柜内的温升,在其顶部安装冷却风扇,下方设有带金属丝网的进气孔,并让大发热量器件尽量靠近冷空气进风口,提高散热效率,使空气对流畅通;第二,将设备安装在电气室内,并在电气室内加装空调器,进行温度调节,以保证变频器在适合的环境温度下工作。

(2)电磁兼容性

现在市场上出售的变频器大多采用不可控整流电源及PWM脉宽调制技术,致使变频器输出电流富含各种高次谐波,属于强电磁干扰源。因此,消除或减弱干扰的方法针对干扰形成的三项因素,即干扰源、干扰途径和敏感电路,我们采取了以下两方面的措施。

一、是消除或降低干扰源的强度。变频器属于强电磁干扰源,为了减少谐波污染造成的干扰,尽量降低变频器的载波频率。本例中,所有变频器的载波频率设为2kHz。

二、是破坏干扰途径,防止干扰侵入敏感电路。长线传输引入的干扰是主要因素。为了在强电磁干扰环境中减小过程通道中的干扰,80/20T变频调速行车式起重机采用了以下技术措施。变频器的输入信号线与动力线在电控柜内和主梁内分开走线,且沿各自的线槽进行配线,并使二者之间保持尽可能大的距离。

2、变频器的接线及注意事项

(1).主回路接线要求

变频调速起重机起升机构变频器采用直接转矩控制(DTC)方式,它们要使用电动机的一些电机常数,而数据的获得是由变频器的参数自检程序来完成的,如果按常规的导线发热校验选择电机的配线,必然把长距离线路阻抗加入到参数自检测出的电机数据中,引起变频器的控制精度下降,达不到控制要求。变频器与电动机之间的电缆敷设距离过长会引起线路压降大,有时产生电机转矩不足等问题,特别是变频器输出频率较低时其输出电压也低,线路压降所占的比例增大。变频器与电机间的线路压降以不超过额定电压的2%为允许值,布线时电机电缆的截面积可据此来选择。

由于在变频器的输出布线中存在寄生电容,其容量与电机电缆的长度成正比,电机电缆的寄生电容容量越大,变频器输出电缆中的漏电流也越大,从而造成变频器的出力不够,所以在主回路布线过程中要力求减小变频器到电动机的电缆长度。

(2).控制回路接线要求

变频器的控制信号为微弱的电压,电流信号,所以与主回路不同,变频器的输出回路是强电磁干扰源,因此,变频器控制回路的布线不能与主回路配线在同一根铁管或同一配线槽内,信号线与动力线必须分开走线,使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其他设备的干扰,必须将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线,距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规定,该信号与变频器之间的控制回路线最长不得超过50m。

信号线与动力线必须分别放置在不同的金属管道或者金属软管内部,连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰,同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此,放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm~2mm。在接线时一定要注意,电缆剥线要尽可能的短(约5~7mm),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其他设备接触引入干扰。为了提高接线的简易性和可靠性,最好在信号线上使用压线棒端子。

3、运行前的测试

1、静态测试(1)测试整流电路

找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑 表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。

(2)、测试逆变电路

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障。

2、动态测试

在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:(1)上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

(2)检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。

(3)上电后检测故障显示内容,并初步断定故障及原因。

(4)如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。

(5)在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。

(1)变频器主回路

80/20T变频调速起重机起升机构的变频器采用直接转矩控制(DTC)方式,它们要使用电动机的一些电机常数,而数据的获得是由变频器的参数自检测程序(变频器的自学习功能)来完成的。如果按常规的导线发热校验选择电机的配线,必然把长距离线路阻抗加入到了参数自检测出的电机数据中,引起变频器的控制精度下降,达不到控制要求。另外,变频器与电动机之间的电缆敷设距离长,则线路压降大,有时产生电机转矩

不足。特别是变频器输出频率较低时,其输出电压也低,线路压降所占的比例增大。变频器与电机间的线路压降以不超过额定电压的2%为容许值,电机电缆的截面可据此来选择。

由于在变频器的输出布线中存在寄生电容,其容量与电机电缆的长度成正比,电机电缆的寄生电容容量越大,采用PWM控制方式的变频器输出电缆中的漏电流也越大,从而造成变频器的出力不够。所以在行车式起重机的布线设计中,应力求减小变频器到电动机的电缆的长度总和。

(2)控制回路

变频器的控制信号为微弱的电压、电流信号,所以与主回路不同,变频器的输出回路是强电磁干扰源,因此,变频器控制回路的配线不能与变频器主回路配线在同一根铁管或同一配线槽内敷设。为了进一步提高抗干扰效果,本例采用1.0mm2绝缘屏蔽导线传输变频器与主令控制器之间的控制信号。绝缘屏蔽导线的接地在变频器侧进行单点接地,使用专用的接地端子。

4、调试

(1)、变频器带电机空载调试

1)设置电机的功率、极数,要综合考虑变频器的工作电流。

2)设定变频器的最大输出频率、基频、设置转矩特性。最高频率是变频器/电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指的负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的V/F 类型图和负载特点,选择其中的一种类型。通用变频器均备有多条V/F 曲线供用户选择,用户在使用时应根据负载的性质选择合适的V/F 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂,在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持VPF为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩,一般变频器均由用户进行人工设定补偿。

3)将变频器设置为自带的键盘操作模式,按运行键、停止键,观察电机是否能正常地启动、停止。

4)熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。变频器的使用人员可以按变频器的使用说明书,对

变频器的电子热继电器功能进行设定,电子热继电器的门限值定义为电动机和变频器两者的额定电流的比值,通常用百分数表示。当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。

(2)变频器带负载调试

1)手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。

2)如果启动、停止电机过程中变频器出现过流保护动作,应重新设定加速、减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启动、制动时。

3)如果变频器在限定的时间内仍然是过流保护,应改变启动、停止的运行曲线,从直线改为S形、U形线或反S形、反U形线。电机负载惯性较大时,应该采用更长的启动停止时间,并且根据其负载特性设置运行曲线类型。

4)如果变频器仍然存在运行故障,应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10%~20%的保护余量。

5)如果变频器运行故障还是发生,应更换更大一级功率的变频器。

(六)常见故障分析

1、变频器整流模块损坏

变频器整流模块的损坏是变频器的常见故障之一,早期生产的变频器整流模块均采用二极管,目前,大部分整流模块则采用晶闸管。中大功率普通变频器整流模块一般为三相全波整流,整流器件易过热,也易被击穿,当其损坏后伴随着快速熔断器熔断,整机停机。在更换整流模块时,要求其在与散热片接触的面上均匀地涂上一层传热性能良好的硅脂,再紧固安装螺丝。如果没有同型号整流模块时,可用同容量的其他类型的整流模块代替。

2、变频器充电电路故障

通用变频器一般为电压型变频器,采用交—直—交工作方式,由于直流侧的平波电容容量较大,在变频器接入电源的一瞬间充电电流很大,可能导致电源开关跳闸,为此在充电回路中设置一个起动电阻来限制充电电流,而在充电完成后,控制电路通过接触器的触点或晶闸管将电阻短路,充电电路故障一般表现为起动电阻被烧坏,变频器报警显示为直流母线电压故障。当变频器的交流输入电源频繁通断时,或者短路接触器的触点接触不良或晶闸管的导通阻值变大时,都会导致起动电阻被烧坏,如遇这种情况,可购买同规格的电阻更换。同时必须找出烧坏电阻的原因,如果故障是由输入电源频繁通断引起的,必须消除这种现象,如果故障是由短路接触器触点或短路晶闸管引起,则必须更换这些元器件,才能再将变频器投入使用。

3、变频器显示过流

过流故障可分为加速、减速、恒速过电流。其原因是变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等因素引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载,变频器还是过流故障,说明变频器逆变电路已损坏,需要更换变频器。

系统在工作过程中出现过电流,具体有以下几方面:

(1)电动机遇到冲击负载或传动机构出现“卡住”现象时,引起电动机电流的突然增加。

(2)变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等。

(3)变频器自身工作不正常,如逆变桥中同一个桥臂的上、下两个器件发生“直通”,使直流电压的正、负极间处于短路状态。

(4)负载的惯性较大,而升速时间设定得太短时,电动机转子的转速因负载惯性较大而跟不上去,结果使升速电流太大。

(5)负载的惯性较大,而降速时间设定得太短时,电动机转子因负载的惯性大,仍维持较高的转速,结果使转子绕组切割磁力线的速度太大而产生过电流。

针对上述故障现象主要检查以下几个方面:(1)工作机械有没有被卡住。(2)用兆欧表检查负载侧短路点。(3)变频器功率模块有没有损坏。

(4)电动机的起动转矩是否过小,使拖动系统转不起来。(5)升速时间设定是否太短。

(6)减速时间设定是否太短。

(7)转矩补偿(V/F比)设定是否太大,引起低频时空载电流过大。

(8)电子热继电器整定是否不当,动作电流设定得太小,引起变频器误动作。

4、变频器过压欠压保护动作

变频器出现过压欠压保护动作,大多是由电网电压的波动引起的。在变频器供电回路中,若存在大负荷电机的直接启动或停车,会引起电网电压瞬间大范围波动,导致变频器过压欠压保护动作,而不能正常工作。这种情况一般不会持续太久,电网电压波动过后即可正常运行,而这种情况只有增大供电变压器容量,改善电网质量才能避免。

另外,变频器出现过压故障还可能是由于变频器驱动大惯性负载,因为在这种情况下,变频器的减速停止属于再生制动,在停止过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,当这种能量足够大时,变频器直流侧的电压就会超过直流母线的过电压保护整定值而跳闸。对于这种故障,一是将减速时间参数设置长一些,或增大制动电阻,或增加制动单元;二是将变频器的停止方式设置为自由停车。

另一种情况是变频器整流部分损坏或检测电路损坏而引起故障报警,电压检测一般都是通过对直流母线电压采样,然后与过电压保护整定值进行比较,再将比较差值传送到微控制器。如果整流桥、滤波电容、采样电路或比较电路中任一器件出现问题,都会出现这种报警。

5、驱动电路故障

变频器的逆变驱动电路也容易发生故障。一般有明显的损害痕迹,诸如元器件(电容、电阻、二极管及印刷版)爆裂、变色、断线等异常现象,但不会出现驱动电路全部损害的情况。处理方法一般是按照原理图,每组驱动电路逐级寻找故障点。处理时首先对整块电路板清灰除污,如发现电路断线,则进行补线处理,查出损坏的元器件进行更换,根据经验分析,对怀疑的元器件,进行测量、对比、替代等方法判断,有的元器件需要离线测定。驱动电路修复后,应用示波器观察各组驱动电路信号的输出波形,如果三相脉冲大小、相位不相等,则驱动电路仍然有异常(更换的元器件参数不匹配,也会引起这类现象),应重复检查处理。大功率晶体管驱动电路的损坏也是导致过流保护动作的原因之一,驱动电路损坏表现出来最常见的现象是缺相,三相输出电压不相等,三相电流不平衡等特征。

6、电机发热变频器显示过载

过载故障包括变频过载和电机过载,其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等,负载

过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。

对于已经投入运行的变频器如果出现这种故障,就必须检查负载的状况。对于新安装的变频器如果出现这种故障,很有可能是V/F曲线设置不当或电机参数设置有问题。如一台新装变频器,驱动的变频电机,额定参数为220V/50Hz,而变频器出厂时设置参数为380 V/50 HZ。由于安装人员没有正确设定变频器的V/F参数,导致电机运行一段时间后转子出现磁饱和,致使电机转速降低,过载而发热。所以,在新变频器使用之前,必须设置好相应参数。另外,使用变频器的无速度传感器矢量控制方式时,若没有正确设置负载电机的额定电压、电流、容量等参数,也会导致电机过载发热。还有一种情形是设置的变频器载波频率过高时,也会导致电机发生过载发热。最后一种情况是变频器经常处于低频段工作,使电机长时间在低频段工作,电机散热效果又不好,致使电机工作一段时间后过载发热,对于这种情况,需加装散热装置。

(七)日常维护

1、变频器的日常维护及注意事项

变频器在运行过程中经常会出现一些故障,而这些故障并不是变频器本身的原因造成的,多是由于设备操作管理人员维护不当或维护不及时引起的,有些变频器长期缺乏正常日常维护,造成变频器内灰尘多、元器件老化加速,故障频发。

因此设备维护人员必须熟悉变频器的基本工作原理、功能特点,具有电工操作基本知识。在对变频器检查及保养之前,必须在设备总电源全部切断;并且等变频器Chang灯完全熄灭的情况下进行。日常的维护有以下几个方面:

1)、日常检查事项

变频器上电之前应先检测周围环境的温度及湿度,温度过高会导致变频器过热报警,严重时会直接导致变频器功率器件损坏、电路短路;空气过于潮湿会导致变频器内部直接短路。在变频器运行时要注意其冷却系统是否正产,如:风道排风是否流畅,风机是否有异常声音。一般防护等级比较高的变频器如:IP20以上的变频器可直接敞开安装,IP20以下的变频器一般应是柜式安装,所以变频柜散热效果如何将直接影响变频器的正常运行,变频器的排风系统如风扇旋转是否流畅,进风口是否有灰尘及阻塞物都是我们日常检查不可忽略的地方。电动机电抗器、变压器等是否过热,有异味;变频器及马达是否有异常响声;变频器面板电流显示是否偏大或电流变化幅度太大,输出UVW三相电压与电流是否平衡等。

a、加强变频器的规范化使用管理,建立变频器的日常保养维护制度

设立专人负责保养,具体内容有做好运行数据记录和故障记录,定期测量变频器及电机的运行数据,包括变频器输出频率,输出电流,输出电压,变频器内部直流电压,散热器温度,工作环境温度、湿度等参数,与合理数据对照比较,以利于提早发现故障隐患;变频器如发生故障跳闸,务必记录故障代码和跳闸时变频器的运行工况,以便于具体分析故障原因。

b、加强日常检查

最好每半月检查一次,检查、记录运行中的变频器输出三相电压,并注意比较他们之间的平衡度;检查记录变频器的三相输出电流,并注意比较他们之间的平衡度;检查记录散热器温度,工作环境温度;察看变频器有无异常振动、声响,风扇是否运转正常。

c、加强变频器的日常保养

做到变频器每季度保养一次,要及时清除变频器内部的积灰、脏物,将变频器保持清洁,操作面板清洁光亮;在保养的同时要仔细检查变频器内有无发热变色部分,阻尼电阻有无开裂,电解电容有无膨胀、漏液、防爆孔突出等现象,PBC板有无异常,有没有发热烧黄部位等。

2)、定期保养

进行定期保养和维护时,主要应清扫空气过滤器冷却风道及内部灰尘。检查螺丝钉、螺栓以及即插件等是否松动,输入输出电抗器的对地及相间电阻是否有短路现象,正常应大于几十兆欧。导体及绝缘体是否有腐蚀现象,如有要及时用酒精擦拭干净。在条件允许的情况下,要用示波器测量开关电源输出各电路电压的平稳性,如:5V、12V、15V、24V等电压。测量驱动器电路各路波形的方法是否有畸变。U、V、W相间波形是否为正弦波。接触器的触点是否有打火痕迹,严重的要更换同型号或大于原容量的新品;确认控制电压的正确性,进行顺序保护动作试验;确认保护显示回路无异常;确认变频器在单独运行时输出电压的平衡度。

(八)结束语

结束语:

随着电力电子技术的不断发展完善,交流变频调速技术日益显现出优异的控制及调速性能,高效率、易维护等特点,加之它的价格不断下降,使其成为起重机械一种优选的调速方案。但是,要使变频器成功地应用于起重机调速,就必须针对起重机的特点,计算和选择变频器及其外围的辅件,并在安装与布线时采取特殊技术措施,以保证变频调速起重机安全、可靠地运行。本文提出的变频调速控制方案和设计计算方法已成功应

用于我公司的接收跨、出坯跨的起重机上。经过几年多的实际运行证明,各项调速性能均优于传统的绕线异步电动机转子串电阻调速系统,再加上变频器完善的故障诊断和显示功能,使整个调速系统的可靠性、可维修性得到大幅度提高。

参考文献

[1]安川电机公司,安川变频器G7使用说明书,株式会社安川电机公司,2006年 [2]原魁、刘伟强、邹伟等,变频器基础及应用(第二版),冶金工业出版社,2007年 [3]韩安荣,通用变频器及其应用(第2版),机械工业出版社,2005年

[4]马小亮,大功率交-交变频调速及矢量控制技术(第3版),机械工业出版社,2003年

[5]周志敏,周纪海,纪爱华,变频器使用与维修技术问答,中国电力出版社,2008年 [6]张燕宾,电动机变频调速图解,中国电力出版社,2003年 [7]李方园,变频器行业应用实践,中国电力出版社,2006年 [8]吕汀,石红梅,变频技术原理与应用,机械工业出版社,2007年 [9]丁学文,电力拖动运动控制系统,机械工业出版社,2007年 [10]张晓娟,电机及拖动基础,科学出版社,2008年 [11]刘锦波,张承慧,电机与拖动,清华大学出版社,2006年 [12]黄立培,电动机控制,清华大学出版社,2003年

[13]张选正,张金远,变频器应用经验,中国电力出版社,2006年 [14]吴忠智,吴加林,变频器原理及应用指南,中国电力出版社,2007年 [15]何超,交流变频调速技术,北京航空航天大学出版,2006年

第四篇:现代交流调速技术及其在除尘电机调速中的应用

现代交流调速技术及其在除尘电机调速中的应用

康玉龙

(河北钢铁集团宣钢公司焦化厂 075100)

摘要:本文以现代交流调速技术的应用领域及发展趋势为背景,介绍中压交-直-交电压型H桥级联变频器的工作原理、控制方式和技术优缺点,并通过宣钢焦化厂除尘电机变频与液力耦合器不同调速方式下的对比分析,指出变频调速在高压大功率风机上使用的优越性能和良好的节能效果。

关键词:交流调速 中压H桥级联变频器 除尘风机 干法熄焦 节能

0前言

电力电子技术的发展产生了采用半导体开关器件的交流调速系统,随着对大规模集成电路和计算机控制技术的研究,以及现代控制理论的应用,促进了各种类型的交流调速技术的飞速发展,如串联调速系统、变频调速系统、无换向器电动机调速系统及矢量控制调速和直接转矩调速系统等。其中变频器作为较为成熟的高科技调速产品,其性能稳定、操作调节方便、自动化程度高、节能效果明显等优点,已普及国民经济各部门的传动领域,得到了广泛的推广应用。

1交流调速技术概况

1.1应用领域

1.1.1通用机械的节能调速

通用机械指风机、泵、压缩机等,量大而广,应用于各行各业。此类机械由交流电动机驱动,经调速改造,替代原有挡板及阀门调节,使其风量、流量可实现连续平滑和快速精确控制,优化了工艺控制过程,有助于提高产品的质量和产量。

1.1.2工艺调速

由于机械设备的工艺需要,要求驱动电动机必须调速运行的传动系统,如金属加工、造纸、提升等机械的传动系统。1.1.3牵引调速

各种电动机车及船舶等运输机械的电驱动系统,要求在运行中及时调速,属于工艺调速范畴,但有许多不同于一般机械的特殊要求,如供电电源、设备尺寸、散热及防护要求等,正由于牵引机械对设备尺寸、防护严格要求及交流较直流调速的优势,交流牵引调速取得更快发展。1.1.4特殊调速

某些应用场合为满足用户对调速特殊要求的调速系统,如转速6000r/min以上的高速系统,调速范围1:50000至1:100000的极宽调速系统,只有采用特殊的永磁交流电动机才能实现。1.2调速用电力电子装置

交流调速用电力电子装置有交流调压装置和变频装置两大类。现有交流调压装置仅晶闸管交流调压器一种,变频装置有交-直-交间接变频器和交-交直接变频器两种,其中交-直-交间接变频器又分为电压型和电流型型两种,电压型储能元件为电容,在控制规律不变而负载变化时输出电压基本不变,电流型储能元件为电感,在控制规律不变而负载变化时输出电流基本不变。1.3发展趋势

1.3.1电力电子器件与材料的更新

在提高现有电力电子开关器件的同时,研发新型大容量电力电子器件,通过降低MOSFET通态电阻,提高电压;研制集成电力电子模块(简称IPEM)实现标准化、模块化、高效率、低成本、低污染、可编程;采用新型半导体材料碳化硅(SiC),其工作温度可达600℃,PN结耐压可达5000KV以上,导通电阻小,导热性能好,漏电流特别小。1.3.2控制策略和手段研究

在以矢量控制和直接转矩控制技术为中心的控制理论不断完善的研究中,开辟了自适应和滑膜变结构控制、模糊控制、神经网络控制、无速度传感器控制系统等。

2中压交-直-交电压型H桥级联变频器

随着交流调速技术的发展,作为大容量传动的高压变频调速技术得到了广泛的应用并取得了良好的效果,其中电压型H桥级联变频器由于其电压畸变率小、功率因数高、逆变模块技术要求低、技术成熟、运行效果好等特点,得到了广泛的应用。2.1工作原理

电压型H桥级联变频器中每一项都由多个H桥功率单元串联而成,串联数取决于变频器输出电压等级,每个H桥由4个IGBT构成,并用独立彼此隔离的整流电源供电。

图一 H桥级联变频器和H级功率单元

2.2控制方式

H桥级联变频器的输出电压电平数多,通常采用三角载波比较法实现PWM(脉宽调制),通过给定频率的等腰三角载波与给定频率的正弦调制波相比较,以二者交点确定功率单元中逆变器的开关时刻,使脉冲宽度按正弦规律变化,输出频率等于且幅值正比于指定调制电压的基波成分。2.3特点及问题

此类H桥级联变频器使用1200V或1700V低压IGBT不需均压措施,且输出电压电平数多,电压畸变率小,电压波形每次跳变幅值小,无需输出滤波器,同时输入整流桥数多,通过输入变压器二次绕组移相,进线交流电流谐波小,功率因数高。

但是由于H桥级联数多,主电路复杂,储能电解电容技术要求高,可靠性受一定影响;整流电源数多,电机制动再生能量吸收或回馈技术实现难度大、成本高。

3除尘高压风机中的应用

除尘风机作为焦化行业环保除尘环节中重要设备,其运行状态将直接影响烟尘回收处理效果。现以河北钢铁集团宣钢公司焦化厂1#、2#干熄焦地面除尘风机调速方式为例,对比分析变频和液力耦合调速方式下的风机运行技术特点。3.1工艺概况

干法熄焦过程中会产生大量焦灰尘和有害物,这些有害物不仅对现场操作人员造成危害,而且将对环境造成严重污染,为消除生产过程中产生的粉尘,由除尘风机负压收集各收尘点含尘气体经管道送至脉冲布袋除尘站,净化后排放至大气。根据宣钢焦化厂干熄焦除尘工艺所需除尘风量,综合考虑系统漏风等因素,选用10KV 800KW单吸入离心式除尘风机。

其中1#干熄焦2010年投产,设计初期,由于考虑高压变频器投资高、技术不够成熟、市场应用不普及等多方面因素,该项目除尘风机设计为液力耦合调速方式;随着电力电子技术的高速发展,高压变频基本成熟,其性能稳定、控制操作方便,节能明显等优点得到普遍认可,2#干熄焦除尘风机2014年设计采用高压变频调速方式,装焦时高速运行,非装焦时低速运行。3.2二者调速性能比较 3.2.1调速效率

液力耦合器是装于电动机轴和负载轴之间的机械无极调速装置,利用油和两个互不接触的金属叶轮的摩擦力传导转矩,带动负载转动,可通过调节油压改变输出转矩,实现调速。当忽略轴承、鼓风损失和工作液体容积损失及摩擦力矩损失等,其调速效率近似为:nT=i;式中i为液力耦合器转速比,因此转速比nB减小调速效率降低,同时作为一种低效调速方法,其转差能量转换为油的热能儿消耗掉,当小于0.4时工作油升温加快,给设备运行带来不稳定状况。

而变频调速通过电力电子整流和脉宽调制逆变技术改变电动机电枢的电压和频率,仅控制电路本身需消耗很少一部分能量,因此可在全转速范围内保持较高的效率运行。3.2.2启动性能

液力耦合器不能直接改善启动性能,启动电流仍达到电机额定电流的5至7倍,而变频启动可实现软启动,启动电流小,且启动全过程可控,启动点和爬坡时间可设置,可避免启动电流对电网和电动机的冲击。3.2.3运行维护

结合焦化厂1#干熄焦除尘风机调速设备运行情况来看,液力耦合器机械结构和管路系统复杂,日常维护工作量大,且在故障下无法定速运行,必须停机检修;而2#干熄焦除尘风机H桥级联变频调速装置虽电子线路复杂,但技术成熟,尤其是单元自动切换和冗余运行特性,可在单元故障下实现不停机连续运行,运行可靠性较高,且其检修维护只需定期更换进风滤网。3.2.4调节控制特性

液力耦合器依靠调节工作腔油量大小改变输出转速,因此响应慢(需30秒左右),速度调节精度较低,在干熄焦装焦过程期间灰尘负压回收能力不能及时跟上,影响烟尘回收效果;而变频调速属于数字式控制,频率改变速度快,稳频精度高,可实现精准控制,提高了装焦过程期间烟尘回收率。3.3节能经济效益分析

由于液力耦合器液力效率、转差消耗及变频器自身能量消耗的存在,其二者均存在额外的功率损耗,但变频调速运行效率随输出转速降低变化不大,而液力耦合器效率基本呈正比降低,且综合轴功率随转速呈三次方比例下降,节能和运行效率均不及变频调速。

下面在忽略液力耦合器辅机(冷油器、油泵等)所消耗功率和设备自身消耗等的理想状态下,对比1#、2#干熄焦除尘风机调速耗能情况:

1#干熄焦除尘风机为24小时工作,电机输入电流平均约为50A,年运行时间为300天,其全年用电量为:

F13UIcosHD1.732105024300=6235200kWh

2#干熄焦除尘风机为24小时工作,高速运行时,电机输入电流平均约为50A,低速运行时,电机输入电流平均约为30A,按每15min装焦一次,装焦时间5min,即每天高速运行时间为8小时,低速运行运行时间为16小时,年运行时间为300天,其全年用电量为:

F213UIcosHD1.73210508300=2078400kWh F223UIcosHD1.732103016300=2494080kWh F2F21F224572480kWh 综上可得:

全年节电量为FF1-F26235200-4572480=1662720kWh 节电率为=F166272027% F162352004结束语

通过中压交-直-交电压型H桥级联变频器与液力耦合器运行节能效果的对比分析,不难发现其在运行效率、启动性能、运行维护等方面有着突出的优势,且随着电力电子技术和控制理论的不断进步,会有更高性能的设备应用到国民经济的电气传动领域。

参考文献:

[1]电气传动自动化技术手册(第二版).机械工业出版社,2005.[2]姚绪梁,现代交流调速技术.哈尔滨工程大学出版社,2009.[2]钢铁企业电力设计手册.冶金工业出版社,1996.

第五篇:PLC 变频调速技术在泵站恒压供水中应用

PLC 变频调速技术在泵站恒压供水中应用

0 引言

供水系统是国民生产生活中不可缺少的重要一环。传统供水方式占地面积大,水质易污染,基建投资多,而最主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。变频调速技术是一种新型成熟的交流电机无极调速技术,它以其独特优良的控制性能被广泛应用于速度控制领域,特别是供水行业中。由于安全生产和供水质量的特殊需要,对恒压供水压力有着严格的要求,因而变频调速技术得到了更加深入的应用。恒压供水方式技术先进、水压恒定、操作方便、运行可靠、节约电能、自动化程度高,在泵站供水中可完成以下功能:(1)维持水压恒定;(2)控制系统可手动/自动运行;(3)多台泵自动切换运行;(4)系统睡眠与唤醒。当外界停止用水时,系统处于睡眠状态,直至有用水需求时自动唤醒;(5)在线调整PID参数;(6)泵组及线路保护检测报警,信号显示等。

将管网的实际压力经反馈后与给定压力进行比较,当管网压力不足时,变频器增大输出频率,水泵 转速加快,供水量增加,迫使管网压力上升。反之水泵转速减慢,供水量减小,管网压力下降,保持恒压供水。系统硬件构成系统采用压力传感器、PLC和变频器作为中心控制装置,实现所需功能。

安装在管网干线上的压力传感器,用于检测管网的水压,将压力转化为4~20 mA的电流信号,提供给PLC与变频器。

变频器是水泵电机的控制设备,能按照水压恒定需要将0~50 Hz的频率信号供给水泵电机,调整其转速。ACS变频器功能强大,预置了多种应用宏,即预先编置好的参数集,应用宏将使用过程中所需设定的参数数量减小到最小,参数的缺省值依应用宏的选择而不同。系统采用PID控制的应用宏,进行闭环控制。该宏提供了6个输入信号:启动/停止(DI1、DI5)、模拟量给定(AI1)、实际值(AI2)、控制方式选择(DI2)、恒速(DI3)、允许运行(DI4);3个输出信号:模拟输出(频率)、继电器输出1(故障)、继电器输出2(运行);DIP开关选择输入0~10 V电压值或0~20 mA电流值(系统采用电流值)。变频器根据给定值AI1和实际值AI2,即根据恒压时对应的电压设定值与从压力传感器获得的反馈电流信号,利用PID控制宏自动调节,改变频率输出值来调节所控制的水泵电机转速,以保证管网压力恒定要求。

根据泵站供水实际情况与需求,利用一台变频器控制3台水泵,因此除改变水泵电机转速外,还要通过增减运行泵的台数来维持水压恒定,当运行泵满工频抽水仍达不到恒压要求时,要投入下一台泵运行。反之,当变频器输出频率降至最小,压力仍过高时,要切除一台运行泵。所以不仅需要开关量控制,还需数据处理能力,采用FX-4AD(4模拟量入)获得模拟量信号。它在应用上的一个重要特征就是由PLC自动采样,随时将模拟量转换为数字量,放在数据寄存器中,由数据处理指令调用,并将计算结果随时放在指定的数据接触器中。通过其可将压力传感器电流信号和变频器输出频率信号转换为数字量,提供给PLC[1>,与恒压对应电流值、频率上限、频率下限(考虑到水泵电机在低速运行时危险,必须保证其频率不低于20Hz,因此频率上限设为工频50Hz,下限设为20Hz)进行比较,实现泵的切换与转速的变化。

系统在设计时应使水泵在变频器和工频电网之间的切换过程尽可能快,以保证供水的连续性,水压波动尽可能小,从而提高供水质量。但元件动作过程太快,会有回流损坏变频器。为了防止故障的发生,硬件上必须设置闭锁保护,即1Q与4Q,2Q与5Q,3Q与6Q不能同时闭合。系统软件设计

控制系统软件是指用梯形图语言编制的对3台泵进行控制的程序。它对3台泵的控制,主要解决 系统的手动及自动切换、各元件和参数的初始化、信号及通讯数据的预处理、3台泵的启动、切换及停止的条件、顺序、过程等问题。

当变频器输出频率达到频率上限,供水压力未达到预设值时,发出加泵信号,投入下1台泵供水。当供水压力达到预设值,变频器输出频率降到频率下限时,发出减泵信号,切除在工频运行方式中的1台泵。系统刚启动时,情况简单,首先启动一号泵即可。但考虑3台泵联合运行时情况复杂,任1台或2台泵可能正在工频自动方式下运行,而其他泵则可能在变频器控制下运行,因此必须预先设定增减水泵的顺序。即获得加泵信号后,按照1号泵、2号泵、3号泵的顺序优先考虑。获得减泵信号后,按照3号泵、2号泵、1号泵的顺序优先考虑。

为了防止故障的发生,软件上也必须设置保护程序,保证1Q与4Q、2Q与5Q、3Q与6Q不能同时闭合。在加减泵时必须设置元件动作顺序及延时,防止误动作发生。

考虑到系统工作环境对运行状态的影响,在设计中采用硬件、软件上的双重滤波来消除干扰的影响。硬件上变频器提供了滤波时间常数,当模拟输入信号变化时,63%的变化发生在所定义的时间常数中;软件上采用数字滤波的方式,系统采用平均值的方法[2>。

计算最近10次采样的平均值,其计算公式如下:系统参数的确定

系统变频运行主要靠变频器来实现。变频器有一数量很大的参数群,初始情况下,只有所谓的基本参数可以看到。只需设定简单的几个参数,变频器就可以工作。

除基本参数外,还必须对完整参数进行设定。

完整参数的设定主要是PID参数的整定,它是按照工艺对控制性能的要求,决定调节器的参数Kp,TI,TD。控制表达式为:

变频器根据偏差调节PID的参数,当运行参数远离目标参数时,调节幅度加快,随着偏差的逐步接近,跟踪的幅度逐渐减小,近似相等时,系统达到一个动态平衡,维持系统的恒压稳定状态[

3、4>。试验结果

由于系统的显示和通讯功能,可以对系统工作情况进行监测。考虑到管网覆盖面积大,泵站海拔高度相对低,远端供水压力需维持3kg,因此泵站出水口压力必须维持5kg。试验条件为管网初始无压 力,电磁阀控制一定量相同用水情况下启动系统。获得的数据经MATLAB进行插值拟合可得系统在不同条件下跟踪压力变化的曲线[5>。

试验记录的数据显示,系统在未进行滤波和PID控制时,响应速度特别慢、误差大、振荡严重,见图5。在未进行滤波而引入数字PID控制时,响应速度明显加快,但振荡问题未能得到解决,这是由于喘振现象的存在;当管道压力与设定值近似相当时,水锤效应影响明显,压力波动异常,PID的参数跟踪整定,形成恶性循环,管道中空气的存在也会导致振荡问题。

该系统是按照工业生产需求设计的,实现了预定的一系列功能,保证了系统的稳定和安全性,在长时间运行中取得了良好的效果。只需作相应修改就可推广到相关供水系统中。

下载定子调压调速技术在炼钢天车的应用word格式文档
下载定子调压调速技术在炼钢天车的应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    变频调速技术在暖通空调中的应用

    变频调速技术在暖通空调中的应用 1 引言近十几年来,随着电力电子技术、微电子技术及现代控制理论的发展,变频器已广泛地用于交流电动机的速度控制。因为其具有高效率的驱动性......

    调速在雷达管制中的应用

    【摘要】而速度调整是雷达管制中保持安全间隔的重要方法,也是管制员最常用的管制技能,因此能掌握航空器速度的特征、使用方法和时机,是一名优秀管制员高效、优质地实施空中交通......

    变频调速技术在电铲、钻机设备中的应用解析

    变频调速技术在电铲、钻机设备中的应用解析随着时代的不断发展,矿山开采所使用的设备也日益尖端化、自动化、信息化。而电铲、钻机作为矿山开采中不可或缺的工具,将变频调速技......

    智能变频调速装置在煤矿中的应用

    智能变频调速装置在煤矿中的应用 沈占彬 张晓军 (平顶山工业职业技术学院,河南平顶山467001 ) 矿用交流提升机在减速和爬行段的速度控制困难,不能实现恒减速控制,转子串电阻调......

    PLC在恒压供水变频调速控制系统中的应用

    PLC在恒压供水变频调速控制系统中的应用 1 引言 恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品......

    高压变频调速装置在除尘风机上的应用

    高压变频调速装置在昆钢集团二炼钢厂除尘风机上的应用 阅览次数:881 来源:《控制与传动》 作者:杨文喜 秦强林 陈卫东 概述: 文章根据昆钢集团二炼钢厂为了提高系统自动化程度......

    PLC在恒压供水变频调速控制系统中的应用

    1 引言 恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水压力不足或短时断水,可能会影响产品质量,严重时使产品报废和设备损坏。又如当发生......

    精益生产管理在炼钢生产中的应用论文(最终定稿)

    1精益生产管理体系概念精益生产管理(LeanProduction,LP)是继单件生产方式和大量生产方式之后,在丰田汽车公司诞生的全新生产方式,其核心是精益,即“完善、周密、高品质、高效益......