高一数学学期教学计划15篇
高一数学学期教学计划1
一、基本情况分析
任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
二、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
三、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
四、教研课题
高中数学新课程新教法
五。教学进度
第一周 集 合
第二周 函数及其表示
第三周 函数的基本性质
第四周 指数函数
第五周 对数函数
第六周 幂函数
第七周 函数与方程
第八周 函数的应用
第九周 期中考试
第十十一周 空间几何体
第十二周 点,直线,面之间的位置关系
第十三十四周 直线与平面平行与垂直的判定与性质
第十五十六周 直线与方程
第十八十九周 圆与方程
第二十周 期末考试
高一数学学期教学计划2
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一数学学期教学计划3
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理数},
B = {x | x是无理数},
C = {x | x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 设集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老师要求学生对性质进行合理解释. 培养学生数学思维能力.
形成概念 自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B = {x | x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.
应用举例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新华中学开运动会,设
A = {x | x是新华中学高一年级参加百米赛跑的同学},
B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};
(2)直线l1,l2平行可表示为
L1∩L2 = ;
(3)直线l1,l2重合可表示为
L1∩L2 = L1 = L2. 提升学生的动手实践能力.
归纳总结 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性质:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结
老师点评、阐述 归纳知识、构建知识网络
课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华
备选例题
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范围;
(2)若A∪B = {x | x<1},求a的取值范围.
【解析】(1)如下图所示:A = {x | –1
∴数轴上点x = a在x = – 1左侧.
∴a≤–1.
(2)如右图所示:A = {x | –1
∴数轴上点x = a在x = –1和x = 1之间.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.
当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.
例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.
当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.
当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.
综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一数学学期教学计划4
一 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 教学目标分析:
知识与技能:
1。结合方程根的几何意义,理解函数零点的定义;
2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3。使学生感受学习、探索发现的乐趣与成功感
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 教学准备
导学案,自主探究,合作学习,电子交互白板。
五 教学过程设计:略
六、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的`大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
七、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间
八、巩固练习(略)
小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。
高一数学学期教学计划5
一、指导思想:
(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、学情分析:
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:1、进一步学习条件不具备、高中数学与初中数学相比,知识的深度、
广度,能力要求都是一次飞跃、这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高、如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等、客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习、许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权、表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法、而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背、也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础、一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海、到正规作业或考试中不是演算出错就是中途“卡壳”。此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高
三、教学目标与要求
必修1,主要涉及两章内容:
第一章:集合
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1、了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;
2、理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3、理解补集的含义,会求在给定集合中某个集合的补集;
4、理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;
5、渗透数形结合、分类讨论等数学思想方法;
6、在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章:函数的概念与基本初等函数Ⅰ
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1、了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;
2、理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
第三章:函数的应用
函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就
是利用已有的函数知识分析问题和解决问题、通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。
1、了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
2、培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
必修4:主要涉及三章内容:
第一章:三角函数
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1、了解任意角的概念和弧度制;
2、掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3、了解三角函数的周期性;
4、掌握三角函数的图像与性质。
第二章:平面向量
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1、理解平面向量的概念及其表示;
2、掌握平面向量的加法、减法和向量数乘的运算;
3、理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4、理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章:三角恒等变换
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一数学学期教学计划6
一、教学思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书?数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
高一数学学期教学计划7
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
高一数学学期教学计划8
进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
高一数学学期教学计划9
一、学生状况分析
学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。
二、教材简析
使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。
三、教学任务
本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。
四、教学质量目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施
1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。
6、重视数学应用意识及应用能力的培养。
高一数学学期教学计划10
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立.
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确.空集是任何非空集合的真子集;
(3)不正确. 与 表示同一集合;
(4)不正确. 的所有子集是 ;
(5)正确
(6)不正确.当 时, 与 能同时成立.
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的补集 可用右图中阴影部分表示.
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系.
高一数学学期教学计划11
一、具体目标:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学
二、本学期要达到的教学目标
1.双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2.能力培养:
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3. 思想教育:
三、进度授课计划及进度表(略)
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。
高一数学学期教学计划12
一、指导思想:
在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。 二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。
三、学情分析:
本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。
四、教学策略、教研活动:
1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课
题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。
2、做到课后教学反思
上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。
3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。
4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。
3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
4、扎实基础的同时重视数学应用意识及应用能力的培养。
5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透 6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。
高一数学学期教学计划13
本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
2、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标
(一)情意目标
1、通过分析问题的方法的教学,培养学生的学习的兴趣。
2、提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
3、在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。
4、基于情意目标,调控教学流程,坚定学习信念和学习信心。
5、还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
6、让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、方法措施
1、认真按时完成教学任务,本学期学完高一数学的全部内容,并力争挤出时间学习高二数学的第一章,为高三学习争取更多的时间。
2、继续实施“导学案教学方法”完善导学案,形成集美中学特色的教学方法,培养学生自我学习的能力和习惯,使学生做到简单知识自己能学会,较难知识在老师点拔下能学会,难度大的知识在老师的讲解下能轻松学会。
3、教师间相互听课,每周每个教师听课不少于两节,并及时的反馈交流,互相取长补短使老教师呆板陈旧的教学方法变得活泼生动,充满生机,使新教师教学水平逐步走向成熟而稳健;组织好期中、期末的复习、考试、出题、评卷、讲评、个别指导工作,约在12周左右进行期中考试。
4、加强尖子生的培养工作,定期对他们进行辅导或者跟踪检测,以使他们成为全市的数学尖子,为学校争光,进而带动全校数学成绩的提高,提高集美中学的数学层次。
5、重点工作放在中下等学生的教学、管理、辅导、心理调节与学习方法指导上,使他们学所有所得、学有所成,培养他们的自信心,自我学习的意识和能力,着眼于学生的未来,迫使他们养成良好的学习习惯,思维习惯,行为习惯,以期在高考中取得优异成绩,为学校赢得更大的荣誉。
高一数学学期教学计划14
一 指导思想
为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二 学情分析
1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。
2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
三 教材分析
我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。
四 教法分析
在教学过程中尽量做到以下几个方面:
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五 教学及辅导措施
1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6. 重视数学应用意识及应用能力的培养。
六 优、差生名单及辅导措施
1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。
2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。
七 教学进度安排
周 次
| 课时
| 内 容
| 重 点、难 点
|
第1周
| 5
| 任意角和弧度制(2)
任意角的三角函数(3)
| 了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。
|
第2周
| 5
| 同角三角函数的基本关系式(3)
三角函数的诱导公式(2)
| 诱导公式的探究。运用诱导公式。
|
第3周
| 5
| 两角和与差的正弦、余弦、正切 (5)
| 两角和与差的公式及其应用与求值、化简
|
第4周
| 5
| 二倍角的正弦、余弦、正切 (3)
正、余弦函数的图象(2)
| 三角函数的倍角公式、和差化积公式
正、余弦函数图象的画法
|
第5周
| 5
| 三角函数图象与性质(4)
| 三角函数的图象及其性质。函数思想。
|
第6周
| 5
| 函数y=sin(+)的图象(2)、三角函数模型的简单应用(2)
| 用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型
|
第7周
| 5
| 正切函数的图象和性质(3)
已知三角函数值求角(2)
| 正切函数的图象和性质
反三角函数的表示
|
第8周
| 5
| 三角函数单元复习
| 知识点的复习+练习卷
|
第9周
| 5
| 平面向量的实际背景及基本概念(2)、平面向量的线性运算(2)
| 向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。
|
第10周
| 5
| 平面向量的基本定理及坐标表示(2)
平面向量的数量积(2)
| 平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。
|
第11周
| 5
| 平面向量的应用举例(2)
| 用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。
|
第12周
| 5
| 向量平移、正弦定理、余弦定理
| 向量平移的公式
|
第13周
| 5
| 简单的三角恒等变换(3)
第三章小结(1)
| 以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。
|
第14周
| 5
| 期末复习
|
|
第15周
| 5
| 期末复习
| 分章归纳复习+3套模拟测试
|
高一数学学期教学计划15
高一年级学生对学习缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。学生意志薄弱,耐挫力差。许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学、去动脑,长期下去,便产生厌学情绪。针对这种情况,特作以下计划:
一、学生状况分析
本学年,我担任高一(9)和(10)班的数学课。两个班整体水平都一般,成绩以中下等为主,中上不多,后进生有很多。其中在中考成绩两个班中都存在20人以上等级分在5分以下。从而看出基础知识不太牢固,当然上课效率也不是很高。
二、教材简析
使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。
三、教学任务
本期授课内容为必修1和必修2,必修1在期中考试前完成;必修2在期末考试前完成。
四、教学质量目标
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。在教学的过程中注意降低难度。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
高一数学学期教学计划
高一数学学期教学计划1
一 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 教学目标分析:
知识与技能:
1。结合方程根的几何意义,理解函数零点的定义;
2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3。使学生感受学习、探索发现的乐趣与成功感
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 教学准备
导学案,自主探究,合作学习,电子交互白板。
五 教学过程设计:略
六、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
七、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间
八、巩固练习(略)
小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。
高一数学学期教学计划2
一、具体目标:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学
二、本学期要达到的教学目标
1.双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2.能力培养:
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3. 思想教育:
三、进度授课计划及进度表(略)
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。
高一数学学期教学计划3
一、学生状况分析
学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。
二、教材简析
使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。
三、教学任务
本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。
四、教学质量目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施
1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。
6、重视数学应用意识及应用能力的培养。
高一数学学期教学计划4
一 指导思想
为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二 学情分析
1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。
2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
三 教材分析
我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。
四 教法分析
在教学过程中尽量做到以下几个方面:
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五 教学及辅导措施
1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6. 重视数学应用意识及应用能力的培养。
六 优、差生名单及辅导措施
1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。
2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。
七 教学进度安排
周 次
| 课时
| 内 容
| 重 点、难 点
|
第1周
| 5
| 任意角和弧度制(2)
任意角的三角函数(3)
| 了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。
|
第2周
| 5
| 同角三角函数的基本关系式(3)
三角函数的诱导公式(2)
| 诱导公式的探究。运用诱导公式。
|
第3周
| 5
| 两角和与差的正弦、余弦、正切 (5)
| 两角和与差的公式及其应用与求值、化简
|
第4周
| 5
| 二倍角的正弦、余弦、正切 (3)
正、余弦函数的图象(2)
| 三角函数的倍角公式、和差化积公式
正、余弦函数图象的画法
|
第5周
| 5
| 三角函数图象与性质(4)
| 三角函数的图象及其性质。函数思想。
|
第6周
| 5
| 函数y=sin(+)的图象(2)、三角函数模型的简单应用(2)
| 用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型
|
第7周
| 5
| 正切函数的图象和性质(3)
已知三角函数值求角(2)
| 正切函数的图象和性质
反三角函数的表示
|
第8周
| 5
| 三角函数单元复习
| 知识点的复习+练习卷
|
第9周
| 5
| 平面向量的实际背景及基本概念(2)、平面向量的线性运算(2)
| 向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。
|
第10周
| 5
| 平面向量的基本定理及坐标表示(2)
平面向量的数量积(2)
| 平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。
|
第11周
| 5
| 平面向量的应用举例(2)
| 用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。
|
第12周
| 5
| 向量平移、正弦定理、余弦定理
| 向量平移的公式
|
第13周
| 5
| 简单的三角恒等变换(3)
第三章小结(1)
| 以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。
|
第14周
| 5
| 期末复习
|
|
第15周
| 5
| 期末复习
| 分章归纳复习+3套模拟测试
|
高一数学学期教学计划5
新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下
一,指导思想
加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。
二,教材分析
本册教材具有以下几个明显的特点:
1。为学生的数学学习构筑起点
教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。
2,向学生提供现实,有趣,富有挑战性的学习素材
教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。
3,为学生提供探索,交流的时间与空间
教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。
4,展现数学知识的形成与应用过程
教科书采用“问题情境—建立模型—解释,应用与拓展”的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。
5,满足不同学生的发展需求
教科书中“读一读”给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。
三,教材的重点和难点
本册教材从内容上看,教学重点是三角形和四边形的性质定理
和判定定理的应用以及一元二次方程的应用。教学难点是对反
比例函数的理解及应用;用试验或模拟试验的方法估计一些复
杂的随机时间发生的概率。
四,教学措施:
1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。
2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。
3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。
4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。
五,时间安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函数
6月1日——6月10日频率与概率
6月11日——7月11日复习考试
>高中数学教学计划10
本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。
一、指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
高一数学学期教学计划6
一.指导思想:
(1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的`建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二.学情分析:
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面: 1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、
广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。 此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高
三、教学目标与要求
必修1,主要涉及两章内容:
第一章:集合
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;
2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3.理解补集的含义,会求在给定集合中某个集合的补集;
4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;
5.渗透数形结合、分类讨论等数学思想方法;
6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章:函数的概念与基本初等函数Ⅰ
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;
2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
第三章:函数的应用
函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就
是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。
1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
必修4:主要涉及三章内容:
第一章:三角函数
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3.了解三角函数的周期性;
4.掌握三角函数的图像与性质。
第二章:平面向量
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、减法和向量数乘的运算;
3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章:三角恒等变换
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一数学学期教学计划7
一、制定的依据
(1)二期课改的理念:一个为本、三类课程、三维目标
(2)新数学课程标准(详见《广州市中小学数学课程标准》)
(3)三本书:课本、教参、练习册
(4)本校教研组对本学期学科的要求
二、基本情况分析
高一(3)全班共52人,男生24人,_28人。上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。高一(4)全班共53人,男生26人,_27人。上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。
从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。优势是:1、有潜力;2、师生关系比较融洽,互相信任,配合默契。存在的不足是:1、聪明有余,而努力不足;2、男生聪明,上课积极,但不够勤奋、踏实;_认真,但上课效率不高,学得不够灵活。3、从期末统测来看,差生的比重大;4、个别学生懒惰成性,学习态度、学习习惯极差;5、平时学习不够用心,自觉,专心思考、钻研的时间太少;6、一些同学学习成绩起伏大,不稳定;7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;8、学习兴趣,动力,上进心不足。
三、本学期力争达到的目标
1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。
2、完成新数学课程标准规定的教学目标。
3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。
4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。
5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。
四、具体措施
1、从期末统测来看,学困生的比重大,优秀率没有。为此要进行分层教学,学困生要注重基本题、常规题的反复操练,增强他们对数学学习的信心和兴趣。好学生要避免无谓失分的情况,注重数学思想、方法、能力的培养,着眼于高三。总而言之,学困生还是继续注重双基的训练,将做过,讲过的题目再反复操练。另外也不能忽略了高分学生的培养,给好学生布置一些有质量的课外题,定期查阅,批改,答疑。这样,通过抓两头,促中间,带动整体水平的提高。
2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。
3、从期末统测看学生应用能力明显不足。教师要通过平时教学培养学生阅读审题、数学建模的能力。让学生熟悉一些常见的实际问题的背景,及解决这些问题的相关数学知识。
4、期末统测中选择题普遍得分不高,应引起我们的重视,
《高一数学教学计划》由于选择题只有答案,所以解答选择题的策略是:合理、迅速、检验,要善于转化,避免机械套用公式、定理和“小题大做,舍近求远,简单问题复杂化”的不良习惯。另外,由填空题的错误表达和解答题的计算粗心、考虑不全面而造成的无谓失分,导致了分数上不去和好学生考不出高分。所以,为保证得到该得的分数,要求必须认真审题,明确要求,弄清概念,思考全面,正确表达。
5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。
五、保障措施和可行性
1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;
2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;
3、注重加强知识之间的联系和综合,内容和方式要更新,有层次推进,多角度理解,反思总结,重视教与学的方式多样化;
4、激发兴趣,重视过程教学,重视错误分析型学习;
5、重视开放性、研究性问题的教学,关注主观评判性问题的学习,研究新题型,真正发展学生的数学素质,培养其数学能力。
6、结合二期课改新课程标准、教参,扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
7、加大课堂教改力度,培养学生的自主学习能力。
8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
9、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解,过关。
10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题,每人在课本留白处做好课堂笔记。另外,我自己有充足的时间与资料,进行习题精选与练习补充。
六、总目标达成度与现阶段教学目标达成度的相关分析
本学期一定要在如何提高课堂效率上下功夫,同时抓平时的学习习惯,学习规范,作业质量等细节问题,切实提高学习的有效性。另外,在上学期的基础上,本学期力争消灭不及格,并使那些因无谓失分而导致分数起伏不定的学生能稳定下来,从而进一步提高优秀率。
目前,我班面临的困难与问题还非常多,好在学生的学习势头保持良好。我和我们班的全体学生,将尽我们所能,力争在本学期能有所收获,更进一步。
七、课堂教学改革与创新、信息技术的应用与整合
1、结合二期课改,将“接受式学习”变为“主动式学习”,“启发式学习”,将“要我学”变为“我要学”,并积极开展拓展性课程,研究性课程,培养学生的创新精神和实践能力。
2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。
3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。
4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。
5、利用“Bb”系统建设e课堂,建设网络学习包。
6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。
7、对不同层次的学生进行分层辅导,分层补充课外练习。
8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。
高一数学学期教学计划8
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理数},
B = {x | x是无理数},
C = {x | x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 设集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老师要求学生对性质进行合理解释. 培养学生数学思维能力.
形成概念 自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B = {x | x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.
应用举例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新华中学开运动会,设
A = {x | x是新华中学高一年级参加百米赛跑的同学},
B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};
(2)直线l1,l2平行可表示为
L1∩L2 = ;
(3)直线l1,l2重合可表示为
L1∩L2 = L1 = L2. 提升学生的动手实践能力.
归纳总结 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性质:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结
老师点评、阐述 归纳知识、构建知识网络
课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华
备选例题
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范围;
(2)若A∪B = {x | x<1},求a的取值范围.
【解析】(1)如下图所示:A = {x | –1
∴数轴上点x = a在x = – 1左侧.
∴a≤–1.
(2)如右图所示:A = {x | –1
∴数轴上点x = a在x = –1和x = 1之间.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.
当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.
例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.
当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.
当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.
综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一数学学期教学计划9
一、指导思想:
在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。 二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。
三、学情分析:
本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。
四、教学策略、教研活动:
1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课
题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。
2、做到课后教学反思
上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。
3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。
4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。
3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
4、扎实基础的同时重视数学应用意识及应用能力的培养。
5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透 6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。
高一数学学期教学计划10
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立.
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确.空集是任何非空集合的真子集;
(3)不正确. 与 表示同一集合;
(4)不正确. 的所有子集是 ;
(5)正确
(6)不正确.当 时, 与 能同时成立.
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的补集 可用右图中阴影部分表示.
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系.
高一数学学期教学计划11
一、教学内容
本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求
(一)前半期完成《数学①》主要涉及三章内容:
第一章集合与函数的概念(约13学时)
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;
2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3.理解补集的含义,会求在给定集合中某个集合的补集;
4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;
5.渗透数形结合、分类讨论等数学思想方法;
6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章函数的概念与基本初等函数Ⅰ(约14学时)
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;
2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
第三章函数的应用(约9学时)
结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。
1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(二)后半期完成《数学④》主要涉及三章内容:
第一章三角函数(约16学时)
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3.了解三角函数的周期性;
4.掌握三角函数的图像与性质。
第二章平面向量(约12学时)
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、减法和向量数乘的运算;
3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章三角恒等变换(约8学时)
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。
1.掌握两角和与差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式;
3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。
三、教学常规要求及建议(要点)
根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。
1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。
2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。
3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。
3、每节课应有教学目标、重点,突出解决的问题和方法、过程。
4、做好教学反思(每周至少有一次)
高一数学学期教学计划12
一、教材教法分析
本节课是x教版普通高中课程标准实验教科书数学必修(x)的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《xx》的学习和掌握将对今后学习本节内容《xx》和选修内容《xx》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
二、学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
三、教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性。
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程。
③感受类比思想在探究新知识过程中的作用。
2、过程与方法
①结合具体问题引入,诱导学生探究。
②类比学习,循序渐进。
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
4、教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
5、教学难点
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
高一数学学期教学计划13
进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
高一数学学期教学计划14
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2。积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1.转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2.发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3.详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4.加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
高一数学学期教学计划15
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;
第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;
第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;
第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;
第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;
第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。