第一篇:数字信号处理学习心得体会
数字信号处理学习心得
一、课程认识和内容理解
《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。
数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下:
第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。
第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。
第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。
第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。
第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。
第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。
第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器
二、专业认识和未来规划
通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。
对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的基础知识。
我选择了这个专业,在这里读了三年关于通信知识的书,我还是想以后毕业能够从事这个方面的工作,现在学了通信原理、数字信号处理这些很有用的专业课,所以,我在以后的学习中,我会把这些方面的知识学扎实,从事技术这一块要能吃苦,我也做好了准备,现在还很年轻,年轻的时候多吃点苦没什么,为了我自己美好的将来,我会努力学好这个专业的。
数字信号处理课程属于专业基础课,所涵盖的内容主要有:离散时间信号与系统的基本概念及描述方法,离散傅立叶变换及快速傅立叶变换,数字滤波器结构及设计等。对于电气信息类专业的学生来说,这些内容是学习后续专业课程的重要基础,也是实际工作中必不可少的专业基础知识。目前几乎所有的高等院校都在电子工程类、信息工程类、通信工程类、电子技术类、自动控制类、电气工程类、机电工程类、计算机科学类等工科电类及其他相关专业的本科生中开设了该门课程。随着计算机技术、微电子技术、数字信号处理理论和方法的发展,半个世纪以来,尤其是最近的三十来年里,数字信号处理的方法和应用得到了飞跃式的发展,数字信号处理的地位和作用变得越来越重要。因此,加强该课程的建设具有重要的意义。
三、课程评价和建议
我们的数字信号处理课是罗老师教的,罗老师有丰富工作的经验,对于这门课的实际用途很了解,另外罗老师本身就很幽默,对于这门课采用多种教学方法,丰富教学内容,偶尔给我们讲些生活上的问题,吸引学生对课程的关注。利用实验课让我们来编程做仿真,体会信号处理课程的乐趣,这样子激发了学生的兴趣、提高了教学的效果。因此,我们班的同学在这一个学期的学习中,我们都感觉比较轻松。另外我个人观点是大学主要是培养自己的自学能力,老师只是个引导者,所以学习效果如何关键看自己的对学习的态度和付出程度。
数字信号处理课程的特点是课程本身理论性强、公式推导较多、概念比较抽象,使我们感到有枯燥难学之感。近年来,国外及国内有些学校对一般电类专业该课程的教学主要强调应用性学习,主要介绍数字信号处理的用途和用法,而对其深奥的理论推导仅做一般介绍,并给学生提供进行实验的机会,以激发学生对该课程的兴趣和学习主动性。
对该课程的改革思想主要是课程内容要适应数字信号处理技术的发展现状,淡化枯燥的数学推导,辅助以现代化教学手段,并开设相应的实验课。结合专业现状,将课堂教学一部分变为多媒体教学,尽量将一些理论分析用图形手段展示出来,以增强我们的感性认识。实验课主要是以MATLAB为平台,充分利用MATLAB的数字信号处理各种功能让学生亲自动手将课堂所学进行仿真实现。实验课还可以通过用DSP试验箱实现数字信号处理的功能向学生进行演示。
第二篇:数字信号处理课程设计..
课程设计报告
课程名称: 数字信号处理 课题名称: 语音信号的处理与滤波
姓 名: 学 号: 院 系: 专业班级: 指导教师: 完成日期: 2013年7月2日
目录
第1部分 课程设计报告………………………………………3 一.设计目的……………………………………………3 二.设计内容……………………………………………3 三.设计原理……………………………………………3 四.具体实现……………………………………………5 1.录制一段声音…………………………………5 2.巴特沃斯滤波器的设计………………………8 3.将声音信号送入滤波器滤波…………………13 4.语音信号的回放………………………………19 5.男女语音信号的频谱分析……………………19 6.噪声的叠加和滤除……………………………22 五. 结果分析……………………………………………27 第2部分 课程设计总结………………………………28 一. 参考文献……………………………………………28
第1部分 课程设计报告
一.设计目的
综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。
二.设计内容
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换法设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;换一个与你性别相异的人录制同样一段语音内容,分析两段内容相同的语音信号频谱之间有什么特点;再录制一段同样长时间的背景噪声叠加到你的语音信号中,分析叠加前后信号频谱的变化,设计一个合适的滤波器,能够把该噪声滤除;
三.设计原理
1.在Matlab软件平台下,利用函数wavrecord(),wavwrite(),wavread(),wavplay()对语音信号进行录制,存储,读取,回放。
2.用y=fft(x)对采集的信号做快速傅立叶变换,并用[h1,w]=freqz(h)进行DTFT变换。
3.掌握FIR DF线性相位的概念,即线性相位对h(n)、H()及零点的约束,了解四种FIR DF的频响特点。
4.在Matlab中,FIR滤波器利用函数fftfilt对信号进行滤波。
5.抽样定理
连续信号经理想抽样后时域、频域发生的变化(理想抽样信号与连续信号频谱之间的关系)
理想抽样信号能否代表原始信号、如何不失真地还原信号即由离散信号恢复连续信号的条件(抽样定理)
理想采样过程描述: 时域描述:
ˆa(t)xa(t)T(t)xa(t)(tnT)xa(nT)(tnT)xnnT(t)频域描述:利用傅氏变换的性质,时域相乘频域卷积,若
n(tnT)ˆa(t)Xa(j)xXa(j)xa(t)T(j)T(t)
则有
ˆ(j)1X(j)(j)XaaT2121ˆXa(j)Xa(jjk)Xa(jjks)TkTTkˆ(j)与X(j)的关系:理想抽样信号的频谱是连续信号频谱的Xaa
周期延拓,重复周期为s(采样角频率)。如果:
X(j)Xa(j)a0s/2s/2即连续信号是带限的,且信号最高频率不超过抽样频率的二分之一,则可不失真恢复。
奈奎斯特采样定理:要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍:s2h 或 fs2fh
四.具体实现
1.录制一段声音
1.1录制并分析
在MATLAB中用wavrecord、wavread、wavplay、wavwrite对声音进行录制、读取、回放、存储。
程序如下:
Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令
wavplay(x,Fs);%按任意键播放语音信号
wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound.wav');%存储语音信号
N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(2);subplot(2,1,1);plot(x);%录制信号的时域波形 title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格
y0=fft(x);%快速傅立叶变换 figure(2);subplot(2,1,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题
grid;%加网格
图1.1 原始信号的时域与频谱图
1.2滤除无效点
针对实际发出声音落后录制动作半拍的现象,如何拔除对无效点的采样的问题: 出现这种现象的原因主要是录音开始时,人的反应慢了半拍,导致出现了一些无效点,而后而出现的无效的点,主要是已经没有声音的动作,先读取声音出来,将原始语音信号时域波形图画出来,根据己得到的信号,可以在第二次读取声音的后面设定采样点,取好有效点,画出滤除无效点后的语音信号时域波形图,对比可以看出。这样就可以解决这个问题。
x=wavread('C:UsersacerDesktop数字信号sound.wav', 7
[4000,24000]);%从4000点截取到24000结束 plot(x);%画出截取后的时域图形 title('截取后的声音时域图形');%标题 xlabel('频率');ylabel('振幅');grid;%画网格
图1.2 去除无效点
2.巴特沃斯滤波器的设计
2.1设计巴特沃思低通滤波器
MATLAB程序如下。滤波器图如图3.3所示。
%低通滤波
fp=1000;fs=1200;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯低通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');gridon;9
图2.1 巴特沃思低通滤波器
2.2设计巴特沃思高通滤波器
MATLAB程序如下。滤波器图如图3.5所示。%高通滤波
fp=4800;fs=5000;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);10
[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'high','s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯高通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;
图2.2巴特沃思高通滤波器
2.3设计巴特沃思带通滤波器
MATLAB程序如下。滤波器图如图3.7所示。%带通滤波
fp=[1200,3000];fs=[1000,3200];Fs=8000;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(4);[h,w]=freqz(Bz,Az,512,Fs1*1000);plot(w,abs(h));title('巴特沃斯带通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;12
图2.3巴特沃思带通滤波器
3.将声音信号送入滤波器滤波
x=wavread('C:UsersacerDesktop数字信号sound.wav');%播放原始信号
wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(4);subplot(4,2,1);plot(x);%录制信号的时域波形
title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格
y0=fft(x);%快速傅立叶变换 subplot(4,2,3);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题 grid;%加网格
3.1低通滤波器滤波 fs=8000;beta=10.056;wc=2*pi*1000/fs;ws=2*pi*1200/fs;width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi /width);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);
ys=fftfilt(h,x);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(4);subplot(4,2,2);%在四行两列的第二个窗口显示图形 plot(ys);%信号的时域波形
title('低通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%网格
subplot(4,2,4);%在四行两列的第四个窗口显示图形 plot(f, abs(fftwave(n1)));%绘制模值 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义
title('低通滤波器滤波后信号的频谱图');%标题 grid;%加网格
wavplay(ys,8000);%播放滤波后信号
3.2高通滤波器滤波 fs=8000;beta=10.056;ws=2*5000/fs;wc=2*4800/fs;
width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi/width);h=fir1(n,wn/pi, 'high',kaiser(n+2,beta));[h1,w]=freqz(h);ys=fftfilt(h,x);%将信号送入高通滤波器滤波 subplot(4,2,5);%在四行两列的第五个窗口显示图形 plot(ys);%信号的时域波形 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('高通滤波后信号的时域波形');%标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%网格
fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 subplot(4,2,7);%在四行两列的第七个窗口显示图形 plot(f,abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义
title('高通滤波器滤波后信号的频谱图');%标题 grid;%加网格
wavplay(ys,8000);%播放滤波后信号
3.3带通滤波器 fs=8000;beta=10.056;wc1=2*pi*1000/fs;wc2=2*pi*3200/fs;ws1=2*pi*1200/fs;ws2=2*pi*3000/fs;width=ws1-wc1;wn1=(ws1+wc1)/2;wn2=(ws2+wc2)/2;wn=[wn1 wn2];n=ceil(12.8/width*pi);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);ys1= fftfilt(h,x);%将信号送入高通滤波器滤波 figure(4);subplot(4,2,6);%在四行两列的第六个窗口显示图形 plot(ys1);%绘制后信号的时域的图形 title('带通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示纵坐标表示的意义 grid;%网格
fftwave=fft(ys1);%对滤波后的信号进行快速傅立叶变换 subplot(4,2,8);%在四行两列的第八个窗口显示图形
plot(f, abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('带通滤波器滤波后信号的频谱图');%加标题 grid;%网格
wavplay(ys1,8000);%播放滤波后信号 图形如下:
原始信号的时域波形幅值/A0-1012x 10原始信号的频谱图34幅值/A1低通滤波后信号的时域波形0.50-0.5012频率w/pi3400.51频率w/pi高通滤波后信号的时域波形幅值/A0幅值/A0幅值/Ax 10高通滤波器滤波后信号的频谱图5012频率w/pi34幅值/A0.20-0.2幅值/A2001000x 10低通滤波器滤波后信号的频谱图200100000.51频率w/pi带通滤波后信号的时域波形0.50-0.501234频率w/pix 10带通滤波器滤波后信号的频谱图50幅值 00.5频率w/pi1000.5频率w/pi1
分析:三个滤波器滤波后的声音与原来的声音都发生了变化。其中低
通的滤波后与原来声音没有很大的变化,其它两个都又明显的变化
4.语音信号的回放
sound(xlow,Fs,bits);%在Matlab中,函数sound可以对声音进行回放,其调用格式: sound(xhigh, Fs,bits);%sound(x, Fs, bits);sound(xdaitong, Fs,bits);5.男女语音信号的频谱分析
5.1 录制一段异性的声音进行频谱分析
Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号
wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound2.wav');%存储语音信号
5.2 分析男女声音的频谱
x=wavread(' C:UsersacerDesktop数字信号sound2.wav ');%播放原始信号,解决落后半拍
wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;
f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(1);subplot(2,2,1);plot(x);%录制信号的时域波形
title('原始女生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格
y0=fft(x);%快速傅立叶变换 subplot(2,2,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始女生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格
[y,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');% 对语音信号进行采样
wavplay(y,fs);%播放原始信号 N=length(y);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 subplot(2,2,3);plot(y);%录制信号的时域波形
title('原始男生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格
y0=fft(y);%快速傅立叶变换
subplot(2,2,4);%在四行两列的第三个窗口显示图形 plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始男生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格
5.3男女声音的频谱图
原始女生信号的时域波形0.50-0.5-1150100原始女生信号的频谱图幅值/A幅值 012345000x 10原始男生信号的时域波形0.50.5频率w/pi原始男生信号的频谱图1300200幅值/A0幅值 012x 1034100-0.5000.5频率w/pi1
图5.3男女声音信号波形与频谱对比
分析:就时域图看,男生的时域图中振幅比女生的高,对于频谱图女生的高频成分比较多
6.噪声的叠加和滤除
6.1录制一段背景噪声
Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号
fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号 wavwrite(x,Fs,'C:UsersacerDesktop数字信号噪音.wav');%存储语音信号
6.2 对噪声进行频谱的分析
[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对语音信号进行采样
wavplay(x1,fs);%播放噪声信号 N=length(x1);%返回采样点数 df=fs/N;%采样间隔
n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,1);plot(x1);%信号的时域波形 title('噪声信号的时域波形');grid;ylabel('幅值/A');y0=fft(x1);%快速傅立叶变换
subplot(3,2,2);plot(f,abs(y0(n1)));%噪声信号的频谱图 ylabel('幅值');title('噪声信号的频谱图');
6.3原始信号与噪音的叠加
fs=8000;[x,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');%对录入信号进行采样
[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对噪声信号进行采样
yy=x+x1;%将两个声音叠加
6.4叠加信号的频谱分析:
wavplay(yy,fs);%播放叠加后信号 N=length(yy);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,3);plot(yy,'LineWidth',2);%信号的时域波形
title('叠加信号的时域波形');xlabel('时间/t');ylabel('幅值/A');grid;y0=fft(yy);%快速傅立叶变换 subplot(3,2,4);plot(f,abs(y0(n1)));%叠加信号的频谱图 title('叠加信号的频谱图');xlabel('频率w/pi');ylabel('幅值/db');grid;
6.5 设计一个合适的滤波器将噪声滤除 fs=18000;%采样频率 Wp=2*1000/fs;%通带截至频率 Ws=2*2000/fs;%阻带截至频率 Rp=1;%最大衰减 Rs=100;%最小衰减
[N,Wn]=buttord(Wp,Ws,Rp,Rs);%buttord函数(n为阶数,Wn为截至频率)
[num,den]=butter(N,Wn);%butter函数(num为分子系数den为分母系数)
[h,w]=freqz(num,den);%DTFT变换
ys=filter(num,den,yy);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(5);subplot(3,2,5);plot(ys);%信号的时域波形
title('低通滤波后信号的时域波形');%加标题 ylabel('幅值/A');%显示标表示的意义 grid;%网格 subplot(3,2,6);plot(f, abs(fftwave(n1)));%绘制模值 title('低通滤波器滤波后信号的频谱图');%标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%加网格
wavplay(ys,8000);%播放滤波后信号 grid;图形如下:
噪声信号的时域波形1100噪声信号的频谱图幅值/A0-1幅值0123450000.5叠加信号的频谱图1x 10叠加信号的时域波形10-101时间/t2200幅值/db34幅值/A100000.5频率w/pi1x 10低通滤波后信号的时域波形0.5低通滤波器滤波后信号的频谱图200幅值/A0-0.5幅值/A012x 1034100000.5频率w/pi1
图6.1噪音的叠加与滤除前后频谱对比
7.结果分析
1.录制刚开始时,常会出现实际发出声音落后录制动作半拍,可在[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav')加 窗[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav',[100 10000]),窗的长度可根据需要定义。
2.语音信号通过低通滤波器后,把高频滤除,声音变得比较低沉。当通过高通滤波器后,把低频滤除,声音变得比较就尖锐。通过带通滤波器后,声音比较适中。
3.通过观察男生和女生图像知:时域图的振幅大小与性别无关,只与说话人音量大小有关,音量越大,振幅越大。频率图中,女生高 27
频成分较多。
4.叠加噪声后,噪声与原信号明显区分,但通过低通滤波器后,噪声没有滤除,信号产生失真。原因可能为噪声与信号频率相近无法滤除。
第2部分 课程设计总结
通过本次课程设计,使我们对数字信号处理相关知识有了更深刻的理解,尤其是对各种滤波器的设计。在设计的过程中遇到了很多问题,刚刚开始时曾天真的认为只要把以前的程序改了参数就可以用了,可是问题没有我想象中的那么简单,单纯的搬程序是不能解决问题的。通过查阅资料和请教同学收获了很多以前不懂的理论知识。再利用所学的操作,发现所写的程序还是没有能够运行,通过不断地调试,运行,最终得出了需要的结果。整个过程中学到了很多新的知识,特别是对Matlab的使用终于有些了解。在以后的学习中还需要深入了解这方面的内容。在这次的课程设计中让我体会最深的是:知识来不得半点的马虎。也认识到自己的不足,以后要进一步学习。
八.参考文献
[1]数字信号处理教程(第三版)程佩青 清华大学出版社 [2]MATLAB信号处理 刘波 文忠 电子工业出版社 [3]MATLAB7.1及其在信号处理中的应用 王宏 清华大学出版社
[4]MATLAB基础与编程入门 张威 西安电子科技大学出版社
[5] 数字信号处理及其MATLAB实验 赵红怡 张常 化学工业出版社
[6]MATLAB信号处理详解 陈亚勇等 人民邮电出版社 [7] 数字信号处理
钱同惠 机械工业出版社 29
第三篇:数字信号处理实验报告
JIANGSU
UNIVERSITY OF TECHNOLOGY
数字信号处理实验报告
学院名称: 电气信息工程学院
专 业:
班 级: 姓 名: 学 号: 指导老师: 张维玺(教授)
2013年12月20日
实验一 离散时间信号的产生
一、实验目的
数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。而要研究离散时间信号,首先需要产生出各种离散时间信号。使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
二、实验原理
离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用x(n)来表示,自变量必须是整数。常见的离散信号如下:(1)单位冲激序列δ(n)
如果δ(n)在时间轴上延迟了k个单位,得到δ(n-k),即长度为N的单位冲激序列δ(n)可以通过下面的MATLAB命令获得。
n=-(N-1):N-1 x=[zeros(1,N-1)1 zeros(1,N-1)]; stem(n,x)延迟K个采样点的长度为N的单位冲激序列δ(n-k)(k n=0:N-1 y=[zeros(1,M)1 zeros(1,N-M-1)]; stem(n,y) (2)单位阶跃序列u(n) 如果u(n)在时间轴上延迟了k个单位,得到u(n-k),即长度为N的单位阶跃序列u(n)可以通过下面的MATLAB命令获得。 n=-(N-1):N-1 x=[zeros(1,N-1)ones(1,N)]; stem(n,x)延迟的单位阶跃序列可以使用类似于单位冲激序列的方法获得。(3)矩形序列 矩形序列有一个重要的参数,就是序列的宽度N。矩形序列与u(n)之间的关系为矩形序列等= u(n)— u(n-N)。 因此,用MATLAB表示矩形序列可利用上面的单位阶跃序列组合而成。(4)正弦序列x(n) 这里,正弦序列的参数都是实数。与连续的正弦信号不同,正弦序列的自变量n必须为整数。可以证明,只有当2π/w为有理数时,正弦序列具有周期性。 长度为N的正弦序列x(n)可以通过下面的MATLAB命令获得。n=0:N-1 x=A*cos(2*pi*f*n/Fs+phase)(5)单边实指数序列x(n) 长度为N的实指数序列x(n)可以通过下面的MATLAB命令实现。n=0:N-1 x=a.^n stem(n,x)单边指数序列n的取值范围为n>=0。当|a|>1时,单边指数序列发散;当|a|<1时,单边指数序列收敛。当a>0时,该序列均取正值;当a<0时,序列在正负摆动。 (6)负指数序列x(n) 当a=0时,得到虚指数序列x(n)。 与连续负指数信号一样,我们将负指数序列实部和虚部的波形分开讨论,得到如下结论: 1)当a>0时,负指数序列x(n)的实部和虚部分别是按指数规律增长的正弦振荡序列; 2)当a<0时,负指数序列x(n)的实部和虚部分别是按指数规律衰减的正弦振荡序列; 3)当a=0时,负指数序列x(n)即为虚指数序列,其实部和虚部分别是等幅的正弦振荡序列; 长度为N的实指数序列x(n)可以通过下面的MATLAB命令实现。n=0:N-1 x=exp((a.+j*w)*n)stem(n,real(x))或 stem(n,imag(x)) 三、实验内容及分析 1n01、编制程序产生单位冲激序列n“并绘出其图及n”学号后两位0n0形。程序:(1)N=4; n=-(N-1):N-1; x=[zeros(1,N-1)1 zeros(1,N-1)];stem(n,x); title('单位冲激序列'); grid on; (2)N=6; M=1;%学号01 n=-(N-1):N-1; y=[zeros(1,N-M+1)1 zeros(1,N-M-1)];stem(n,y); title('单位冲激序列');grid on; 分析:在上图的基础上向右平移了1个单位。 1n02、编制程序产生单位阶跃序列un、un“学号后两位”及 0n0unun“学号后两位”,并绘出其图形。程序: 4 (1)N=5; n=-(N-1):N-1; x=[zeros(1,N-1)ones(1,N)];stem(n,x); title('单位阶跃序列');grid on; (2)N=6; M=1;%学号01 n=-(N-1):N-1; x=[zeros(1,N-M+1)ones(1,N-M)];stem(n,x); title('单位阶跃序列');grid on; 分析:在上图的基础上平移了1个单位.(3)N=6; M=1;%学号01 n=-(N-1):N-1; x=[zeros(1,N-1)ones(1,N)];y=[zeros(1,N-M+1)ones(1,N-M)];z=x-y;stem(n,z); title('单位阶跃序列');grid on; 2 3、编制程序产生正弦序列xncos2n、xncosn及 学号后两位xnsin2n并绘出其图形。 程序:(1)N=5; A=1; w=2*pi;phi=0;n=0:0.05:N-1;x=A*cos(w*n+phi);stem(n,x);title('余弦信号');grid on; 分析:该序列具有周期性,且输出为余弦信号.(2)N=5; A=1; w=2*pi/1;%学号01 phi=0;n=0:0.05:N-1;x=A*cos(w*n+phi);stem(n,x);title('余弦信号');grid on; ; 分析:该序列具有周期性,且输出为余弦信号.(3)N=5; A=1; w=2*pi;phi=0; n=0:0.05:N-1;x=A*sin(w*n+phi);stem(n,x);title('正弦信号');grid on; 分析:该序列具有周期性,且输出为正弦信号.4、编制程序产生复正弦序列xne(2j学号后两位)n,并绘出其图形。N=3; n=0:0.2:N-1; w=1;%学号01 x=exp((2+j*w)*n);subplot(2,1,1) stem(n,real(x)),title('实部');grid on;subplot(2,1,2) stem(n,imag(x)),title('虚部');grid on; 5、编制程序产生指数序列xnan,并绘出其图形。其中a=学号后两位、a=1/“学号后两位”。 (1)N=10; n=0:N-1; a=1;%学号01 x=a.^n;stem(n,x);title('指数序列');grid on; (2)N=10; n=0:N-1; a=1;%学号01 x=a.^(-n);stem(n,x);title('指数序列');grid on; 实验三 离散时间信号的频域分析 一、实验目的 信号的频域分析是信号处理中一种有效的工具。在离散信号的频域分析中,通常将信号表示成单位采样序列的线性组合,而在频域中,将信号表示成复变量或的线性组合。通过这样的表示,可以将时域的离散序列映射到频域以便于进一步的处理。 在本实验中,将学习利用MATLAB计算离散时间信号的DTFT和DFT,并加深对其相互关系的理解。 二、实验原理 (1)DTFT和DFT的定义及其相互关系。 (2)使用到的MATLAB命令有基于DTFT离散时间信号分析函数以及求解序列的DFT函数。 三、实验内容及分析 (1)编程计算并画出下面DTFT的实部、虚部、幅度和相位谱。 X(e)jw0.05180.1553e11.2828ex(n)cosjwjw0.1553ej2w1.0388ej2w0.0518ej3w0.3418ej3w (2)计算32点序列 5n16,0≦n≦31的32点和64点DFT,分别绘出幅度谱图形,并绘出该序列的DTFT图形。 3-1 clear; x=[0.0518,-0.1553,0.1553,0.0518];y=[1,1.2828,1.0388,0.3418];w=[0:500]*pi/500 H=freqz(x,y,w); magX=abs(H);angX=angle(H);realX=real(H);imagX=imag(H);subplot(221);plot(w/pi,magX);grid; xlabel('frequency in pi unit');ylabel('magnitude');title('幅度 part');axis([0 0.9 0 1.1]); subplot(223);plot(w/pi,angX);grid; xlabel('frequency in pi unit');ylabel('radians');title('相位 part');axis([0 1-3.2 3.2]); subplot(222);plot(w/pi,realX);grid; xlabel('frequency in pi unit');ylabel('real part');title('实部 part');axis([0 1-1 1]); subplot(224);plot(w/pi,imagX);grid; xlabel('frequency in pi unit');ylabel('imaginary');title('虚部 part');axis([0 1-1 1.1]); 3-2 N=32;n=0:N-1; xn=cos(5*pi*n/16);k=0:1:N-1;Xk=fft(xn,N);subplot(2,1,1);stem(n,xn);subplot(2,1,2);stem(k,abs(Xk));title('32点');figure N=64;n=0:N-1; xn=cos(5*pi*n/16);k=0:1:N-1;Xk=fft(xn,N);subplot(2,1,1);stem(n,xn);subplot(2,1,2);stem(k,abs(Xk));title('64点'); (1) (2) 实验四 离散时间LTI系统的Z域分析 一、实验目的 本实验通过使用MATLAB函数对离散时间系统的一些特性进行仿真分析,以加深对离散时间系统的零极点、稳定性,频率响应等概念的理解。学会运用MATLAB分析离散时间系统的系统函数的零极点;学会运用MATLAB分析系统函数的零极点分布与其时域特性的关系;学会运用MATLAB进行离散时间系统的频率特性分析。 二、实验原理 离散时间系统的系统函数定义为系统零状态响应的Z变化与激励的Z变化之比。 在MATLAB中系统函数的零极点可通过函数roots得到,也可借助函数tf2zp得到,tf2zp的语句格式为 [Z,P,K]=tf2zp(B,A)其中,B与A分别表示H(z)的分子与分母多项式的系数向量。它的作用是将H(z)的有理分式表示式转换为零极点增益形式。 若要获得系统函数H(z)的零极点分布图,可直接应用zplane函数,其语句格式为 Zplane(B,A) 其中,B与A分别表示H(z)的分子和分母多项式的系数向量。它的作用是在z平面上画出单位圆、零点与极点。 离散系统中z变化建立了时域函数h(n)与z域函数H(z)之间的对应关系。因此,z变化的函数H(z)从形式可以反映h(n)的部分内在性质。可根据系统的传递函数H(z)求单位冲激响应h(n)的函数impz、filter等。 利用系统的频率响应,可以分析系统对各种频率成分的响应特性,并推出系统的特性(高通、低通、带通、带阻等)。 MATLAB提供了求离散时间系统频响特性的函数freqz,调用freqz的格式主要有两种。一种形式为 [H,w]= reqz(B,A,N)其中,B与A分别表示H(z)分子和分母多项式的系数向量;N为正整数,默认值为512;返回值w包含[0,π]范围内的N个频率等分点;返回值H则是离散时间系统频率响应在0~π范围内N个频率处的值。另一种形式为 [H,w]= freqz(B,A,N,‘whole’) 与第一种方式不同之处在于角频率的范围由[0,π]扩展到[0,2π]。 三、实验内容与结果分析 已知LTI离散时间系统,要求由键盘实现系统参数输入,并绘出幅频和相频响应曲线和零极点分布图,进而分析系统的滤波特性和稳定性。 (一)程序 b=[0.0528,0.797,0.1295,0.1295,0.797,0.0528]; a=[1,-1.8107,2.4947,-1.8801,0.9537,-0.2336];w=[0:20:500]*pi/500; x1=0.0528+0.797*exp(-1*j*w)+0.1295*exp(-2*j*w)+0.1295*exp(-3*j*w)+0.797*exp(-4*j*w)+0.0528*exp(-5*j*w); x2=1-1.8107*exp(-1*j*w)+2.4947*exp(-2*j*w)+1.8801*exp(-3*j*w)+0.9537*exp(-4*j*w)+0.2336*exp(-5*j*w);x22=x2+(x2==0)*eps;x=x1./x22;magx=abs(x); angx=angle(x).*180/pi; subplot(2,2,3);zplane(b,a);title('零极点图');subplot(2,2,2);stem(w/pi,magx);title('幅度部分');ylabel('振幅');subplot(2,2,4);stem(w/pi,angx); xlabel('以pi为单位的频率');title('相位部分');ylabel('相位'); (二)波形图 图4-1 幅频、相频响应曲线、零极点分布图 实验六 IIR数字滤波器的设计 一、实验目的 从理论上讲,任何的线性是不变(LTI)离散时间系统都可以看做一个数字滤波器,因此设计数字滤波器实际就是设计离散时间系统。数字滤波器你包括IIR(无限冲激响应)和FIR(有限冲激响应)型,在设计时通常采用不同的方法。 本实验通过使用MATLAB函数对数字滤波器进行设计和和实现,要求掌握IIR数字巴特沃斯滤波器、数字切比雪夫滤波器的设计原理、设计方法和设计步骤;能根据给定的滤波器指标进行滤波器设计;同时也加深学生对数字滤波器的常用指标和设计过程的理解。 二、实验原理 在IIR滤波器的设计中,常用的方法是:先根据设计要求寻找一个合适的模拟原型滤波器,然后根据一定的准则将此模拟原型滤波器转换为数字滤波器。 IIR滤波器的阶数就等于所选的模拟原型滤波器的阶数,所以其阶数确定主要是在模拟原型滤波器中进行的。 IIR数字滤波器的设计方法如下:(1)冲激响应不变法。(2)双线性变化法。 一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用冲激响应不变法。冲激响应不变法一个重要特点是频率坐标的变化是线性的,因此如果模拟滤波器的频率响应带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真地反映原响应与频率的关系。 与冲激响应不变法比较,双线性变化的主要优点是靠频率的非线性关系得到s平面与z平面的单值一一对应关系,整个值对应于单位圆一周。所以从模拟传递函数可直接通过代数置换得到数字滤波器的传递函数。 MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器的设计工程。 (1)butter。 (2)cheby1、cheby2。 三、实验内容及分析 利用MATLAB编程方法或利用MATLAB中fdatool工具设计不同功能的IIR数字滤波器。 1、基于chebyshev I型模拟滤波器原型使用冲激不变转换方法设计数字滤波器,要求参数为通带截止频率p0.4;通带最大衰减Ap1dB;阻带截止频率s0.4;阻带最小衰减As35dB。 程序: wp=0.2*pi; %通带边界频率 ws=0.4*pi; %阻带截止频率 rp=1; %通带最大衰减 rs=35; %阻带最小衰减 Fs=1000; %¼ÙÉè³éÑùÂö³å1000hz [N,Wn]=cheb1ord(wp,ws,rp,rs,'s'); [Z,P,K]=cheby1(N,rp,Wn,'s');[H,W]=zp2tf(Z,P,K); figure(1);freqs(H,W);[P,Q]=freqs(H,W);figure(2);plot(Q*Fs/(2*pi),abs(P));grid on; xlabel('频率/Hz');ylabel('幅度'); 2、基于Butterworth型模拟滤波器原型使用双线性变换方法设计数字滤波器的,要求参数为截止频率p0.4;通带最大衰减Ap1dB;阻带截止频率s0.25;阻带最小衰减AS40dB。程序: wp=0.4*pi;ws=0.25*pi;rp=1;rs=40;fs=500;ts=1/fs;wp1=wp*ts;ws1=ws*ts; wp2=2*fs*tan(wp1/2);ws2=2*fs*tan(ws1/2); [N,Wn]=buttord(wp2,ws2,rp,rs,'s');[Z,P,K]=buttap(N);[Bap,Aap]=zp2tf(Z,P,K);[b,a]=lp2lp(Bap,Aap,Wn);[bz,az]=bilinear(b,a,fs);[H,W]=freqz(bz,az);subplot(2,1,1);plot(W/pi,abs(H));grid on;xlabel('频率')ylabel('幅度')subplot(2,1,2); plot(W/pi,20*log10(abs(H)));grid on;xlabel('频率');ylabel('幅度(dB)'); 实验七 FIR数字滤波器的设计 一、实验目的 掌握用窗函数设计FIR数字滤波的原理及其设计步骤;熟悉线性相位数字滤波器的特性。学习编写数字滤波器的设计程序的方法,并能进行正确编程;根据给定的滤波器指标,给出设计步骤。 二、实验原理 如果系统的冲激响应h(n)为已知,则系统的输入输出关系为 y(n)=x(n)*h(n) 对于低通滤波器,只要设计出低通滤波器的冲激响应函数,就可以由式得到系统的输出了。 但是将h(n)作为滤波器的脉冲响应有两个问题:一是它是无限长的;二是它是非因果的。对此,采取两项措施:一是将h(n)截短;二是将其右移。 设计时,要根据阻带的最小衰减和过渡带宽度来选择恰当的窗函数类型和窗口长度N。常用的窗函数有矩形窗、海明窗和布莱克曼窗等。 窗函数设计FIR滤波器步骤如下: (1)给定理想频率响应的幅频特性和相频特性; (2)求理想单位脉冲响应,在实际计算中,可对理想频率响应采样。(3)根据过渡带宽度和阻带最小衰减,确定窗函数类型和窗口长度N;(4)求FIR滤波器单位脉冲响应; (5)分析幅频特性,若不满足要求,可适当改变窗函数形式或长度N,重复上述设计过程,以得到满意的结果。 三、实验内容及分析 1、分别用海明窗和布莱克曼窗设计一个48阶的FIR带通滤波器,通带为Wn0.450.55。程序1:海明窗设计 N=48; Window=hamming(N+1);w1=0.45;w2=0.55;ws=[w1,w2]; b=fir1(N,ws/pi,Window);freqz(b,1,512);title('海明窗');grid on; 程序2:莱克曼窗设计 N=48; Window=blackman(N+1);w1=0.45;w2=0.55;ws=[w1,w2]; b=fir1(N,ws/pi,Window);freqz(b,1,512);title('布莱克曼窗');grid on; 2、用矩形窗设计一个线性相位高通滤波器。其中Hejwej00.3 00.3程序: N=9; alpha=(N-1)/2;Wc=0.7*pi;n=(0:8);i=n-alpha;i=i+(i==0)*eps; h=(-1).^n.*sin((i).*Wc)./((i).*pi);%矩形窗函数设计的系统脉冲响应 w=(0:1:500)*2*pi/500; H=h*exp(-j*n'*w);%矩形窗函数设计的频响 magH=abs(H);% 矩形窗函数设计的振幅 subplot(211);stem(n,h); axis([0,8,-0.4,0.4]);title('矩形窗设计h(n)');line([0,10],[0,0]);xlabel('n');ylabel('h');subplot(212);plot(w/pi,magH); xlabel('以pi为单位的频率');ylabel('H振幅');axis([0,2,0,1.7]);title('矩形窗设计振幅谱'); 实验心得体会: 这次实验使我进一步加深了对MATLAB软件的使用。从上次的信号系统实验的初步使用到这一次的深入了解,有了更深刻的认识。对这种语言环境也有了新的了解。 在实验的过程中,我对数字滤波器的整个过程有了很好的理解和掌握。IIR数字滤波器的设计让我知道了巴特沃思滤波器和切比雪夫滤波器的频率特性,还有双线性变换及脉冲响应不变法设计的滤波器的频率特性。做这两个实验的时候程序有点困难,但经过细心的改写图形最终出来了。FIR数字滤波器的设计出来的是两种窗的图形,通过两种窗的比较,我了解了他们各自的特点,幅频和相频特性。 最后,感谢张老师对我的谆谆教导! 目 录 摘要...........................................................................................................................................1 1 绪论..............................................................................................................................................2 1.1 DSP系统特点和设计基本原则......................................................................................2 1.2 国内外研究动态.............................................................................................................2 2系统设计........................................................................................................................................3 3硬件设计........................................................................................................................................5 3.1 硬件结构...........................................................................................................................5 3.2 硬件电路设计...................................................................................................................7 3.2.1 总输入电路...........................................................................................................7 3.2.2 总输出电路...........................................................................................................7 3.2.3 语音输入电路.......................................................................................................9 3.2.4 语音输出电路.......................................................................................................9 实验结果及分析.........................................................................................................................10 4.1 实验结果.........................................................................................................................10 4.2 实验分析.........................................................................................................................12 5 总结与心得体会.........................................................................................................................13 参考文献.........................................................................................................................................14 致谢................................................................................................................................................15 摘要 基于DSP的语音信号处理系统,该系统采用TMS320VC5509作为主处理器,TLV320AIC23B作为音频芯片,在此基础上完成系统硬件平台的搭建和软件设计,从而实现对语音信号的采集、滤波和回放功能,它可作为语音信号处理的通用平台。 语音是人类相互之间进行交流时使用最多、最自然、最基本也是最重要的信息载体。在高度信息化的今天,语音信号处理是信息高速公路、多媒体技术、办公自动化、现代通信及智能系统等新兴领域应用的核心技术之一。通常这些信号处理的过程要满足实时且快速高效的要求,随着DSP技术的发展,以DSP为内核的设备越来越多,为语音信号的处理提供了良好的平台。本文设计了一个基于TMS320VC5509定点的语音信号处理系统,实现对语音信号的采集、处理与回放等功能,为今后复杂的语音信号处理算法的研究和实时实现提供一个通用平台。 关键词:语音处理;DSP;TMS320VC5509;TLV320AIC23B 1 绪论 语音是人类相互间所进行的通信的最自然和最简洁方便的形式,语音通信是一种理想的人机通信方式。语音通信的研究涉及到人工智能、数字信号处理、微型计算机技术、语言声学、语言学等许多领域,所以说语音的通信是一个多学科的综合研究领域,其研究成果具有重要的学术价值。另外通过语音来传递信息是人类最重要的、最有效、最常用的交换信息的形式。语言是人类特有的功能,声音是人类常用的工具,是相互传递信息的主要手段。同时也是众构成思想交流和感情沟通的最主要的途径。 1.1 DSP系统特点和设计基本原则 DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。 1.2 国内外研究动态 语音信号处理作为一个重要的研究领域,已经有很长的研究历史。但是它的快速发展可以说是从1940年前后Dudley的声码器和Potter等人的可见语音开始的;20世纪60年代中期形成的一系列数字信号处理的理念和技术基础;到了80年代,由于矢量量化、隐马尔可夫模型和人工神经网络等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工神经网络的结合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。 在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动 通信、IP电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。因此,语音编码一直是通信和信号处理的研究热点,并其取得了惊人的进展,目前在PC机上的语音编码已经趋于成熟,而如何在嵌入式系统中实时实现语音压缩编码则是近些年来语音信号处理领域的研究热点之一。 2系统设计 在实际生活中,当声源遇到物体时会发生反射,反射的声波和声源声波一起传输,听者会发现反射声波部分比声源声波慢一些,类似人们面对山体高声呼喊后可以在过一会儿听到回声的现象。声音遇到较远物体产生的反射会比遇到较近的反射波晚些到达声源位置,所以回声和原声的延迟随反射物体的距离大小改变。同时,反射声音的物体对声波的反射能力,决定了听到的回声的强弱和质量。另外,生活中的回声的成分比较复杂,有反射、漫反射、折射,还有回声的多次反射、折射效果。 当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。如此产生的回声,我们称之为数字回声。 本次实验的程序流程图如下: 图2.1 程序流程图 本次实验的系统框图如下: 图2.2 系统框图 3硬件设计 3.1 硬件结构 图3.1是系统的硬件结构框图, 系统主要包括VC5509和A IC23 两个模块。 图3.1系统硬件结构框图 利用VC5509 的片上外设I2C(Inter-Integrated Circuit, 内部集成电路)模块配置AIC23 的内部寄存器;通过VC5509 的McBSP(Multi channel Buffered Serial Ports, 多通道缓存串口)接收和发送采样的音频数据。控制通道只在配置AIC23 的内部寄存器时工作, 而当传输音频数据时则处于闲置状态。 AIC23通过麦克风输入或者立体声音频输入采集模拟信号, 并把模拟信号转化为数字信号, 存储到DSP的内部RAM中,以便DSP处理。 当DSP完成对音频数据的处理以后, AIC23再把数字信号转化为模拟信号, 这样就能够在立体声输出端或者耳机输出端听到声音。 AIC23能够实现与VC5509 DSP的McBSP端口的无缝连接, 使系统设计更加简单。接口的原理框图, 如下图所示。 图3.2 AIC23与VC5509接口原理图 系统中A IC23的主时钟12 MHz直接由外部的晶振提供。MODE接数字地, 表示利用I2 C控制接口对AIC23传输控制数据。CS接数字地, 定义了I2 C总线上AIC23的外设地址, 通过将CS接到高电平或低电平, 可以选择A IC23作为从设备在I2 C总线上的地址。SCLK和SDIN是AIC23控制端口的移位时钟和数据输入端,分别与VC5509的I2C模块端口SCL和SDA相连。 收发时钟信号CLKX1和CLKR1由A IC23的串行数据输入时钟BCLK提供, 并由A IC23的帧同步信号LRCIN、LRCOUT启动串口数据传输。DX1和DR1分别与A IC23 的D IN 和DOUT 相连, 从而完成VC5509与AIC23间的数字信号通信。 3.2 硬件电路设计 3.2.1 总输入电路 图3.3 总输入电路 从左到右各部分电路为: 话筒,开关,语音输入电路,UA741高增益放大电路,有源二阶带 通滤波器。 3.2.2 总输出电路 图3.4 总输出电路 从左到右各部分电路为: LM386高频功率放大器及其外围器件连接电路,语音输出电路,开关,扬声器。 3.2.3 语音输入电路 图3.5语音输入电路 3.2.4 语音输出电路 图3.6 语音输出电路 语音信号通道包括模拟输入和模拟输出两个部分。模拟信号的输入输出电路如图所示。上图中MICBIAS 为提供的麦克风偏压,通常是3/4 AVDD,MICIN为麦克风输入,可以根据需要调整输入增益。下图中LLINEOUT 为左声道输出,RLINEOUT为右声道输出。用户可以根据电阻阻值调节增益的大小,使语音输入输出达到最佳效果。从而实现良好的模拟语音信号输入与模拟信号的输出。4 实验结果及分析 4.1 实验结果 按“F5”键运行,注意观察窗口中的bEcho=0,表示数字回声功能没有激活。这时从耳机中能听到麦克风中的输入语音放送。将观察窗口中bEcho的取值改成非0值。这时可从耳机中听到带数字回声道语音放送。 分别调整uDelay和uEffect的取值,使他们保持在0-1023范围内,同时听听耳机中的输出有何变化。 当uDelay和uEffect的数值增大时,数字回声的效果就会越加的明显。 图4.1 修改前程序图 图4.2 修改前程序图 图4.3 频谱分析 图4.4 左声道及右声道波形 4.2 实验分析 所以,从本实验可知当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。 声音放送可以加入数字回声,数字回声的强弱和与原声的延迟均可在程序中设定和调整。5 总结与心得体会 通过本次课程设计,我明白了细节决定成败这句话的道理,在实验中,有很多注意的地方,都被忽视了,导致再花费更多的时间去修改,这严重影响了试验的进度。同时,在本次实验中我了解了ICETEK – VC5509 – A板上语音codec芯片TLV320AIC23的设计和程序控制原理,并进一步掌握了数字回声产生原理、编程及其参数选择、控制,以及了解了VC5509DSP扩展存储器的编程使用方法。 这一学期的理论知识学习加上这次课程设计,使我对DSP有了更加深刻的了解,对数字信号的处理功能,软硬件相结合,语音信号的采集与放送等等方面都有了很深的了解,相信本次课程设计,无论是对我以后的学习,还是工作等方面都有一个很大的帮助。因此,本次课程设计让我受益匪浅。 参考文献 [1]李利.DSP原理及应用[M].北京:中国水利水电出版社,2004.[2]王安民,陈明欣,朱明.TMS320C54xxDSP实用技术[M].北京:清华大学出版社,2007 [3]彭启琮,李玉柏.DSP技术[M].成都:电子科技大学出版社,1997 [4]李宏伟,等.基于帧间重叠谱减法的语音增强方法[J].解放军理工大学学报,2001(1):41~44 [5]TexasInstrumentsIncorporated.TMS320C54x系列DSP的CPU与外设[M].梁晓雯,裴小平,李玉虎,译.北京:清华大学出版社,2006 [6]赵力.语音信号处理[M].北京:机械工业出版社,2003比较图4和图5,可以看到1200Hz以上的频谱明显得到了抑制。 [7]江涛,朱光喜.基于TMS320VC5402的音频信号采集与系统处理[J].电子技术用,2002,28(7):70~72[8]TexasInstrumentsIncorporated:TMS320VC5402Datasheet,2001 致谢 在本次课程设计的即将完成之际,笔者的心情无法平静,本文的完成既是笔者孜孜不倦努力的结果,更是指导老师樊洪斌老师亲切关怀和悉心指导的结果。在整个课程设计的选题、研究和撰写过程中,老师都给了我精心的指导、热忱的鼓励和支持,他的精心点拨为我开拓了研究视野,修正了写作思路,对课程设计的完善和质量的提高起到了关键性的作用。另外,导师严谨求实的治学态度、一丝不苟的工作作风和高尚的人格魅力,都给了学生很大感触,使学生终生受益。在此,学生谨向老师致以最真挚的感激和最崇高的敬佩之情。 另外,还要感谢这段时间来陪我一起努力同学,感谢我们这个小团队,感谢每一个在学习和生活中所有给予我关心、支持和帮助的老师和同学们,几年来我们一起学习、一起玩耍,共同度过了太多的美好时光。我们始终是一个团结、友爱、积极向上的集体。 南京邮电大学 实 验 报 告 实验名称_____熟悉MATLAB环境 ___ 快速傅里叶变换及其应用 ____IIR数字滤波器的设计_ FIR数字滤波器的设计 课程名称 数字信号处理A 班级学号_______09002111___________ 姓 名 王都超 开课时间 2011/2012学年,第 二 学期 实验一 熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。(2)学会简单的矩阵输入和数据读写。(3)掌握简单的绘图命令。 (4)用MATLAB编程并学会创建函数。(5)观察离散系统的频率响应。 二、实验内容 (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3,4,5,6],求 C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B。并用stem语句画出A、B、C、D、E、F、G。 D = -2 E = F = 0.3333 0.5000 0.6000 0.6667 G = 243 4096(2)用MATLAB实现下列序列: a)x(n)0.8n 0n1 5n=0:1:15;x1=0.8.^n;a=(0.2+3*i)*n;stem(x1)b)x(n)e(0.23j)n 0n15 n=0:1:15;x2=exp(a);a=(0.2+3*i)*n;stem(x2) c)x(n)3cos(0.125n0.2)2sin(0.25n0.1) 0n15 (4)绘出下列时间函数的图形,对x轴、y轴以及图形上方均须加上适当的标注: a)x(t)sin(2t)0t10s b)x(t)cos(100t)sin(t)0t4s t=0:0.01:4;x=cos(100*pi*t).*sin(pi*t);plot(t,x, 'r-');xlabel('t'),ylabel('x(t)'),title('cos') (6)给定一因果系统H(z)(1频响应和相频响应。 2z1z2)/(10.67z10.9z2),求出并绘制H(z)的幅 (7)计算序列{8-2-1 2 3}和序列{2 3-1-3}的离散卷积,并作图表示卷积结果。 (8)求以下差分方程所描述系统的单位脉冲响应h(n), 0n50 y(n)0.1y(n1)0.06y(n2)x(n)2x(n1) 实验过程与结果(含实验程序、运行的数据结果和图形); clear all;N=50;a=[1-2];b=[1 0.1-0.06];x1=[1 zeros(1,N-1)];n=0:1:N-1;h=filter(a,b,x1);stem(n,h)axis([-1 53-2.5 1.2]) 实验二 快速傅里叶变换及其应用 一、实验目的 (1)在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。(2)应用FFT对典型信号进行频谱分析。 (3)了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。(4)应用FFT实现序列的线性卷积和相关。 二、实验内容 实验中用到的信号序列 a)高斯序列 (np)qxa(n)e020n15 其他 b)衰减正弦序列 eansin(2fn)xb(n)00n15其他 c)三角波序列 nxc(n)8n00n34n7 其他 d)反三角波序列 4nxd(n)n400n34n7 其他 (1)观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 (3)观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT分析信号序列xc(n)和观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特性xd(n)的幅频特性,曲线。 在xc(n)和xd(n)末尾补零,用N=32点FFT分析这两个信号的幅频特性,观察幅频特性发生了什么变化?两种情况的FFT频谱还有相同之处吗?这些变化说明了什么? (5)用FFT分别实现xa(n)(p=8,q=2)和xb(n)(a=0.1,f=0.0625)的16点循环卷积和线性卷积。 n=0:15;p=8;q=2; xa=exp(-(n-p).^2/q);subplot(2,3,1);stem(n,xa,'.');title('xa波形'); Xa=fft(xa,16);subplot(2,3,4);stem(abs(Xa),'.'); title('Xa(k)=FFT[xa(n)]的波形 ');A=1;f=0.0625;a=0.1; xb=exp(-a*n).*sin(2*pi*f*n);subplot(2,3,2);stem(n,xb,'.');title('xb波形');Xb=fft(xb,16);subplot(2,3,5);stem(abs(Xb),'.'); title('Xb(k)=FFT[xb(n)]的波形 '); 实验过程与结果(含实验程序、运行的数据结果和图形); 实验三 IIR数字滤波器的设计 一、实验目的 (1)掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 (3)熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验内容(1)P162 例4.4 设采样周期T=250s(采样频率fs=4kHz),分别用脉冲响应不变法和双线性变换法设计一个三阶巴特沃思低通滤波器,其3dB边界频率为fc=1kHz。 脉冲响应不变法: fc=1000;fs=4000;OmegaC=2*pi*fc;[B,A]=butter(3, OmegaC,'s');[num1,den1]=impinvar(B,A,fs);[h1,w]=freqz(num1,den1);f = w/pi*fs/2;plot(f,abs(h1)); 双线性变换法: fc=1000;fs=4000; OmegaC=2*fs*tan(pi*fc/fs);[B,A]=butter(3, OmegaC,'s');[num2,den2]=bilinear(B,A,fs);[h2,w]=freqz(num2,den2);f = w/pi*fs/2;plot(f,abs(h2)); 同一图中画两条曲线: fc=1000;fs=4000;OmegaC=2*pi*fc;[B,A]=butter(3, OmegaC,'s');[num1,den1]=impinvar(B,A,fs);[h1,w]=freqz(num1,den1);f = w/pi*fs/2; OmegaC=2*fs*tan(pi*fc/fs);[B,A]=butter(3, OmegaC,'s');[num2,den2]=bilinear(B,A,fs);[h2,w]=freqz(num2,den2);f = w/pi*fs/2;plot(f,abs(h1),'r-.');hold on;plot(f,abs(h2),'g-'); (选做)(2)fc=0.2kHz,=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。比较这两种方法的优缺点。 实验过程与结果(含实验程序、运行的数据结果和图形); 实验四 FIR数字滤波器的设计 一、实验目的 (1)掌握用窗函数法,频率采样法及优化设计法设计FIR滤波器的原理及方法,熟悉相应的计算机编程; (2)熟悉线性相位FIR滤波器的幅频特性和相频特性; (3)了解各种不同窗函数对滤波器性能的影响。 二、实验内容 (1)生成一个长度为20的矩形窗,画出其时域和幅频特性曲线。n=0:1:19;N=20;win(1:20)=1;[H,w]=freqz(win,1);subplot(2,1,1);stem(n,win)subplot(2,1,2);plot(w,abs(H)); (2)用矩形窗设计一个21阶的线性相位低通FIR数字滤波器,截止频率Wc=0.25π,求出滤波器系数,并绘出滤波器的幅频特性。修改程序,分别得到阶次为N=41,61的滤波器,并显示其各自的幅频曲线。 a)在上面所得的几幅图中,在截止频率两边可以观察到幅频响应的摆动行为。请问波纹的数量与滤波器脉冲响应的长度之间有什么关系? b)最大波纹的高度与滤波器脉冲响应的长度之间有什么关系? 实验过程与结果(含实验程序、运行的数据结果和图形); 21阶的线性相位低通FIR数字滤波器: Wc=0.25*pi;N=21;M=(N-1)/2; %位移量 for n=0:(N-1) if(n== fix(M)) %中间的点单独算 hd(n+1)=Wc/pi; else hd(n+1)=sin(Wc*(n-M))/(pi*(n-M));end;end;win=boxcar(N);%%%不同窗函数 h=hd.*win';[H,w]=freqz(h,1);n=0:1:N-1;subplot(3,1,1);stem(n,h)subplot(3,1,2);plot(w,abs(H));subplot(3,1,3);plot(w,angle(H)); 41阶的线性相位低通FIR数字滤波器: Wc=0.25*pi;N=41;M=(N-1)/2; %位移量 for n=0:(N-1) if(n== fix(M)) %中间的点单独算 hd(n+1)=Wc/pi; else hd(n+1)=sin(Wc*(n-M))/(pi*(n-M));end;end;win=boxcar(N);%%%不同窗函数 h=hd.*win';[H,w]=freqz(h,1);n=0:1:N-1;subplot(3,1,1);stem(n,h)subplot(3,1,2);plot(w,abs(H));subplot(3,1,3);plot(w,angle(H)); 61阶的线性相位低通FIR数字滤波器: Wc=0.25*pi;N=61;M=(N-1)/2; %位移量 for n=0:(N-1) if(n== fix(M)) %中间的点单独算 hd(n+1)=Wc/pi; else hd(n+1)=sin(Wc*(n-M))/(pi*(n-M));end;end;win=boxcar(N);%%%不同窗函数 h=hd.*win';[H,w]=freqz(h,1);n=0:1:N-1;subplot(3,1,1);stem(n,h)subplot(3,1,2);plot(w,abs(H));subplot(3,1,3);plot(w,angle(H)); 数字信号处理实验小结及心得体会: 通过这次实验,我对MATLAB语言有了一定的认识,虽然还不能完全用MATLAB独立编写程序,但对这种语言环境有了新的了解。我知道了一般的加减乘除在MATLAB中不同的意义。知道输入、输出语句怎么形成。通过快速傅里叶变换及其应用的实验,加深了我对FFT的理解,还有对各典型信号的频谱分析,改变参数后时域和幅频特性的变化。IIR数字滤波器的设计让我知道了巴特沃思滤波器和切比雪夫滤波器的频率特性,还有双线性变换及脉冲响应不变法设计的滤波器的频率特性。做这个实验的时候程序有点困难,很多细节问题不能考虑清楚,导致图形出不来。FIR数字滤波器的设计出来的是三种窗的图形,通过三种窗的比较,我了解了他们各自的特点,幅频和相频特性。我在这次实验中的收获很大,接触了很多新的知识,但在实验写程序时,我发现自己还有很多不足。很多程序写不完全。这是自己今后要加强的地方。第四篇:数字信号处理课程设计
第五篇:数字信号处理实验报告