第一篇:虚拟仪器技术课程总结[推荐]
虚拟仪器技术课程总结
很有幸在这个学期能够选上崔勇老师的虚拟仪器技术这门专业选修课,通过这门课程我初步了解到了LabVIEW的使用和原理。在老师的详细讲解下,我在一定程度上对LabVIEW的程序结构,字符串,数组,簇和矩阵,图表与图形,文件I/O,数据的采集以及其的应用有了了解。
在学习中我了解到,虚拟仪器技术虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。而LabVIEW能帮助我们创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。同时通过学习,我们也了解到只有同时拥有高效的软件、模块化I/O硬件和用于集成的软硬件平台这三大组成部分,才能充分发挥虚拟仪器技术性能高、扩展性强、开发时间少,以及出色的集成这四大优势。
labVIEW的学习也快三个月了。基本的编程思想已经虽然不成问题,可我不知道为什么,总找不到深层次学习的感觉,也许是自己的悟性太差,或许也是自己的基础真的不怎么好,不过我相信这个应该只是时间的问题,至于工作的问题,我是想方设法尽可能的少花时间但是尽快解决,应为我清楚自己要做的事情,也清楚自己由更重要的事情去做,更清楚自己正在做的事情。
LabVIEW、是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而 LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定了VI及函数的执行顺序。VI指虚拟仪器,是 LabVIEW 的程序模块。LabVIEW提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。用户界面在 LabVIEW 中被称为前面板。使用图标和连线,可以通过编程对前面板上的对象进行控制。这就是图形化源代码,又称G代码。LabVIEW 的图形化源代码在某种程度上类似于流程图,因此又被称作程序框图代码。
这门课程,除了老师在课堂上和我们讲的内容之外,我们还在实验室里亲自用LabVIEW软件区实现一些老师所安排的编程任务。其中我们需要做虚拟万用表,虚拟示波器,信号分析与处理,动态称重的设计这四个实验,在做这些实验的过程中,我们更加进一步的了解到了LabVIEW的各种特性和功能,让我们对这门课程有了更加深刻的理解。这门课的实验,总的来说并不是很难,就像前文所说,LabVIEW是一种用图标代替文本行创建应用程序的图形化编程语言,在实验过程中,我们主要的难点就是在找各个图标的位置。当然这是建立在你对这门课,这个软件有一定的了解的基础上的,了解了这个软件的基础内容后,我们便可以在前面板和后面板进行一定内容的操作。
总的来说,LabVIEW这个软件的操作性很好,让初学者比较容易入手,不需要记忆太多的算法和语句,只需要了解各个图标的具体作用,并能够在操作中更多的了解一些使用软件时的注意事项,我们就可以操作这个软件了。而在实验中我经常遇到的问题无非就是找不到图标,还有图标的一些属性的设置,不过在看书和多次尝试后,也能够做出正确的选择和答案。总之,本次实验留给我的编程方法和思考方式,给了我很大的影响,我相信,在未来的学习中,这次实验将给予我产生巨大的指导。
至于课程建议,老师在课堂上的讲解很具体详细,让我们能够比较快的了解到他所讲的内容。在实验过程中,实验指导书让我们有了实验的具体方向和操作步骤,指导我们做实验的老师也很认真负责,并且课堂教育和实验教育的比例安排的也很是合理。若说建议,这次我们做的实验是五个实验中的前四个,我可以建议下,以后学生在做实验的时候,可以随机从这五个中选四个,不一定是前四个,或者也可以让这一届的实验与上一届有一个不一样。
第二篇:《虚拟仪器技术》课程设计总结
《虚拟仪器技术》课程设计
总结
根据2008级测控技术与仪器专业培养方案及学院教学进程安排,测控技术与仪器专业1605081班于2011年7月7日至7月11日在先进测控技术联合实训中心(力行楼208)进行了为期一周的《虚拟仪器技术》课程设计。现将本次课程设计教学做总结如下:
一、课程设计教学管理
1、课程设计文件较为规范
《虚拟仪器技术》课程设计有符合要求的课程设计教学大纲与相关课题的详细任务书。任务书对课程设计任务、课程设计目的、课程设计要求、课程设计内容、课程设计报告要求、课程设计进度安排及课程设计考核办法等七个方面分别作了详细的要求与规范。在此基础上,对课程设计编写指导书。
本课程设计在教学大纲与任务书中对课程设计管理作了较为科学规范、责任明确的规定。
2、课程设计组织准备充分
本次课程设计安排日期、周数与培养方案完全一致。设计场地、仪器设备、参考资料等能够满足课程设计教学要求。本次课程设计共有42位同学参加,由一名指导教师同时指导,但是鉴于学院其他教师教学任务繁重,难以同时安排多位老师进行课程设计指导,所以“原则上每一名指导教师指导20名同学课程设计”这一条在以后安排课程设计时有待改进。
3、课程设计选题合理
本次课程设计所有的选题较为新颖、实用,都是指导教师平时在科研与工程实践中积累的知识应用于教学中,能满足专业培养目标。课题的难易程度与课程设计教学大纲相一致,课题的容量适中。
4、课程设计分组较为合理
本次课程设计共安排了3个课题,每14位学生为一个小组,主要是因为先进测控技术联合实训中心于2011年6月刚建立,部分设备没有调试好,导致教学大纲中的部分课题暂时无法开出。在以后安排课程设计时有待改进。小组内学生课程设计的方案互相不同,这样学生都能受到设计方法的初步训练。
二、课程设计教学实施过程
1、课程设计指导规范
指导教师能做到每天对学生进行集中和分散指导,有相关的课程设计指导记录。
指导教师能熟练解决课程设计中的疑难问题,善于启发思维、开拓思路,学生易于接受。
2、课程设计审阅规范
指导教师能及时、认真审阅课程设计报告等材料。指导教师能及时、认真检测学生的软件运行的正确性。指导教师能对学生上交的课程设计材料批改及时、规范。
3、课程设计考核规范
有科学、规范的评分标准,严格按照标准评定成绩,成绩记载规范。有平时学生出勤的考勤记录。课程设计答辩组织合理有序。
4、有课程设计总结
有书面的总结材料。总结科学、客观,能肯定成绩,找出差距。
三、课程设计质量较高
课程设计能注重培养学生的实践能力、创新能力、团队合作能力和独立工作能力,学生对本课程知识的应用能力强。
完成的课程设计报告等材料较为正确、规范。制作的软件功能可以满足设计要求。
学生完成的课程设计为参加第二届全国虚拟仪器大赛(国家教育部负责组织)打下了坚实的基础、提供的优秀的素材等。
指导教师:谢启
2011年7月11日
第三篇:0904066虚拟仪器技术教学大纲
《虚拟仪器技术》课程教学大纲
一、课程基本信息
课程编号:0904066 课程中文名称:虚拟仪器技术
课程英文名称:Virtual Instrument Technology 课程性质:专业选修课程 考核方式:考查
开课专业:自动化、测控技术与仪器、电气工程及其自动化、探测制导与控制技术、生物医学工程
开课学期:7 总学时:32(其中理论24学时,实验 8学时)总学分:2
二、课程目的
《虚拟仪器技术》是自动化、测控技术与仪器、电气工程及其自动化、探测制导与控制技术、生物医学工程专业本科生的一门任意选修的专业课,虚拟仪器技术综合运用了计算机技术、数字信号处理技术、标准总线技术和软件工程方法,代表了测量仪器与自动测试系统的发展方向。通过本课程的学习,培养学生自己动手设计开发仪器和组建自动测试系统的能力。
三、教学基本要求(含素质教育与创新能力培养的要求)
1.本课程含理论教学部分(24学时)、实验教学部分(8学时)。
2.理解和掌握本课程内容中的重点部分是学生学习虚拟仪器技术课程达到合格的基本要求,教与学双方都必须要处理好一般内容与重点内容之间的关系。
3.本课程有着广阔的工程应用背景,教学中应注意贯彻理论联系实际的教学原则,注重培养学生的逻辑思维能力和综合运用LabView分析解决实际问题的能力。
4.根据本课程的特点,必须要求学生独立完成一定数量的课后习题。
四、教学内容与学时分配
第一章
概述(2学时)
本章介绍虚拟仪器的基本概念、组成特点及LabView图形化编程环境和G语言编程基础等几个方面的内容。
第二章
虚拟仪器的创建与调试(4学时)
本章介绍VI的创建、VI程序的编辑和子VI的创建与调用、层次化窗口以及程序调试 技术。
第三章
循环结构与趋势图(2学时)
本章介绍最基本的While loop和For Loop两种循环结构以及与循环控制结构相关的波形Chart(趋势图)和移位寄存器的概念和使用。
第四章
Case结构、Sequence结构和公式节点(2学时)
本章将讨论G语言中的Case(选择)结构、Sequence(顺序)结构和公式节点的基本概念,并提供它们的应用实例及分析。
第五章
数组(Arrays)、簇(Clusters)和曲线图形(Graphs)(2学时)本章介绍数组、簇、和曲线图形以及有关自动索引的基本概念,并提供例程分析,讨论与数组和簇相关的图形控制。
第六章
字符串和文件存取(2学时)
本章介绍字符串控件的使用和文件输入、输出操作,主要内容有:如何创建字符串控制器和指示器,怎样使用字符串函数以及怎样进行文件的输入和输出操作。第七章
分析软件(2学时)
本章重点介绍仿真信号的产生、信号的频谱分析、波形测量、数字滤波、波形监测及曲线拟合等内容。
第八章
G语言实用编程技术(2学时)
本章将介绍在G语言编程中的一些高级概念,包括局部变量与全局变量概念,属性节点的概念,用户选单的设计以及VI属性的设置等。第九章
仪器控制(2学时)
本章将介绍串行通信、GPIB的基本概念、VISA的基本概念和LabView仪器驱动程序。第十章
LabView7.0Express简介(4学时)本章将介绍LabView7.0Express的主要新增功能。
实验一:演示数字示波器、数字电压表等虚拟仪器的实例。(2学时)
实验二:讲述虚拟仪器软件开发平台LabView的基本的编程方法及调试技术,并进行上机练习。(4学时)
实验三:结合NI公司的数据采集卡完成一台简单的虚拟仪器设计。(2学时)
五、教学方法及手段(含现代化教学手段及研究性教学方法)
理论课授课阶段采用传统授课模式和多媒体教学相结合的手段,试验课采取学生课程设计的形式自己编制程序,上机调试学习的手法。
六、实验(或)上机内容
实验一:演示数字示波器、数字电压表等虚拟仪器的实例。
实验二:讲述虚拟仪器软件开发平台LabView的基本的编程方法及调试技术,并进行上机练习。
实验三:结合NI公司的数据采集卡完成一台简单的虚拟仪器设计。
七、先修课程
先修课程:程序设计基础(C语言)、微型计算机原理与接口技术、数字电子技术、模拟电子技术。
八、教材及主要参考资料
[1] 张爱平.LabVIEW入门与虚拟仪器[M].北京:电子工业出版社,2004.5.[2] 杨乐平、李海涛、肖相生.LabVIEW程序设计与应用[M]北京:电子工业出版社,2003.8.[3] 陈锡辉、张银鸿.LabVIEW8.20程序设计从入门到精通[M]北京:清华大学出版社,2007.7.九、课程考核方式
考试采用闭卷+实验+平时成绩,其中试卷50%,实验30%,平时成绩20%(含到课情况)。
撰写人签字:
院(系)教学院长(主任)签字:
第四篇:虚拟仪器学习心得总结
虚拟仪器学习心得总结
姓 名:王水根
学 号:1083420213 班 级:0801101班 学 院:电气学院 指导老师:付宁
虚拟仪器学习心得总结
王水根
刚开始接触虚拟仪器这个概念的时候是在大三的上学期,我不记得那天具体是什么日子了,只记得公寓前面展板上多了一个很大的海报,内容大概是哈工大虚拟仪器协会成立招新和第一届全国虚拟仪器设计大赛的相关说明。这是我第一次接触“虚拟仪器”这个当时陌生的新词。一看到这个词我马上想到我们经常用的仿真软件Multisim,那里面就有好多虚拟的电源、示波器、万用表,还有频谱分析仪、逻辑分析仪等。顿时,我觉得这个很有意思啊,要是能自己在电脑里设计一个示波器那就厉害了。可是那个虚拟的仪器又是怎么集成到其他电路仿真软件上的呢?还有虚拟仪器的定义到底是什么呢?不知道。所以我带着这些疑问上网查找和虚拟仪器的相关文档,看看虚拟仪器到底是一个什么东西,虚拟仪器在哪些领域有应用。
后来,我参加了协会组织的招新,初次接触了Labview,在花了一个通宵做完招新布置的作业后,我也成了一名Labview的初学者。这之后我知道了Labview这个软件是用来设计虚拟仪器的,而虚拟仪器是用计算机设计的一个软件,它能完成一台台式仪器的功能。比如可以用Labview设计一个信号发生器,产生正弦波、方波、三角波、锯齿波、任意占空比矩形波等。
而Labwindows/CVI我上大二时实验室的师兄跟我说过,他那时跟我说CVI是用来设置界面用的,一般都是硬件配上CVI一块用。可是在系统学习CVI之前我从没用过Labwindows/CVI。CVI和Labview都是很好用很优秀的软件,在自动化测试领域有着特别重要的作用。Labview采用的是G语言,也就是图形化语言,它不仅是一种编程环境,也是一门编程语言。Labview因为采用的是图形化语言,所以和CVI比起来学习更容易,编程也更简单,比较适合于专业知识比较薄弱的学习者。Labview采用的编程思想和传统C语言一样,是嵌套,主函数包含子函数的思想。所以,当要编写比较大的程序时,整个结构就显得很大很复杂,编写起来比较困难。这时,CVI相对就比较适合,因为C语言相对G语言逻辑性强,结构性要强。下面我就说说这次学习CVI的心得感受。
首先,老师帮我纠正了之前我对虚拟仪器的理解。虚拟仪器是在通用计算机上加上一组软件和/或硬件,使用者在操作这台计算机时,就像是在操作一台他自己设计的专用电子仪器。虚拟仪器是一种软件定义的系统,它基于用户需求的软件定义了一般测量硬件的功能。这就应证了前面师兄跟我说的那句话,光有软件也是不行的,还得有硬件配合,任何软件都有一定的局限性,因为它们都是基于操作系统平台的,而硬件是不需要任何平台的,它自身就可以成为一个平台。
后来,我知道了如何用CVI去设计一台虚拟仪器,了解了设计虚拟仪器的步骤。和Labview设计虚拟仪器的步骤很像,用CVI设计虚拟仪器首先也是先设计软面板,在CVI中是“.uir”文件,然后是编写程序代码,最后是编译调试运行。后来,我们比较系统性地学习了CVI测试数据的显示、分析、存储和传输方面的设计。在这个过程中,通过练习信号发生器的设计、TCP/IP网络通讯和RS232通讯的设计,我基本上掌握了CVI的测试数据相关处理的设计。也是在这个短暂的学习过程中,我越发发觉CVI的功能是如此的强大。再后来,我们简单学习了动态链接库和多线程的应用,动态链接库和多线程技术在CVI高级程序设计中都特别有用。CVI可以使用Windows操作系统中的动态链接库来实现一些很有用的功能,而多线程技术在工程很复杂时就大有作为,这时设计程序时就可以使用两个线程、三个线程或者更多,这对提高编程效率非常有用。最后,我们简单学习了仪器驱动程序的设计,大概了解了仪器驱动程序设计的发展是跟随着虚拟仪器技术的发展而发展的。仪器驱动程序从早期的底层I/O操作和高层仪器交互,逐渐发展到仪器编程语言的标准化和软件分层(也就是独立的仪器驱动程序)。这也就是现在我们还在采用的仪器驱动程序设计方法,仪器驱动程序和仪器模块分立,仪器驱动程序和应用程序之间也独立。后来这方法就发展成了现在的VPP规范,VPP规范对虚拟仪器软件结构和仪器驱动程序的开发进行了标准化,它的核心是定义了标准的I/O接口软件——VISA库。这样就实现了个厂家仪器的互操作。
最后我们学习了LabView知识入门,初步掌握了其设计虚拟仪器的方法和步骤,老师的讲解很到位,简单易懂。
通过学习虚拟仪器这么课,我不仅了解了虚拟仪器的相关知识,而且比较好地掌握了LabWindow/CVI的编程设计,能够编写简单的虚拟仪器。但是我也知道要想成为一名CVI编程高手还需要进行大量的练习,需要不断地学习。
第五篇:“虚拟仪器技术及应用”课程教学改革与实践(写写帮整理)
摘 要:文章以空军工程大学为例,从“虚拟仪器技术及应用”课程教学现状与存在的问题出发,提出了“虚拟仪器技术及应用”课程教学改革的策略,即重点在引入新的教学方法、设定不同层次的教学目标、充实实践教学五节等。
关键词:虚拟仪器技术;学导式教学法;教学改革
中图分类号:g642.0 文献标识码:a 文章编号:1002-4107(2016)02-0004-02
虚拟仪器技术是电气工程、自动化、计算机应用等领域的一项新兴技术,目前已经得到了广泛应用,并正在快速发展之中。为了帮助学生掌握这一新兴技术,现阶段国内高校理工科学校以及部分医学院校都普遍开设了相关的课程。
从2010年开始,空军工程大学将虚拟仪器技术相关知识纳入到了课程知识体系中,并从2012年开始,单独开设“虚拟仪器技术及应用”课程。根据人才培养方案,学校将“虚拟仪器技术及应用”课程定位为一门各专业通用专业基础课、工具课,一般在三年级下学期或四年级上学期开设。经过前面基础课程的学习,此时的学生对专业方向有了较为深入的了解,并具备基本的专业知识,教学效果应该不错。然而,我们在课程教学过程中却发现教学效果并没有达到预期目标。通过与学生的深入沟通,我们认为其原因主要有以下几方面。第一,学生对课程学习目的不明确,没有认识到所学知识对培养职业能力的重要作用。第二,学习内容偏向软件知识,对硬件系统搭设重视不够或者有意回避。第三,教学形式上,仅有部分学生能主动参与到教学活动中,学习积极性没有得到充分调动。第四,由于学时限制,要求在短时间内系统地传授知识,加之没有区别不同的教学目标,造成部分学生在面对大量新知识时无从下手,甚至畏难放弃。以上问题直接影响到学生对虚拟仪器技术的掌握,影响到教学目标的实现,有必要及时解决。
通过进一步讨论分析,参考其他课程的改革经验[1-4],我们认为解决上述问题的关键在于对教学活动进行改革,激发学生的内动力,提高学生学习兴趣。为此,在教学过程中,我们根据课堂教学及实践教学两大环节特点,对教学组织及教学内容进行了一些改革,引入了新的教学方法,改革了课程教学内容,重新设计了实践教学的组织形式,通过多种手段,锻炼学生的实践动手能力,培养学生分析问题和解决问题的能力,养成自主学习习惯,从而全面提高学生的综合素质。通过本文所介绍的方法,学生的学习积极性得到了明显提高,学习效果得到了显著提升,效果显著。
一、引入新的教学方法
根据“虚拟仪器技术及应用”课程特点,参考其他课程的实践经验,我们引入了“学导式”教学法[5-6]。将整个课程教学分为课前预备、学生自学、集中解惑以及演练交流等环节,通过各环节之间的有机配合,构成了课程教学闭环。根据各环节的任务及特点,分别明确了教师、学生在不同环节中的主体地位、任务以及教与学的方法。具体有以下一些体会。
第一,牢固树立以学生为教学主体的理念,并在整个教学活动中坚持;在教学准备中应该从学生的实际学习情况入手,进行精心准备,在教学过程中应充分发挥学生自身作用,帮助他们实现自我完善、自我突破。
第二,在教学准备过程中,教师除了完成常规的课程内容准备外,还要进行资料文献收集整理、自主实验组织、学生大作业辅导检查等其他工作,教师的工作量会有较大的增加。
第三,采用学导式教学法对教师的能力素质提出了较高的要求,由于绝大部分的教学时间都是以学生为主导,教师无法开展预先准备,这就要求教师的基本功扎实,对相关领域的知识掌握充分,具备驾驭课程教学的能力。
二、革新教学内容及目标要求
作为一门正在快速发展之中的新兴技术,虚拟仪器技术的教学内容对于学生来说比较新颖,在短时间内系统学习具有一定的难度。此外,作为一门工具课,如果只单纯介绍虚拟仪器技术本身知识,可能会造成学生为了学习而学习,降低学生学习的主观能动性,不利于培养学生的专业能力。为此,必须对课件教学内容进行革新以适应学生学习需求。主要做法包含以下几个方面。
(一)注重课程间的联系
帮助学生理解虚拟仪器技术在其他课程中的应用以及对于培养专业能力中的作用,及早建立较为全面的专业知识框架。在教学过程中加强对虚拟仪器新技术、新系统、新应用的介绍,加强对日常生活中的应用的介绍,提高学生对虚拟仪器技术的感性认识,激发学生学习兴趣。此外,还注意加强对虚拟仪器技术在任职岗位中应用的介绍,使学生提早了解在今后岗位中虚拟仪器技术的应用情况,帮助学生迅速明确学习目的,提高学习内动力。
(二)设置多层次的课程学习要求
将课程学习目标分别设置为:初级:具备基础虚拟仪器编程能力,会读虚拟仪器程序,理解程序所实现的功能以及系统实现思路;中级:会利用虚拟仪器技术实现软件或硬件功能模块,理解系统设计目标,会具备根据系统目标自主完成模块设计、模块调试、模块交付等工作;高级:会根据任务进行系统整体设计,相对自主进行系统设计、任务分工、系统集成等工作。
在教学实践中,学生的选择出现了较为明显的纺锤形分布,即大多数学生选择第二级目标,其他两种目标选择的人较少,说明大多数学生对自己有准确的定位。通过设置上述三个层次的目标允许学生根据自己的整体目标为本门课程的学习设置不同层级的学习目标,根据学生的不同特点,分别为每种层次规定了明确的教学内容以及能力目标,使每一个学生都能找到适合自己的学习目标,避免了由于设定不切实际的学习目标而导致的学习兴趣不高的问题。
(三)构架模块化教学内容体系
按照教学内容之间的相互联系,将内容分为软件、硬件两大部分。在软件部分,设置了程序结构、数据操作、文件操作、图形展示、数据通信等知识模块;在硬件部分,设置了仪器控制、数据采集、硬件系统调试等知识模块。按照学生的认知规律,由易及难,从局部到整体。在教学过程中既强调知识模块之间的相互关联,又注意知识模块之间的相互独立,适当地对所用的其他模块知识进行回顾,避免由于没有掌握一个知识模块而影响到整个课程的学习。
三、实践教学环节
第一,将课程实践条件建设放到学科专业条件建设的大局中。实践条件建设水平的高低,直接决定着本课程的教学效果。为了解决实践条件建设问题,我们积极参与学科专业条件建设工作,将虚拟仪器技术思想贯穿于实验室建设整个过程中,搭建了从信号源到数据分析的完整的实践链条。极大地改善了教学实践条件,激发了学生的学习兴趣。
第二,针对学时数偏少的实际,将实践环节向实验室以外进行扩展。为了充分调动学生学习积极性,自觉将课外时间用于课程学习,我们自筹资金10万余元采购了便于学生使用的ni elvis以及mydaq套件,配置了方便携带的标准信号源,使学生能够根据自己的时间灵活安排,做到随时随地开展课程实践活动。此外,对于一些价格便宜的器件,有意识地安排学生自行购买,培养学生器件选型能力,同时也促使他们珍惜实践机会,提高实践能力。对于教师来说,需要注意加强与学生的课后沟通,及时了解学生的实践学习情况,对一些共性问题在学生集中时及时讲解。
第三,强调在实践环节中培养学生的自主学习能力。改革课程考核方法,将重点放到考核学生解决实际问题能力上。在学生具备虚拟仪器技术基本知识后,及时引导学生从日常学习、生活中寻找力所能及的、能够利用虚拟仪器技术加以解决的问题,以解决这些问题为目标,在教师的帮助之下,相对独立地完成形成研究小组、完成任务分工、制定解决方案、查阅相关资料、采购设备器材、搭建硬件系统、调试软件程序、展示研究成果等环节。在实践中锻炼学生解决实际问题的能力,培养自主学习习惯,品尝解决问题的快乐,激发学生学习的主动性。
在“虚拟仪器技术及应用”课程教学过程中,我们引入了适合于教学内容及教学对象特点的教学方法;对课程内容进行了优化,设定了不同层级的教学目标;充实了实践环节重视培养学生的主动性、创造性。除了上述三个方面的举措之外,我们还采取了加强课程互动设计,改革了课程考核评价方式,充实了教辅资料等措施共同推进课程教学。
为了验证教改效果,我们在两个教学期班共106名学生中进行了问卷调查。其中,有90%的学生认为课程教学目标符合学生实际,有86%的学生表示积极参与了课程学习,有82%的学生表示基本掌握了虚拟仪器技术。对比改革前的结果,均有较大幅度的提高,表明学生对教学改革措施普遍接受,学生学习内动力受到了激发,教学效果得到了显著提升。
下一步,我们将认真总结课程教学活动的经验教训,进一步在教学方法、实践环节以及提高学习参与度等方面进行改革、实践,帮助学生更快更好地掌握专业知识。