砌体结构简答题总结

时间:2019-05-12 05:34:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《砌体结构简答题总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《砌体结构简答题总结》。

第一篇:砌体结构简答题总结

1、砌体结构材料性能的分项系数B级1.6,C级1.8

2、采用高标号水泥砂浆砌筑的墙体,其抗压强度设计值应乘以1.1-0.01的修正系数。11.砌体结构中的砂浆种类有哪些?各有何特点?分别用在什么情况下?

纯水泥砂浆、混合砂浆、石灰砂浆。

纯水泥砂浆:强度高,但流动性、保水性较差。混合砂浆:强度居中,但流动性、保水性好。石灰砂浆:强度低,但流动性、保水性好。纯水泥砂浆用在地面以下的砌体结构中,混合泥砂浆用在地面以上的砌体结构中,石灰砂浆用在临时性的砌体结构中。

12.配筋砌体的种类主要有哪几种? 网状配筋砖砌体、砌体与钢筋砂浆或钢筋混凝土组合成的组合砌体、砌体和钢筋混凝土构造柱组合墙、配筋砌块砌体。

13.砌体材料在竖向压力和水平力的共同作用下的破坏形态有哪几种?

剪摩破坏、剪压破坏、斜压破坏

14.砌体结构中根据竖向荷载的传递方式不同有几种结构布置方案?(4分)

横墙承重体系、纵墙承重体系、纵横墙承重体系、内框架承重体系。

15.确定砌体结构的静力计算方案的主要因素是什么?静力计算方案有哪几种?并画图示

意静力计算方案。(6分)

主要因素是楼、屋盖类型和横墙间距。

三种静力计算方案分别为:弹性方案、刚性方案、刚弹性方案。

16.当梁端砌体的局部受压承载力不满足时,可采取哪些措施?(4分)

可采取设置刚性垫块、柔性垫梁,提高砌体的抗压强度等。

17.采取哪些措施可以改善砌体结构由于地基不均匀沉降引起的墙体裂缝?(6分

理的结构布置,加强房屋的整体刚度、设置沉降缝。

18.当砖砌体受压构件的偏心距e>0.6y时,可以采取哪种配筋砌体承受荷载?(2分)

砌体与钢筋砂浆或钢筋混凝土组合成的组合砌体。

19.什么砌体结构形式中会采用墙梁承担荷载?(3分)底框结构,20.钢筋混凝土挑梁承载力计算包括那些内容?(4分)抗倾覆验算,挑梁的抗弯、抗剪,局压验算。1.简述砌体结构的缺点。

① 砌体强度较低,结构自重大② 砌筑施工劳动量大③ 材料抗剪强度较低,结构抗震性能较差④ 耗用粘土,不利于环境保护

2.简述影响砌体抗剪强度的主要因素。

① 砂浆的强度② 法向压应力③ 砌筑质量④ 其他因素

4.简述设计不考虑风荷载对砌体结构影响需要同时满足的条件。

① 洞口水平截面积不超过全截面面积的 2/3② 层高和总高不超过相应风载下高度的规定③ 屋面自重不小于 0.8kN/m2 5.简述减轻或避免砌体房屋产生沉降裂缝的主要技术措施。

① 合理设置沉降缝② 加强上部结构整体刚度③ 底层墙底设置圈梁④ 采用整体性较好的基础

6.简述水平网状配筋砖砌体配筋方法及适用范围。

配筋方法:隔3-5 皮砖,在水平灰缝中配置钢筋(网片)适宜用作高厚比小于16 的小偏心受压构件 7.简述挑梁的种类及破坏类型。

挑梁种类:① 刚性挑梁;② 柔性挑梁;挑梁破坏类型:①倾覆破坏②局部受压破坏③挑梁自身破坏(包括受弯、受剪破坏)8.简述连续墙梁的受力特点。

① 下部混凝土托梁与上部墙体产生组合作用② 托梁跨中属于偏心受拉截面,梁端弯矩和剪力明显小于普通梁③ 上部竖向荷载向支座传递,砌体易出现局部受压破坏 9.简述砌体结构房屋的抗震概念设计的主要内容。

① 严格限制房屋高度、层高、高宽比② 优先选用配筋砌体结构③ 优先采用横墙或纵横墙承重方案④ 严格限制抗震横墙最大间距⑤ 限制无筋砌体局部尺寸 ⑥ 设置现浇圈梁和构造柱

11.无筋砌体受压构件对偏心距e有何限制,当超过限制值时应如何处理?(5分)e≤0.6y, 可调整构件截面尺寸, 设置缺口垫块,采用钢筋混凝土或钢筋砂浆面层配筋砌体。

12.试简单解释砖砌体抗压强度远小于砖的强度等级,而又大于砂浆强度等级较小时的砂浆强度等级?(3分)

砖砌体中由于块材表面不平整,块材受力不均匀;砌体中的砖受附加水平拉力,竖向灰缝处存在应力集中,这些原因加快了砖块材的破坏,所以砖砌体抗压强度远小于砖的强度等级。由于砌体结构抗压强度不仅与砂浆的强度等级有关还与砌块的强度等级有关,并且强度较低的砂浆的横向变形大于块材的横向变形,所以砂浆受到周边的附加压力,所以砌体的抗压强度大于强度等级较低的砂浆的强度。

13.根据墙、柱的不同受力情况,混合结构房屋有哪几种承重体系?各适合于何种情况(8分)

混合结构房屋承重体系有: 横墙承重体系,适用于开间较小,宿舍、住宅等房间规则的房屋; 纵墙承重体系,适用于单层以及多层空旷房屋,食堂、教学楼等; 纵、横墙承重体,适用于平面布置较灵活,教学楼、办公楼等; 底框结构,房屋底层需大开间而上部为小开间的横墙或纵墙承重,底层商店、上层住宅等; 内框架结构,适用于工业厂房、商店等需要大开间的房屋。

14.确定砌体结构的静力计算方案的主要因素是什么?静力计算方案有哪几种?并画图示意单层房屋静力计算方案。(8分)确定砌体结构的静力计算方案的主要因素是楼屋盖类别和横墙间距。静力计算方案有:刚性方案、弹性方案、刚弹性方案。15.墙梁承载力的计算包括哪些部分?(4分)

墙体的抗剪承载力计算,托梁的正截面和斜截面承载力计算,托梁支座上部砌体局部受压承载力计算。托梁施工阶段承载力计算。

16.砌体局部受压可能发生哪些破坏形态?对局部抗压强度提高系数γ进行限制的目的是什么?(5分)

竖向裂缝发展破坏, 劈裂破坏, 支座附近局压破坏.防止构件发生劈裂破坏

17.带壁柱墙的高厚比验算包括哪两个部分?(2分)整片墙的高厚比验算,壁柱间墙的高厚比验算

18.引起砌体结构墙体开裂的主要因素有哪些?(5分)

温差包括日照温差、季节温差;砌体干缩、地基不均匀沉降、设计因素、施工因素等。

第二篇:砌体结构总结

1、砌体结构是指由块体和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构。是砖砌体、砌块砌体和石砌体结构的统称。

2、砌体结构的优点:1可就地取材,造价低廉。2有很好的耐火性和较好的耐久性。,较好的化学稳定性和大气稳定性,使用年限长。3保温,隔热性能好,节能效果明显。4施工设备简单,施工技术上无特殊要求。5当采用砌体和大型板材做墙体时,可以减轻结构自重,加快施工速度,进行工业化生产和施工。

缺点:1砌体结构的自重大。2砌体的抗震和抗裂性能较差。3砌筑施工劳动强度大。4粘土砖制造耗用粘土,影响农业生产不利于环保。

砌体结构的发展展望:1积极发展新材料2积极推广应用配筋砌体结构。3加强对防止和减轻墙体裂缝构造措施的研究。4加强砌体结构理论的研究5革新砌体结构的施工技术,提高劳动效率和减轻劳动强度。

3、块体是组成砌体的主要材料。常用的砌体块体有砖、砌块、石材。砌块按尺寸分为小型中型大型,常用的是小型。烧结普通砖:240*115*53多孔砖:P型规格240、115、90。M型规格190、190、90.4、砂浆:是由胶凝材料(水泥、石灰)及细骨料(如粗砂、细砂、中砂)加水搅拌而成的黏结块体的材料。作用:是将块体黏结成受力整体,抹平块体间的接触面,使应力均匀传递。同时,砂浆填满块体间的缝隙,减少了砌体的透气性,提高了砌体的隔热、放水和抗冻性能。混合砂浆:在水泥砂浆中掺入一定的塑形掺合料(石灰浆和黏土浆)所形成的砂浆。这种砂浆具有一定的强度和耐久性,而且可塑性和保水性较好。

5、对砂浆质量的要求:1砂浆应有足够的强度,以满足砌体强度及建筑物耐久性要求2砂浆应具有较好的可塑性,即和易性能良好,以便于砂浆在砌筑时能很容易且较均匀的铺开,保证砌筑质量和提高功效。3砂浆应具有适当的保水性,使其在存放、运输和砌筑过程中不出现明显的泌水、分层、离析现象,以保证砌筑质量,砂浆强度和砂浆与块体之间的黏结力。

6、12墙的实际宽度是115MM;24墙(一砖)的实际宽度是240MM;37(一砖半)墙的实际宽度是240+10+115=365MM;50(两砖)墙的实际宽度是240+10+240=490MM

7、砌体受压破坏三个阶段的特征:第一阶段:从砌体受压开始当压力增大至50%~70%的破坏荷载时,多空砖砌体当压力增大至70%~80%的破坏荷载时,砌体内某些单块砖在拉、弯、剪复合作用下出现第一条裂缝。在此阶段砖内裂缝细小,未能穿过砂浆层,如果不在增加压力,单块砖内的压力也不继续发展。

第二阶段:随着荷载的增加,当压力增大至80%~90%的破坏荷载时,单块砖内的裂缝将不断发展,并沿着竖向灰缝通向若干皮砖,并逐渐在砌体内连接成一段段教连续的裂缝。此时荷载即使不在增加,裂缝仍会继续发展,砌体已临近破坏,在工程实践中视为构件处于十分危险的状态。

第三阶段:随着荷载的继续增加,砌体中的裂缝迅速延伸、宽度扩展,并连成通缝,连续的竖向贯通裂缝把砌体分割成半砖左右的小柱体(个别砖可能被压碎)失稳,从而导致整个砌体破坏。

8、砌体的受压应力状态特点:1单块砖在砌体内并非均匀受压2砌体横向变形时砖和砂浆存在交互作用3在竖向灰缝出现拉应力和剪应力的应力集中。

9、影响砌体抗压强度的因素:1块体与砂浆的等级强度2块体的尺寸与形状3砂浆的流动性、保水性及弹性模量的影响4砌筑质量与灰缝的厚度。

10、网状配筋砖砌体构件的受压性能:第一阶段:在加载的初始阶段个别砖内出现第一批裂缝,所表现的受力特点与无筋砌体相同,出现第一批裂缝时的荷载约为破坏荷载的60%~75%,较无筋砌体高。

第二阶段:随着荷载的继续增加,纵向裂缝的数量增多,但发展很缓慢。纵向裂缝收到横向钢筋网的约束,不能沿砌体高度方向想成连续裂缝,这与无筋砖砌体受压时有较大的不同。

第三阶段:荷载增至极限,砌体内部分开裂严重的砖脱落或被压碎,最后导致砌体完全被破坏。此阶段一般不会像无筋砌体那样形成1/2砖的竖向小柱体而发生失稳破坏现象,砖的强度得以比较充分的发挥。

11、混合结构房屋的结构布置方案:

1纵墙承重方案

传递路线:板——梁(屋架)——纵墙——基础——地基。特点:房屋空间较大,平面布置比较灵活。但是由于纵墙上有大梁或屋架,纵墙承受的荷载较大,设置在纵墙上的门窗洞口大小和位置受到一定的限制,而且由于横墙数量较少,房屋的横向刚度较差,一般适用于单层厂房、仓库、酒店、食堂等

2横墙承重方案

传递路线:楼(屋)面板——横墙——基础——地基

特点:横墙数量多,间距小,房屋的横向刚度大,整体性好;由于纵墙是非承重墙,对纵墙上设置门窗洞口的限制较少,立面处理比较灵活。横墙承重适合于房间大小较固定的宿舍、住宅、旅馆等。

3纵横墙混合承重方案

竖向荷载的主要传递路线:楼(屋)面板——{梁——纵墙}——基础——地基

{横墙或纵墙} 特点;既可保证有灵活布置的房间,又具有较大的空间刚度和整体性,所以适用于办公楼教学楼、医院等。

4内框架承重方案 传递路线:

楼(屋)面板——梁——(外纵墙——外纵墙基础)——地基

{柱——柱基础

}

特点:平面布置灵活,有较大的使用空间,但横墙较少,房屋的空间刚度差。另外由于竖向承重构件材料不同,基础形式亦不同,因此施工较复杂,易引起地基不均匀沉降。内框架承重方案一般适用于多层工业厂房、仓库、商店等建筑。、房屋的空间工作:由于山墙或横墙的存在,改变了水平荷载的传递路线,使房屋有了空间作用。而且两端山墙的距离越近或增加越多的横墙,房屋的水平刚度越大,房屋的空间作用越大,即空间工作性能越好,则水平位移越小。

空间性能影响系数η越大,表明整房屋的水平位移与平面排架的位移越接近,即房屋的空间作用越小:反之,值越小,表明房屋的水平位移越小,即房屋的空间作用大。因此,η又称考虑空间作用后的位移这件系数。

13、房屋静力计算方案:(两个主要因素是屋盖刚度和横墙间距)

1刚性方案:当横墙间距小、楼盖或无盖水平刚度较大时,则房屋的空间刚度也较大,在水平荷载作用下,房屋的顶端水平位移很小,可以忽略不计,这类房屋称为刚性方案房屋。当房屋的空间性能影响系数η<0.33时,可以用此方法。2 弹性方案:当房屋的横墙间距较大,楼盖或屋盖水平刚度较小,则在水平荷载作用下,房屋顶端的水平位移很大,接近于平面结构体系,这类房屋称为弹性方案房屋。当

η>0.77时,可以采用此方案。3 刚弹性方案:房屋的空间刚度介于刚性方案和弹性方案之间,其楼盖或屋盖具有一定的水平刚度,横墙间距不太大,能起一定的空间作用,在水平荷载作用下,房屋顶端水平位移较弹性方案的水平位移小,但又不可忽略不计。当0.33≤ η ≤0.77时,可按刚弹性方案计算。

14、单层 刚性方案房屋设计计算假定:1纵墙、柱下端在基础顶面处固结,上端与屋面大梁(或屋架)铰接

2屋盖结构可作为纵墙上端的不动铰支座。

15、过梁:设置在门窗洞口顶部承受洞口上部一定范围内荷载的梁称为过梁。

16、过梁的荷载:一种是仅承受一定高度范围的墙体荷载,另一种是除承受墙体荷载外,还承受过梁计算高度范围内梁板传来的荷载。

17、墙体荷载:1对砖砌体,当过梁的墙体高度h小于L/3时,墙体荷载应按照墙体的均布自重采用,否则应按高度为L/3墙体的均布自重采用。2 对砌块砌体,当过梁上的墙体高度h小于 L/2 时,墙体荷载应按墙体的均布自重采用,否则应按高度为L/2墙体的均布自重采用。

18、过梁的破坏:过梁跨中截面因受弯承载力不足而破坏;过梁支座附近截面因受剪承载力不足,沿灰缝产生45°方向的阶梯形裂缝扩展而破坏;外墙端部因端部墙体宽度不够,引起水平灰缝的受剪承载力不足而发生支座滑动破坏。

19、圈梁:在砌体结构房屋中,沿砌体墙水平方向设置封闭状的按构造配筋的混凝土梁式结构,称为圈梁。位于房屋0.000以下基础顶面处设置的圈梁,称为地圈梁或基础圈梁。位于房屋檐口处的圈梁,称为檐口圈梁。

作用:在房屋的墙体中设置圈梁,可以增强房屋的整体性和空间刚度,防止由于地基的不均匀沉降或较大振动荷载等对房屋引起的不利影响。20、挑梁三种破坏形式;1抗倾覆力矩小于倾覆力矩而使挑梁绕其下表面与砌体外缘交点处稍向内移的一点转动发生倾覆破坏。2当压应力超过砌体的局部抗压强度时,挑梁下的砌体将发生局部受压破坏。3挑梁倾覆点附近由于正截面受弯承载力或斜截面受剪承载力不足引起弯曲破坏或剪切破坏。

21、挑梁的计算:抗倾覆验算、挑梁下砌体的局部受压承载力验算和挑梁本身的承载力验算。

第三篇:砌体结构总结

1、砌体结构是指由块体和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构。是砖砌

体、砌块砌体和石砌体结构的统称。

2、砌体结构的优点:1可就地取材,造价低廉。2有很好的耐火性和较好的耐久性。,较好的化学稳定性和大气稳定性,使用年限长。3保温,隔热性能好,节能效果明显。4施工设备简单,施工技术上无特殊要求。5当采用砌体和大型板材做墙体时,可以减轻结构自重,加快施工速度,进行工业化生产和施工。缺点:1砌体结构的自重大。2砌体的抗震和抗裂性能较差。3砌筑施工劳动强度大。4粘土砖制造耗用粘土,影响农业生产不利于环保。砌体结构的发展展望:1积极发展新材料2积极推广应用配筋砌体结构。3加强对防止和减轻墙体裂缝构造措施的研究。4加强砌体结构理论的研究5革新砌体结构的施工技术,提高劳动效率和减轻劳动强度。

3、块体是组成砌体的主要材料。常用的砌体块体有砖、砌块、石材。砌块按尺寸分为小型

中型大型,常用的是小型。烧结普通砖:240*115*53多孔砖:P型规格240、115、90。M型规格190、190、90.4、砂浆:是由胶凝材料(水泥、石灰)及细骨料(如粗砂、细砂、中砂)加水搅拌而成的黏

结块体的材料。作用:是将块体黏结成受力整体,抹平块体间的接触面,使应力均匀传递。同时,砂浆填满块体间的缝隙,减少了砌体的透气性,提高了砌体的隔热、放水和抗冻性能。混合砂浆:在水泥砂浆中掺入一定的塑形掺合料(石灰浆和黏土浆)所形成的砂浆。这种砂浆具有一定的强度和耐久性,而且可塑性和保水性较好。

5、对砂浆质量的要求:1砂浆应有足够的强度,以满足砌体强度及建筑物耐久性要求2砂

浆应具有较好的可塑性,即和易性能良好,以便于砂浆在砌筑时能很容易且较均匀的铺开,保证砌筑质量和提高功效。3砂浆应具有适当的保水性,使其在存放、运输和砌筑过程中不出现明显的泌水、分层、离析现象,以保证砌筑质量,砂浆强度和砂浆与块体之间的黏结力。

6、12墙的实际宽度是115MM;24墙(一砖)的实际宽度是240MM;37(一砖半)墙的实际宽度是240+10+115=365MM;50(两砖)墙的实际宽度是240+10+240=490MM7、砌体受压破坏三个阶段的特征:第一阶段:从砌体受压开始当压力增大至50%~70%的破坏荷载时,多空砖砌体当压力增大至70%~80%的破坏荷载时,砌体内某些单块砖在拉、弯、剪复合作用下出现第一条裂缝。在此阶段砖内裂缝细小,未能穿过砂浆层,如果不在增加压力,单块砖内的压力也不继续发展。第二阶段:随着荷载的增加,当压力增大至80%~90%的破坏荷载时,单块砖内的裂缝将不断发展,并沿着竖向灰缝通向若干皮砖,并逐渐在砌体内连接成一段段教连续的裂缝。此时荷载即使不在增加,裂缝仍会继续发展,砌体已临近破坏,在工程实践中视为构件处于十分危险的状态。第三阶段:随着荷载的继续增加,砌体中的裂缝迅速延伸、宽度扩展,并连成通缝,连续的竖向贯通裂缝把砌体分割成半砖左右的小柱体(个别砖可能被压碎)失稳,从而导致整个砌体破坏。

8、砌体的受压应力状态特点:1单块砖在砌体内并非均匀受压2砌体横向变形时砖和砂浆

存在交互作用3在竖向灰缝出现拉应力和剪应力的应力集中。

9、影响砌体抗压强度的因素:1块体与砂浆的等级强度2块体的尺寸与形状3砂浆的流动

性、保水性及弹性模量的影响4砌筑质量与灰缝的厚度。

10、网状配筋砖砌体构件的受压性能:第一阶段:在加载的初始阶段个别砖内出现第一

批裂缝,所表现的受力特点与无筋砌体相同,出现第一批裂缝时的荷载约为破坏荷载的60%~75%,较无筋砌体高。第二阶段:随着荷载的继续增加,纵向裂缝的数量增多,但发展很缓慢。纵向裂缝收到横向钢筋网的约束,不能沿砌体高度方向想成连续裂缝,这与无筋砖砌体受压时有较大的不同。第三阶段:荷载增至极限,砌体内部分开裂严

重的砖脱落或被压碎,最后导致砌体完全被破坏。此阶段一般不会像无筋砌体那样形成1/2砖的竖向小柱体而发生失稳破坏现象,砖的强度得以比较充分的发挥。

11、混合结构房屋的结构布置方案:1纵墙承重方案传递路线:板——梁(屋架)

——纵墙——基础——地基。特点:房屋空间较大,平面布置比较灵活。但是由于纵墙上有大梁或屋架,纵墙承受的荷载较大,设置在纵墙上的门窗洞口大小和位置受到一定的限制,而且由于横墙数量较少,房屋的横向刚度较差,一般适用于单层厂房、仓库、酒店、食堂等2横墙承重方案传递路线:楼(屋)面板——横墙——基础——地基特点:横墙数量多,间距小,房屋的横向刚度大,整体性好;由于纵墙是非承重墙,对纵墙上设置门窗洞口的限制较少,立面处理比较灵活。横墙承重适合于房间大小较固定的宿舍、住宅、旅馆等。3纵横墙混合承重方案竖向荷载的主要传递路线:楼(屋)面板——{梁——纵墙}——基础——地基{横墙或纵墙}

特点;既可保证有灵活布置的房间,又具有较大的空间刚度和整体性,所以适用于办公楼教学楼、医院等。4内框架承重方案 传递路线:

楼(屋)面板——梁——(外纵墙——外纵墙基础)——地基

{柱——柱基础}特点:平面布置灵活,有较大的使用空间,但横墙较少,房屋的空间刚度差。另外由于竖向承重构件材料不同,基础形式亦不同,因此施工较复杂,易引起地基不均匀沉降。内框架承重方案一般适用于多层工业厂房、仓库、商店等建筑。

12、房屋的空间工作:由于山墙或横墙的存在,改变了水平荷载的传递路线,使房屋有了空间作用。而且两端山墙的距离越近或增加越多的横墙,房屋的水平刚度越大,房屋的空间作用越大,即空间工作性能越好,则水平位移越小。空间性能影响系数η越大,表明整房屋的水平位移与平面排架的位移越接近,即房屋的空间作用越小:反之,值越小,表明房屋的水平位移越小,即房屋的空间作用大。因此,η又称考虑空间作用后的位移这件系数。

13、房屋静力计算方案:(两个主要因素是屋盖刚度和横墙间距)1刚性方案:当横墙间距小、楼盖或无盖水平刚度较大时,则房屋的空间刚度也较大,在水平荷载作用下,房屋的顶端水平位移很小,可以忽略不计,这类房屋称为刚性方案房屋。当房屋的空间性能影响系数η<0.33时,可以用此方法。2 弹性方案:当房屋的横墙间距较大,楼盖或屋盖水平刚度较小,则在水平荷载作用下,房屋顶端的水平位移很大,接近于平面结构体系,这类房屋称为弹性方案房屋。当η>0.77时,可以采用此方案。3 刚弹性方案:房屋的空间刚度介于刚性方案和弹性方案之间,其楼盖或屋盖具有一定的水平刚度,横墙间距不太大,能起一定的空间作用,在水平荷载作用下,房屋顶端水平位移较弹性方案的水平位移小,但又不可忽略不计。当0.33≤ η ≤0.77时,可按刚弹性方案计算。

14、单层 刚性方案房屋设计计算假定:1纵墙、柱下端在基础顶面处固结,上端与屋面大梁(或屋架)铰接2屋盖结构可作为纵墙上端的不动铰支座。

15、过梁:设置在门窗洞口顶部承受洞口上部一定范围内荷载的梁称为过梁。

16、过梁的荷载:一种是仅承受一定高度范围的墙体荷载,另一种是除承受墙体荷载外,还承受过梁计算高度范围内梁板传来的荷载。

17、墙体荷载:1对砖砌体,当过梁的墙体高度h小于L/3时,墙体荷载应按照墙体的均布自重采用,否则应按高度为L/3墙体的均布自重采用。2 对砌块砌体,当过梁上的墙体高度h小于 L/2 时,墙体荷载应按墙体的均布自重采用,否则应按高度为L/2墙体的均布自重采用。

18、过梁的破坏:过梁跨中截面因受弯承载力不足而破坏;过梁支座附近截面因受剪承载力不足,沿灰缝产生45°方向的阶梯形裂缝扩展而破坏;外墙端部因端部墙体宽度不够,引起水平灰缝的受剪承载力不足而发生支座滑动破坏。

19、圈梁:在砌体结构房屋中,沿砌体墙水平方向设置封闭状的按构造配筋的混凝土梁式结构,称为圈梁。位于房屋0.000以下基础顶面处设置的圈梁,称为地圈梁或基础圈梁。位于房屋檐口处的圈梁,称为檐口圈梁。作用:在房屋的墙体中设置圈梁,可以增强房屋的整体性和空间刚度,防止由于地基的不均匀沉降或较大振动荷载等对房屋引起的不利影响。

20、挑梁三种破坏形式;1抗倾覆力矩小于倾覆力矩而使挑梁绕其下表面与砌体外缘交点处稍向内移的一点转动发生倾覆破坏。2当压应力超过砌体的局部抗压强度时,挑梁下的砌体将发生局部受压破坏。3挑梁倾覆点附近由于正截面受弯承载力或斜截面受剪承载力不足引起弯曲破坏或剪切破坏。

21、挑梁的计算:抗倾覆验算、挑梁下砌体的局部受压承载力验算和挑梁本身的承载力验算。

第四篇:砌体结构加个人PPT总结简答题(仅供参考)

影响砌体抗压强度的因素有哪些?①块体与砂浆的强度等级②块体的尺寸与形状 ③砂浆的流动性、保水性及弹性模量的影响;砂浆的变形性能 ;砌筑质量

2无筋砌体受压构件对偏心距e有何限制?为什么?当超过限制时应如何处理?答:轴向力的偏心距e按内力设计值计算,不应超过0.6y,y为截面重心到轴向力所在偏心方向截面边缘的距离。当轴向力的偏心距超过上述规定限制时,可采取修改构件截面尺寸的方法,当梁或屋架端部支承反力的偏心距较大时,可在其端部下的砌体上设置具有中心装置的垫块或缺口垫块,中心装置的位置或缺口尺寸,可视需要减小偏心距而定。简述砌体结构的优缺点?优点: 材料来源广泛,便于就地取材;有很好的耐火性和较好的耐久性;保温,隔热性能好,节能效果比较明显;比钢筋混凝土结构节约水泥和钢材,节约木材,可持续施工;采用砌块或大型板材作墙体,可减轻结构自重,加快施工进度。砌体结构的缺点是:①砌体结构自重大。②砌筑砂浆和砖、石、砌块之间的粘结力较弱,因此无筋砌体的抗拉、抗弯及抗剪强度低,抗震及抗裂性能差。③砌体结构砌筑工作繁重。④砌体结构的粘土砖用量很大,往往占用农田,影响农业生产。

4在进行刚性方案承重纵墙计算时所应完成的验算内容有哪些?答:①屋面荷载作用②风荷载作用③墙体自重④控制截面及内力组合单层刚性方案的房屋,在进行静力计算时按哪种分析?按刚性方案计算轴心受压砌体中砖处于哪些复杂应力状态是什么?由于砖本书的形状不完全规则平整,灰缝的厚度和密实性不均匀,使使得单块砖在砌体内并不是均匀受压,而是处于受弯和受剪状态。由于砖的脆性,抵抗受弯和受剪的能力较差,砌体内第一批裂缝的出现是由单块砖的受弯受剪引起的。砌体局部受压可能有三种破坏形式?①因纵向裂缝发展而引起的破坏②劈裂破坏③与垫板直接接触的砌体局部破坏当采用水泥砂浆砌筑砌体时,砌体抗压强度有何影响?砂浆的强度等级越高,砂浆的横向变形越小,砌体的抗压强度也有所提高,在转的强度等级一定时,过多提高砂浆强度等级,砌体抗压强度的提高并不很显著。影响砌体结构墙、柱允许高厚比[β] 值的主要因素是?①砂浆强度等级②砌体截面刚度③砌体类型④构件重要性和房屋使用情况⑤构造柱间距及截面⑥横墙间距⑦支承条件

10砌体轴心抗拉、弯曲抗拉、抗剪强度取决于?

轴心抗拉①砌体在轴心力作用下,构件一般沿齿缝截面破坏,此时砌体的抗拉强度取决于块体与砂浆连接面的粘结强度,并与齿缝破坏面水平灰缝的总面积有关②当砌体的强度等级较低,而砂浆的强度等级又高时,砌体则可能沿块体与竖向灰缝截面破坏。此时砌体的轴心抗拉强度取决于块体的强度等级。

弯曲抗拉:①沿齿缝截面受弯破坏发生于灰缝粘结强度低于块体本身抗拉强度时于砂浆等级有关②沿水平通缝截面受弯破坏主要取决于砂浆与块体之间的法向粘结强度,也与砂浆强度等级有关③沿块体与竖向通缝截面受弯破坏发生于灰缝

粘结强度高于块体本身抗拉强度主要取决于块体的强度等级。

抗剪强度:单纯受剪时砌体的抗剪强度主要取决于水平灰缝中砂浆与块体的粘结强度。影响房屋空间刚度的两个主要因素是什么?①横墙间距②屋盖或楼盖类别 12 局部受压范围内的砌体抗压强度有很大程度的提高的原因?局部受压时,直接受压的局部范围内的砌体强度又较大程度提高,局部受压的砌体在产生纵向变形的同时还产生横向变形,当局部受压部分的砌体四周或对边又砌体包围时,未直接承受压力的部分象套箍一样约束其横向变形,与加载板接触的砌体处于三向受压或双向受压的应力状态,抗压能力大大提高。计算挑梁的抗倾覆力矩设计值的抗倾覆荷载,为挑梁尾端上部45度扩散角范

围为内的砌体自重与哪些荷载?挑梁的抗倾覆荷载为挑梁尾端上部45°扩展角的阴影范围内本层的砌体与楼面荷载标准值之和。在承载能力极限状态表达式中,均采用荷载效应和材料强度的什么值?采用设计值

15、砌体受压破坏特征:开始加载到出现个别裂缝(仅在单块砖内产生细小裂缝,若不增加压力,裂缝也不发展。)个别裂缝发展成连续裂缝(砌体进入 弹塑性受力阶段,即使压力不再增加,砌体压缩变形增长快,砌体内裂缝继续加长增宽),连续裂缝发展成贯通裂缝(砌体中裂缝急剧加长增宽,个别砖被压碎或形成的小柱体失稳破坏。此时砌体的强度称为砌体的破坏强度。)

15、结构的极限状态:整个结构物或结构物的一部分超过某一特定状态时就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态

16、当结构或构件出现下列状态之一时,即认为超过了承载力极限状态:

﹡整个结构物或结构物的一部分作为刚体失去平衡;(如倾覆等)

﹡结构构件或连接因材料强度被超过而破坏;(包括疲劳破坏)

﹡结构变为机动体系;

﹡结构或结构构件丧失稳定。

17下列部位应设置沉降缝:建筑物平面的转折部位;

高度差异(或荷载差异)较大处;

长高比过大的结构的适当部位;

地基土的压缩性有显著差异处;

建筑结构(或基础)的类型不同处;

分期建造房屋的分界处。

18抗震性能差的原因:刚度大、自重大,地震作用也大

2、砌体材料质脆,抗剪、抗拉、抗弯强度低,地震作用下极易出现裂缝;

3、受施工质量的影响较大;

如砂浆不饱满,易出现裂缝,减弱抗震性能。

19、钢筋混凝土圈梁的主要作用:增加纵横墙体的连接,加强整个房屋的整体性;圈梁可箍住楼盖,增强其整体刚度;减小墙体的自由长度,增强墙体的稳定性;可提高房屋的抗剪强度,约束墙体裂缝的开展;抵抗地基不均匀沉降,减小构造柱计算长度。

第五篇:砌体结构课程设计

砌体设计

楼梯间采用现浇混凝土楼盖,纵横向承重墙厚度均为190mm,采用单排孔混凝土小型砌块、双面粉刷,一层采用MU20砌块和Mb15砂浆,二至三层采用MU15砌块和Mb砂浆,层高3.3m一层墙从楼板顶面到基础顶面的距离为4.1m,窗洞均为1800mm×1500mm,门洞宽均为1000mm,在在纵横相交处和屋面或楼面大梁支撑处,均设有截面为190mm×250mm的钢筋混凝土构造柱(构造柱沿墙长方向的宽度为250mm),图中虚线梁L1截面为250mm×600mm,两端伸入墙内190mm,施工质量控制等级为B级。

纵墙计算单元横墙计算单元

三毡四油铺小石子10.809009.90+油膏嵌实15mm厚水泥砂浆40mm厚水泥石灰焦渣砂浆3‰找坡 +100mm厚沥青膨胀珍珠岩120mm厚现浇混凝土板33006.60+3.3010mm厚水磨石地面面层 20mm厚水泥打底 120mm钢筋混凝土板33003300

1、荷载计算:

(1)屋面荷载:

防水层:三毡四油铺小石子 0.4kN/㎡ 找平层:15mm水泥砂浆 0.3kN/㎡

800++-0.00

找坡层:40mm厚水泥焦渣砂浆3‰找坡 0.56kN/㎡ 保温层:100mm厚沥青膨胀珍珠岩 0.8kN/㎡ 结构层:120mm厚现浇混凝土板 3.0kN/㎡ 抹灰层:10mm厚混合砂浆 0.17kN/㎡ 钢筋混凝土进深梁250mm×600mm 1.18 kN/㎡ 屋盖永久荷载标准值: ∑6.41kN/㎡ 屋盖可变荷载标准值 0.5kN/㎡ 由屋盖大梁给计算墙垛计算:

标准值:N1k =Gk+Qk=(6.41 kN/㎡+0.5 kN/㎡)×1/2×6.3m×3.6m=78.36 kN 设计值:

由可变荷载控制组合:N1=1.2Gk+1.4Qk=(1.2×6.41 kN/㎡+1.4×0.5 kN/㎡)×1/2×6.3m×3.6m=95.17 kN 由永久荷载控制组合:N1=1.35Gk+1.0Qk=(1.35×6.41 kN/㎡+1.0×0.5 kN/㎡)×1/2×6.3m×3.6m=103.80 kN(2)楼面荷载:

10mm厚水磨石地面面层 0.25 kN/㎡ 20mm厚水泥打底 0.40 kN/㎡ 结构层120mm钢筋混凝土板 3.0 kN/㎡ 抹灰层10mm厚 0.17 kN/㎡ 钢筋混凝土进深梁250mm×600mm 1.18 kN/㎡ 楼面永久荷载标准值: ∑5.0kN/㎡

楼面可变荷载标准值 1.95kN/㎡ 由楼面大梁传给计算墙垛的荷载:

标准值:N2k =Gk+Qk=(5.0 kN/㎡+1.95 kN/㎡)×1/2×6.3m×3.6m=78.81 kN 设计值:

由可变荷载控制组合:N2=1.2Gk+1.4Qk=(1.2×5.0kN/㎡+1.4×1.95 kN/㎡)×1/2×6.3m×3.6m=99.0 kN 由永久荷载控制组合:N2=1.35Gk+1.0Qk=(1.35×5.0 kN/㎡+1.0×1.95 kN/㎡)×1/2×6.3m×3.6m=98.66 kN(3)墙体自重:

女儿墙重(厚190mm,高900mm)计入两面抹灰40mm其标准值为:N3k =2.96 kN/㎡×3.6m×0.9m=9.59 kN 设计值:

由可变荷载控制组合:N3=9.59 kN×1.2=11.51 kN 由永久荷载控制组合:N3=9.59 kN×1.35=12.95 kN 女儿墙根部至计算截面高度范围内墙体厚190mm其自重标准为:2.96 kN/㎡×3.6m×0.6m=6.39 kN 设计值:

由可变荷载控制组合:N3=6.39 kN×1.2=7.67 kN 由永久荷载控制组合:N3=6.39 kN×1.35=8.63 kN 计算每层墙体自重,应扣除窗面积,对于2、3层墙体厚190mm,高3.3m自重为:(3.3m×3.6m-1.8m×1.5m)×2.96 kN/㎡+

1.8m×1.5×0.25 kN/㎡=27.85 kN 设计值:

由可变荷载控制组合:27.85 kN×1.2=33.42 kN 由永久荷载控制组合:27.85 kN×1.35=37.60 kN 对于1层墙体厚190mm计算高度4.1m其自重为:(3.5m×3.6m-1.8m×1.5m)×2.96 kN/㎡+1.8m×1.5×0.25 kN/㎡=29.98 kN 设计值:

由可变荷载控制组合:29.98 kN×1.2=35.97 kN 由永久荷载控制组合:29.98 kN×1.35=40.47 kN

2、内力计算:

楼盖、屋盖大梁截面b×h=250mm×600mm,梁端在外墙的支撑长度为190mm,下设由bb×ab×ta=190mm×500mm×180mm的刚

a01hf性垫块,则梁端上表面有效支撑长度采用墙偏心距e=h/2-0.4a0。h为支撑墙厚。,对于外由可变荷载控制下的梁端有效支撑长度计算表:

楼层 h/mm f /N/㎡

N /kN 600 4.02 11.51 600 4.02 140.1 0.41 600 5.68 272.52 0.80 0/N/mm2 0.034

1

0/mm

5.41 66.10

5.55 67.80

5.63 57.90 由永久荷载控制下的梁端有效支撑长度计算表:

楼层 h/mm f /N/㎡

N /kN 600 4.02 12.95 600 4.02 154.35 0.45 5.57 68.05 600 5.68 290.61 0.85 5.62 57.76 0/N/mm2 0.038

1

0/mm

5.41 66.10 外重墙的计算面积为窗间墙垛的面积A=1800mm×190mm墙体在竖向荷载作用下的计算模型与计算简图如下

纵向墙体的计算简图

各层I-I、IV-IV截面内力按可变荷载控制和永久变荷载控制组

合分别列于下表

由可变荷载控制的纵向墙体内力计算表

截面上层传荷

楼层

Nu 3 2 1 /kN 11.51(7.67)147.77 280.19

本层楼盖荷载 Nl

/kN 95.17 99.0 99.0

截面I-I

IV-IV NⅥ

/kN 147.77 280.19 412.61

e2

/mm 0 0 0

e1

M NⅠ

/mm /(kN/m)/kN 68.56 6.52 114.35 67.88 6.72 246.77 71.84 7.11 379.19 表

NⅠ= Nu+ Nl M= Nu·e2+ Nl·e1 NⅥ=NⅠ+NW(墙重)由永久荷载控制的纵向墙体内力计算表

截面上层传荷

楼层

Nu 3 2 1 /kN 12.95(8.63)162.98 299.24

本层楼盖荷载 Nl

/kN 103.80 98.66 98.66

截面I-I

IV-IV NⅥ

/kN 162.98 299.24 435.5

e2

/mm 0 0 0

e1

M NⅠ

/mm /(kN/m)/kN 68.56 7.12 125.38 67.78 6.30 261.64 71.94 7.10 397.9

3、墙体承载力计算:

本建筑墙体的最大高厚

H04100mm21.58c20.81.0692624.46h190mm满足要求

承载力计算一般对I-I截面进行,但多层砖房的底部可能IV-IV截面更不利计算结果如下表

纵向墙体由可变荷载控制时的承载力计算表

计算项目

M/(kN·m)N/kN e/mm h/mm e/h

第2层

截面第3层

截面I-I 6.52 114.35 57.02 190 0.3 17.37 0.26 342000 15 10 4.02 357.46 >1

6.72 246.77 27.23 190 0.14 17.37 0.44 342000 15 10 4.02 604.93 >1

IV-IV

第1层

截面

截面I-I 7.11 379.19 18.75 190 0.099 18.42 0.45 342000 20 15 5.68 875.15 >1

IV-IV

0 280.19 0 190 0 17.37 0.69 342000 15 10 4.02 948.64 >1

0 412.61 0 190 0 18.42 0.63 342000 20 15 5.68 1223.81 >1 H0h

A/m㎡ 砌块MU 砂浆M f/(N/mm2)

Af/kN Af/N

纵向墙体由永久荷载控制时的承载力计算表 计算项目

M/(kN·m)N/kN e/mm h/mm e/h

第2层

截面第3层

截面I-I 7.12 125.38 56.78 190 0.30 17.37 0.26 342000 15 10 4.02 357.46 >1

6.30 255.98 24.61 190 0.14 17.37 0.44 342000 15 10 4.02 604.93 >1

第1层

截面

截面I-I 7.10 397.9 17.84 190 0.099 18.42 0.45 342000 20 15 5.68 875.15 >1

IV-IV IV-IV

0 435.5 0 190 0 18.42

0 293.58 0 190 0 17.37 0.69 342000 15 10 4.02 948.64 >1 H0h

A/m㎡ 砌块MU 砂浆M

0.63 342000 20 15 5.68 1223.81 >1 f/(N/mm2)

Af/kN Af/N

由上表可知砌体墙均能满足要求。

4、气体局部受压计算:

以上述窗间墙第一层为例,墙垛截面为190mm×1800mm,混凝土梁截面为250mm×600mm,支承长度a=190mm,根据规范要求在梁下设190mm×600mm×180mm(宽×长×厚)的混凝土垫块。根据内里计算,当由可变荷载控制时,本层梁的支座反力为Nl=99.0kN墙体的上部荷载Nu=280.19KN,当由永久荷载控制时,本层梁的支座反力为Nl=98.66kN,墙体的上部荷载Nu=299.24KN。墙体采用MU20空心砌体砖,M10混合砂浆砌筑。由a0=57.76mm A0=(b+2h)h=(600mm+2×190mm)×190mm=186200

190mm=324000mm2mm2<1800mm×

故取

A0=186200mm2

2垫块面积:Ab=bb×ab=190mm×600mm=114000mm

计算垫块上纵向的偏心距,取Nl作用点位于墙距内表面0.4 a0处,由可变荷载荷载控制组合下:

280190N11400093.40kN1800mm190mm 190mm99.0kN(0.457.76mm)2e37.0mm99.0kN93.40kN NU0Abe37.0mm0.195h190mm查表得=0.69 A0186200mm2r10.35110.3511.292rl0.8r0.81.291.032 Ab114000mm垫块下局压承载力按下列公式计算:

N0NL99.0kN93.40kN192.4kN

rlAbf0.691.032114000mm25.68kN/mm2461.09kN

N0NLrlAbf

由永久荷载控制组合下

299240N11400099.75kN1800mm190mm 190mm98.66kN(0.457.76mm)2e35.75mm98.66kN99.75kN NU0Abe35.75mm0.188h190mm查表得=0.704 垫块下局压承载力按下列公式计算:

N0NL98.66kN99.75kN192.4kN

rlAbf0.7041.032114000mm25.68kN/mm2470.44kN

N0NLrlAbf

由此可见,在永久荷载控制下,局压承载能力能满足要求。

5、横墙荷载

(1)屋面荷载:

防水层:三毡四油铺小石子 0.4kN/㎡ 找平层:15mm水泥砂浆 0.3kN/㎡ 找坡层:40mm厚水泥焦渣砂浆3‰找坡 0.56kN/㎡ 保温层:100mm厚沥青膨胀珍珠岩 0.8kN/㎡ 结构层:120mm厚现浇混凝土板 3.0kN/㎡ 抹灰层:10mm厚混合砂浆 0.17kN/㎡ 屋盖永久荷载标准值: ∑5.23kN/㎡ 屋盖可变荷载标准值 0.5kN/㎡

标准值:N1k =Gk+Qk=(5.23 kN/㎡+0.5 kN/㎡)×1/2×1.0m×3.6m=10.31 kN 设计值:

由可变荷载控制组合:N1=1.2Gk+1.4Qk=(1.2×5.23 kN/㎡+1.4×0.5 kN/㎡)×1/2×1.0m×3.6m=12.56kN 由永久荷载控制组合:N1=1.35Gk+1.0Qk=(1.35×5.23 kN/㎡+1.0×0.5 kN/㎡)×1/2×1.0m×3.6m=13.61 kN(2)楼面荷载:

10mm厚水磨石地面面层 0.25 kN/㎡ 20mm厚水泥打底 0.40 kN/㎡ 结构层120mm钢筋混凝土板 3.0 kN/㎡ 抹灰层10mm厚 0.17 kN/㎡ 楼面永久荷载标准值: ∑3.82kN/㎡ 楼面可变荷载标准值 1.95kN/㎡ 由楼面大梁传给计算墙垛的荷载:

标准值:N2k =Gk+Qk=(3.82 kN/㎡+1.95 kN/㎡)×1/2×1.0m×3.6m=10.39 kN 设计值:

由可变荷载控制组合:N2=1.2Gk+1.4Qk=(1.2×5.0kN/㎡+1.4×1.95 kN/㎡)×1/2×1.0m×3.6m=13.17 kN 由永久荷载控制组合:N2=1.35Gk+1.0Qk=(1.35×5.0 kN/㎡+1.0×1.95 kN/㎡)×1/2×1.0m×3.6m=12.79 kN

横向墙体计算简图

(2)横墙自重承载力计算

对于2、3层墙体厚190mm,高3.3m自重为2.96 kN/㎡×3.3m×1.0m=9.768kN 设计值:

由可变荷载控制组合:9.768 kN×1.2=11.72 kN 由永久荷载控制组合:9.768 kN×1.35=13.19kN 对于1层墙体厚190mm计算高度4.1m其自重为: 2.96 kN/㎡×3.3m×1.0m=12.14kN 设计值:

由可变荷载控制组合:12.14kN×1.2=14.57kN 由永久荷载控制组合:12.14 kN×1.35=16.39 kN 本建筑墙体高厚比

H04100mm21.5826h190mm满足要求。

横向墙体由可变荷载控制组合表 计算项目 第3层

N/kN h/mm H0/m

24.28 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1

第2层 49.17 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1

第1层 76.91 190 4.1 21.58 0.59 190000 20 15 5.68 636.73 >1 H0h

A/m㎡ 砖MU 砂浆M f/(N/mm2)

Af/kN Af/N

横向墙体由永久荷载控制组合表 计算项目 第3层

N/kN h/mm H0/m

26.8 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1

第2层 52.78 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1

第1层 81.96 190 4.1 21.58 0.59 190000 20 15 5.68 636.73 >1 H0h

A/m㎡ 砖MU 砂浆M f/(N/mm2)

Af/kN Af/N

由上表可知砌体墙均能满足要求

下载砌体结构简答题总结word格式文档
下载砌体结构简答题总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    砌体结构规范

    砌体结构规范组对规范的释疑 2007-3-30扬华土木关于《砌体结构设计规范》GB50003颁行后 反馈意见及相关问题的处理意见 《砌体结构设计规范》国家标准管理组,在中国工程建设......

    砌体结构优缺点

    砌体结构优缺点 1、砌体结构的主要优点是: ①容易就地取材。砖主要用粘土烧制;石材的原料是天然石 ;砌块可以用工业废料──矿渣制作,来源方便,价格低廉。 ②砖、石或砌块砌体......

    砌体结构 重点总结及练习

    砌体结构重点总结: 1、块体的设计要求:足够的强度 良好的耐久性 隔热保温。 2、砌块对砂浆的基本要求:足够的强度、可塑性、适当的保水性。(P10) 3、砌体的受压破坏特征:第一阶段:5......

    砌体结构、木结构和桥梁设计总结

    砌体结构、木结构和桥梁设计总结 砌体结构 1、砌体强度计算应注意各表对应下的强度调整(注意轻骨料混凝土砌块分为煤矸石和水泥以及火山渣、浮石和陶粒轻骨料混凝土,对应的强......

    砌体结构实训总结(最终5篇)

    实训二不同组砌形式的砖墙砌筑施工实训总结 在本次实训中,学习到了有关砌筑砖墙的实际操作方法。学到了书本上没有的知识。无论是组砌方式,还是在砌墙过程中,遇到需要留槎的部......

    砌体结构的优缺点

    砌体结构的优点 1. 取材方便,造价低廉 2. 具有良好的耐火、隔声、保温等性能,撞墙还能调节室内湿度,透气性好。 3. 三材用量少 4. 可持续施工 5. 施工设备简单 砌体结构的缺点:......

    砌体结构课程设计任务书

    砌体结构课程设计任务书 一、设计题目 某教学办公楼 二、设计资料 水文地质条件 (1) 地形地貌概述:拟建场地东高西低,场地绝对标高317.5m—320.3m之间. (2) 地下水情况:地下水位于......

    砌体结构课程设计任务书

    砌体结构课程设计任务书 一、设计任务 学生先做出住宅楼或学生宿舍的建筑施工图,然后完成如下任务: 1.确定房屋的结构承重方案; 2.确定房屋的静力计算方案; 3.刚性方案多层房屋......