高一数学教学计划

2022-12-24下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高一数学教学计划》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学教学计划》。

高一数学教学计划

高一数学教学计划1

指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

教学进度安排:

周 次

内 容

重 点、难 点

第1周

9.2~9.6

集合的含义与表示、

集合间的基本关系、

会求两个简单集合的并集与交集;会求给定子集的补集;

难点:理解概念

第2周

9.7~9.13

集合的基本运算

函数的概念、

函数的表示法

能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

第3周

9.14~9.20

单调性与最值、

奇偶性、实习、小结

学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

第4周

9.21~9.27

指数与指数幂的运算、

指数函数及其性质

掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

第5周

9.28~10.4

(9月月考国庆放假)

第6周

10.5~10.11

对数与对数运算、

对数函数及其性质

理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

第7周

10.12~10.18

幂函数

从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

第8周

10.19~10.25

方程的根与函数零点,

二分法求方程近似解,

能够借助计算器用二分法求相应方程的近似解;

第9周

10.26~11.1

几类不同增长的模型、函数模型应用举例

对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

第10周

11.2~11.8

期中复习及考试

分章归纳复习+1套模拟测试

第11周

11.9~11.15

任意角和弧度制

任意角的三角函数

了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

第12周

11.16~11.22

三角函数的诱导公式

三角函数的图像和性质

借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

第13周

11.23~11.29

函数y=Asin(wx+q)的图像

借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

第14周

11.30~12.6

三角函数模型的简单应用 单元考试

会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

第15周

12.7~12.13

平面向量的实际背景及基本概念,平面向量的线性运算

掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

第16周

12.14~12.20

平面向量的基本定理及坐标表示,平面向量的数量积,

理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

第17周

12.21~12.27

平面向量应用举例,

小结

用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

第18周

12.28~1.3

两角和与差点正弦、余弦和正切公式

能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

第19周

1.4~1.10

简单的三角恒等变换

期末复习

高一数学教学计划2

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

高一数学教学计划3

教学目标

1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

教学重点、难点

重点:幂函数的性质及运用

难点:幂函数图象和性质的发现过程

教学方法:问题探究法 教具:多媒体

教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

例3巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

例4简单应用1:比较下列各组中两个值的大小,并说明理由:

①0.75 ,0.76 ;

②(-0.95) ,(-0.96) ;

③0.23 ,0.24 ;

④0.31 ,0.31

例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

例6简单应用2:

已知(a+1)<(3-2a) ,试求a的取值范围。

课堂小结

今天的学习内容和方法有哪些?你有哪些收获和经验?

1、幂函数的概念及其指数函数表达式的区别 2、常见幂函数的图象和幂函数的性质。

布置作业:

课本p.73 2、3、4、思考5

高一数学教学计划4

一、教学目标:

1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.

2.培养广泛联想的能力和热爱数学的态度.

二、教学重点:

在于让学生领悟生活中处处有变量,变量之间充满了关系

教学难点:培养广泛联想的能力和热爱数学的态度

三、教学方法:

探究交流法

四、教学过程

(一)、知识探索:

阅读课文P25页。实例:书上在高速公路情境下的问题。

在高速公路情景下,你能发现哪些函数关系?

2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?

问题小结:

1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。

2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。

3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

(二)、新课探究——函数概念

1.初中关于函数的定义:

2.从集合的观点出发,函数定义:

给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;

此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。

定义域,值域,对应法则

4.函数值

当x=a时,我们用f(a)表示函数y=f(x)的函数值。

高一数学教学计划5

一、指导思想:

在学校教学工作意见指导下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。

二、教材简析

本学期仍然使用人教版《普通高中课程标准实验教科书·数学(A版)》教材,在坚持我校数学教育优良传统的前提下,在学生九年义务教育数学课程的基础上,进一步提高学生所必要的数学素养,以满足学生的发展与社会进步的需要,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。

三、教学任务

本学期授课内容:必修一、必修二

四、学生基本情况及教学目标

学生基本情况:本届学生普遍基础较差,学习自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。其次,学生的计算能力太差,学生不喜欢去算题,嫌麻烦,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,因为学生底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

教学目标:认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。高一学生共有20个班,分两个教学层次,每层个10个班。实验班的学生可根据实际情况提高教学目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。

五、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的课堂素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。 3、在教学中引导学生通过类比,推广,特殊化,化归等方法,尽可能培养学生逻辑思维的习惯。

六、教学措施:

1、认真落实,搞好集体备课。每周进行一次集体备课。各位老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的练习活页。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

附:教学进度计划

第一周集合

第二周函数及其表示

第三周函数的基本性质

第四周指数函数

第五周对数函数

第六周幂函数

第七周函数与方程

第八周函数的应用

第九周期中考试

第十至十一周空间几何体

第十二周点,直线,面之间的位置关系

第十三至十四周直线与平面平行与垂直的判定与性质

第十五至十六周直线与方程

第十七至十八周周圆与方程

第十九至二十周期末考试

高一数学教学计划6

本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

三、学生在数学学习上存在的主要问题

我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:

1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

高一数学教学计划7

一、教学目标

1.知识与技能目标

(1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.

(2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.

2.过程与方法目标

①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

3、学情分析

学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

二、方法与手段

本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

3、教学重难点

重点:列举法、描述法。

难点:运用集合的三种常用表示方法正确表示一些简单的集合

4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

6、教学思路:

7、教学过程

7.1创设情境,引入课题

【活动】多媒体展示:1、草原一群大象在缓步走来。

2、蓝蓝的天空中,一群鸟在飞翔

3、一群学生在一起玩。

引导学生举出一些类似的例子问题

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

7.2步步探索,形成概念

【活动1】观察下列对象:

①1~20以内的所有质数;

②我国从1991—20xx年的内所发射的所有人造卫星

③金星汽车厂20xx年生产的所有汽车;

④20xx年1月1日之前与我国建立外交关系的所有国家;

⑤所有的正方形;

⑥到直线l的距离等于定长d的所有的点;

⑦方程x2+3x—2=0的所有实数根;

⑧新华中学20xx年9月入学的所有的高一学生。

师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。

【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

如:

1)A={1,3},3、5哪个是A的元素?

2)B={身材较高的人},能否表示成集合?

3)C={1,1,3}表示是否准确?

4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

【分析】1)1,3是A的元素,5不是

2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

所以B不能表示集合

3)C中有二个1,因此表达不准确

4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.

2)互异性:同一集合中不应重复出现同一元素.

3)无序性:集合中的元素没有顺序

4)集合相等:构成两个集合的元素完全一样

【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

7.3集合与元素的关系

【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

高一(5)班的同学,a、b与A分别有什么关系?

引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

再让学生举一些例子说明这种关系。

【设计意图】使学生发挥想象,明确元素与集合的关系。

【活动】熟记数学中一些常用的数集及其记法

引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

7.4集合的表示方法

【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

7.4.1集合的列举法表示

【活动】尝试用列举法第4页例1中的集合:

1)小于10的所有自然数组成的集合;

2)方程x2?x的所有实数根组成的集合;

3)由1到20以内的所有素数组成的集合;

并思考列举法的特点。

引导学生阅读教科书,自主学习列举法,得出答案:

1)A={0,1,2,3,4,5,6,7,8,9}

2)A={0,1}

3)A={2,3,5,7,11,13,17,19}

通过上述讲解请同学说说列举法的特点:

1)用花括号{}把元素括起来

2)集合的元素可以具体一一列出

【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

7.4.2集合的描述法表示

【活动1】提出教科书中的思考题:

1)你能用自然语言描述集合{2,4,6,8}吗?

2)你能用列举法表示不等式x—7<3的解集吗?

学生讨论,师生总结:

1)从2开始到8的所有偶数组成的集合

2)这个集合中的元素不能一一列出,因此不可以用列举法表示

引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

例如2)可以用描述法表示为:A={x?R|x<10}

【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

【活动2】引导学生完成第5页例2

1) 方程x2?2?0的所有实数根组成的集合

2) 由大于10小于20的所有整数组成的集合

讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

1)描述法:A={ x?R|x2?2?0}

列举法:

2)描述法:A={ x?Z|10

列举法:A={11,12,13,14,15,16,17,18,19}

【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

7.5课堂小结,学习反思

【问题】1)集合与元素的含义?

2)集合的特点?

3)集合的不同表示方法

引导学生整理概括这一节课所学的知识

【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

8、作业布置,巩固新知

课后作业:习题1.1A组第4题

课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

9、板书设计

1.1.1集合的含义与表示

1、元素的含义:把研究对象统称为元素

2、集合的含义:一些元素组成的总体。

3、集合元素的三个特性:确定性,互异性,无序性,集合相等

4、元素与集合的关系:a?A,a?A

5、常用数集与记法

6、列举法

7、描述法

8、课堂小结

高一数学教学计划8

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。

2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。

同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

高一数学教学计划9

日期

周次

学时

内容

重点、难点

9.1-9.7

1

5

集合的含义与表示、

集合间的基本关系、

集合的基本运算

会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算。难点:理解概念

9.8-9.14

2

5

函数的概念、

函数的表示法

会求一些简单函数的定义域和值域;能简单应用

9.15-9.21

3

5

函数的基本性质、

学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

9.22-9.28

4

3

本章复习、测试

9.29-10.5

5

国庆放假

10.6-10.12

6

5

指数与指数幂的运算、

指数函数及其性质

掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

10.13-10.19

7

5

对数与对数运算、

对数函数及其性质

理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

10.20-10.26

8

5

幂函数,复习、测试

从五个具体的幂函数(y=x,y=x2,y=x3,y=x-1,y=x1/2)图象中认识幂函数的一些性质

10.27-11.2

9

5

方程的根与函数零点,

二分法求方程近似解,

几类不同增长的模型、函数模型应用举例

能够借助计算器用二分法求相应方程的近似解;

对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的'含义

日期

周次

学时

内容

重点、难点

11.3-11.9

10

期中复习及考试

11.10-11.16

11

5

讲评试卷

分析知识点的掌握情况

11.17-11.23

12

5

任意角和弧度制,

任意角的三角函数

了解任意角的概念和弧度制,能进行弧度与度的互化,借助单位圆理解任意角三角函数的定义。

11.24-11.30

13

5

三角函数的诱导公式,

三角函数的图象与性质

借助单位圆中的三角函数推导出诱导公式,能画出

的图象,理解三角函数的周期性、单调性、最值等性质

12.1-12.7

14

5

函数

的图象,

三角函数模型的简单应用

了解函数

的实际意义,能借助计算器画出函数

的图象,并观察参数对图象的影响。会用三角函数解决一些简单实际问题。

12.8-12.14

15

5

复习、测试

平面向量的实际背景及基本概念

通过力的分析,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示

12.15-12.21

16

5

平面向量的线性运算,

平面向量的基本定理及坐标表示

掌握向量加、减法的运算,数乘运算,并理解其几何意义以及两个向量共线的含义。了解向量的基本定理、运算性质及其几何意义。掌握平面向量的正交分解及其坐标表示

12.22-12.28

17

5

平面向量的数量积

平面向量的应用举例

本章复习、测试

理解向量数量积的含义及其物理意义,会进行数量积的运算,会用数量积判断两个平面向量的垂直关系。用向量解决某些简单的几何问题。

12.29-1.4

18

5

两角和与差的正弦、余弦和正切公式

用向量的数量积推导出两角差的余弦公式,并能用两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式

1.5-1.11

19

5

简单的三角恒等变换,期末复习

能运用上述公式进行简单的恒等变换。进行知识的梳理。

1.12-1.18

20

复习及期未考试

高一数学教学计划10

本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。

一、教学目标:

(一)知识与技能

1.掌握不等式的三条基本性质。

2.运用不等式的基本性质对不等式进行变形。

(二)过程与方法

1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

(三)情感态度与价值观

通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点

教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。

教学难点: 不等式基本性质3的探索与运用。

三、教学方法:自主探究——合作交流

四、教学过程:

情景引入:1.举例说明什么是不等式?

2.判断下列各式是否成立?并说明理由。

( 1 )若x-4=12, 则x=16

( 2 )若3x=12, 则 x=4()

( 3 )若x-4>12 则 x>16()

( 4 )若3x>12则 x>4()

【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。

温故知新

问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?

同桌同学通过实例验证得出结论,师生共同总结不等式性质1。

问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?

等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。

估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。

你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)

学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。

【设计意图】猜想作为教学的出发点,启发学生积极思维,探索规律,让学生在“做”数学中学数学,真正成为学习的主人。

问题4.在不等式两边都乘0会出现什么情况?

问题5.如果a、b、c表示任意数,且a

【设计意图】把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识,对培养学生的思维能力有十分重要的意义。

【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?

学生思考,独立总结异同点。

【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。

综合训练:你能运用不等式的基本性质解决问题吗?

1、课本62页例3

教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。

2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。

3.小明的困惑:

小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?

小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。

【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。

4.火眼金睛

①a>2, 则3a___2a

②2a>3a,则 a ___ 0

【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。

课堂小结:

这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。

【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。

思考题:你来决策

咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?

【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。

高一数学教学计划11

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节 教学内容 师生互动 设计意图

提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2 设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一数学教学计划12

教材教法分析

本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。

学情分析

一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。

教学目标

1、知识与技能

①通过具体情境,使学生感受建立空间直角坐标系的必要性

②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

③感受类比思想在探究新知识过程中的作用

2、过程与方法

①结合具体问题引入,诱导学生探究

②类比学习,循序渐进

3、情感态度与价值观

通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。

教学重点

本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。

教学难点

“通过建立恰当的空间直角坐标系,确定空间点的坐标”。

先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。

高一数学教学计划13

一.基本情况分析:

1.学生情况分析:4个重点班的学生,基础比较好,学习积极性高.普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

2.教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

二.工作要点及措施

1、教案学案一体化继续探索适合我校学生实际的课堂教学模式,为发挥学生的主体作用,切实提高课堂效率,本学期推行三图四化的使用,基本操作办法是,提前一天把学案发给学生,让学生课前预习,即先自主学习,在课堂上,让学生充分活动,在教师的问题引导下,积极思考,同学之间认真讨论,确定问题的解决的方法途径和结论,教师在课堂上做好问题的引导和问题的变式,想方设法的激励学生思考问题,在学生回答问题后对学生进行肯定和鼓励。

三图四化工厂的设计

组内成员先自行设计出学案初稿,然后经备课组全体成员集体教研、讨论,确定学案的定稿。由于课型不同,学案的环节也相应存在着不同,但每个学案都应包括学习目标、学习重点、导学问题、学法指导、达标训练等环节,在设计中要把握问题的难度,在操作中低重心运行,为保证高考升学取得大面积丰收,教学要面向全体学生,教学要求要低一些,让后进生能接受,调动他们的学习积极性,促进后进生的转变,由此来督促中上等学生的学习。

(1)学习目标的制定。学习目标要明确,学生能一目了然,切忌学习目标过多,让学生在课堂的开始就引起消极情绪。

(2)导学问题的设计。导学问题的设计不是把课本所学知识变成问题然后简单逻列,而是根据教材的特点,学生的实际水平能力,联系社会现实问题,设计成不同层次的问题。问题的设计和问题的形式灵活多样,可以是问题式、简答式等等,根据学习内容的不同采用不同的形式。

(3)学法指导。

学法指导也就是学习方法、活动方式的指导及疑难问题的提示等。学生对每节课知识掌握的如何,学习方法的指导起到了关键作用。本环节的目的是让学生在平时的学习过程中随时掌握解决问题的方法,逐步由学会变为会学。

(4)达标训练的设计。为了使学到的知识及时得到巩固、消化和吸收,进而转化为能力,要精心设计有阶梯性、层次性的达标训练,要注意此环节应面向全体学生,发展各类学生的潜能,让每个学生在每节课后都有收获,都有成就感。

2、集体备课我们要克服以往集体备课中存在的问题,真正提高说课质量,使集体备课对每位教师尤其是新教师起到有效的指导和帮助作用,将集体备课落到实处。具体做法如下:

(1)提前确定教学进度、中心发言人(详情见附表)及说课时间(每周五下午6、7节)。

(2)中心发言人针对本年级学生实际情况,精心设计课堂结构,精选例题和作业,设计好学案,可以适当多选些题目,文科生在此基础上可进行适当删改(本学期在教学内容上文理没有什么差别),要注意低起点、多重复。说课时,要说透教材、教法、教学重点和难点,例题要说明选题意图,要有详细的解题过程、注意事项等,特别要在教学方法的改进上多下功夫,要从学生现有的认知水平出发,设想学生可能出现的种种问题及应对措施。作业要有针对性,层次性,既巩固课上的知识点、题型,又要有一定的思维延展性,使文理科的学生在作业上有一定的区分度,使学有余力的学生有一个锻炼、培养思维能力的平台。

(3)每位教师在说课前都要做好准备,认真研究教材教法知道要说的是什么内容,包括哪些基础知识和基本题型,了解本部分内容涉及的数学思想方法,做完说课稿上的例题、习题、作业,对例题的讲解和其中蕴含的数学思想和解题技巧、计算技巧形成一个明确的认识,并写好初备提纲,以备说课时作出必要的补充和自己的见解。每位教师可以对说课稿进行补充,也可就初备中发现的问题提问,然后全组教师进行交流,以改进教法、增删例题和作业,使说课稿更加完善和实用。

3、集体听评课为提高每位教师的教育教学水平,依据学校教学计划,青年教师每周听课1节,其他教师月至少2节。每周进行一次集体听评课活动(详情见附表)。评课时不仅要说优点,更要说不足和遗憾,提出意见和建议。当局者迷,这样做有利于授课教师认清自身存在的问题,以改进教学,这也是对授课教师负责任的一种表现。通过评他人的课,对比查找自己存在的问题,有利于改进教学。

4、教案:要写明教学时间、课题、教学重点难点、教学方法、教学过程等。集体说课后,每位教师都要结合本班学生实际情况,精心设计课堂45分钟应如何分配到各个教学环节,要提问什么问题,提问谁,例题怎样分析,渗透什么思想方法。教学过程要有复习回顾、导入设计、师生活动、例题的分析、作业设计与小结等。每位教师上完课之后都要思考两个问题:我这节课上得如何?怎样上这节课更好、最好?并结合课堂上出现的各种情况,认真写好教学反思,或总结经验,或反思失误,或记录灵感,为今后教学和科研工作积累最实用的资料。

5、上课要重视三图四化的应用,要用好学案,设计整个课堂的教学环节;

(1)我们要率先遵守课堂常规,及时到位候课,提醒学生做好上课的准备。上课过程中,语言要简洁生动,板书、解题、作图要规范严谨,不要出现知识性错误。身教胜于言教,我们怎样要求学生,就应比他们做地更好,用自身的行动为学生作好示范。

(2)把主动权交给学生,多作主持人,少当播音员。学生能做的事,就交给学生做,不要好心办坏事。但必须指出,对于学生理解有困难、易混、易错的知识和题目,一定要多讲、讲透,千万不要为了形式上的留时间、留空间造成学生在知识和方法上出现漏洞。

(3)针对学生存在的问题,继续加强对学生学习习惯的培养,包括如何记笔记,记什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。

6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励

7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。

高一数学教学计划14

教学目标 :

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点 :弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程 设计

(一)导入 新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例: ,可见,集合 ,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材P8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 与 不能同时成立.

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确. 与 表示同一集合;

(4)不正确. 的所有子集是 ;

(5)正确

(6)不正确.当 时, 与 能同时成立.

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二) 全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

.

A在S中的补集 可用右图中阴影部分表示.

性质: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

(2)若A={0},则 NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系.

高一数学教学计划15

本学期,我负责高一三、四班的数学教学。这两个班有138名学生。初中生基础薄弱,整体水平不高。从两周的课堂来看,学生的学习积极性仍然很高,有很多学生喜欢提问。但由于基础知识薄弱,学习习惯差,自我控制能力差,无法正确定位自己,课堂效率普遍,教学工作存在必要的难度。为了做好本学期的教学工作,特制定以下教学工作计划。

一、教学质量目标

(1)掌握必要的数学基础知识和技能,理解基本数学概念和数学结论的实质,体验数学思想和方法。

(2)培养学生的逻辑思维能力、计算能力、空间想象能力,以及综合运用相关数学知识分析和解决问题的能力。使学生逐步学会观察、分析、综合、比较、抽象、概括、探索和创新的技能,运用归纳、演绎、类比的方法进行推理,正确、系统地表达推理过程的技能。

(3)根据数学学科特点,加强学习目的教育,提高学生学习数学的意识和兴趣,培养学生良好的学习习惯、求实的科学态度、顽强的学习毅力和独立思考的精神,探索创新。

(4)使学生具有必要的数学视野,逐步理解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,倡导数学的理性精神,体验数学的审美意义,理解普遍运动、变化、创新、创新,数学相互联系、相互转化,进一步树立辩证唯物主义和历史唯物主义的世界观。

(5)通过收集信息、处理数据、制作图像、分析原因、得出结论,学习解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期。教师负有双重责任。他们不仅要不断夯实基础,加强综合技能的培养,还要渗透高考思想方法,准备三年的学习。

二、教学目标

(I)情感目标

(1)通过问题分析的教学方法,培养学生的学习兴趣。

(2)提供生活背景。通过数学建模,让学生认识到数学是存在的,培养学习数学和运用数学的意识

高一数学教学计划

高一数学教学计划1

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的图形特征

(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

过程与方法

(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

高一数学教学计划2

一 设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二 教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三 教学目标分析:

知识与技能:

1。结合方程根的几何意义,理解函数零点的定义;

2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

情感、态度与价值观:

1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3。使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四 教学准备

导学案,自主探究,合作学习,电子交互白板。

五 教学过程设计:

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一数学教学计划3

一、教学分析

1、分析教材

本章教材整体主要分成三大部分:

(1)、圆的标准方程与一般方程;

(2)、直线与圆、圆与圆的位置关系;

(3)、空间直角坐标系以及空间两点间的距离公式。

圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

2、分析学生

高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

3、教学重点与难点

重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

二、教学目标

1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

2、掌握直线与圆的位置关系的判定。

3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。

4、培养学生科学探索精神、审美观和理论联系实际思想。

三、教学策略

1、教学模式

本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

2、教学方法与手段--充分利用信息技术,合理整合课程资源

采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

四、对内容安排的说明

本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:把代数运算结果翻译成几何结论。

五、教学评价

㈠过程性评价

1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

㈡终结性评价

1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划4

1、指点思惟:

(1)跟着本质教导的深化睁开,《课程计划》提出了“教导要面向天下,面向将来,面向古代化”以及“教导必需为社会主义古代化建立效劳,必需与消费休息相分离,培育德、智、体等方面片面开展的社会主义奇迹的建立者以及接棒人”的指点思惟以及课程理念以及变革要点。使先生把握处置社会主义古代化建立以及进一步进修古代化迷信技能所需求的数学常识以及根本技艺。其内收留包含代数、多少、三角的根本观点、纪律以及它们反应进去的思惟办法,几率、统计的开端常识,较量争论机的运用等。

(2)培育先生的逻辑思想才能、运算才能、空间设想才能,和综合使用无关数学常识剖析成绩息争决成绩的才能。使先生逐渐地学会察看、剖析、综合、比拟、笼统、归纳综合、探究以及立异的才能;使用归结、归纳以及类比的办法停止推理,并精确地、有层次地表白推理进程的才能。

(3)依据数学的学科特色,增强进修目标性的教导,进步先生进修数学的盲目心以及兴味,培育先生杰出的进修习气,脚踏实地的迷信立场,固执的进修毅力以及自力考虑、探究立异的肉体。

(4)使先生具备必定的数学视线,逐渐看法数学的迷信代价、使用代价以及文明代价,构成批驳性的思想习气,崇尚数学的感性肉体,领会数学的美学意思,了解数学中遍及存正在着的活动、变革、互相联络以及互相转化的景象,从而进一步建立辩证唯心主义以及汗青唯心主义天下不雅。

(5)学会经过搜集信息、处置数据、制造图象、剖析缘由、推出论断来处理实践成绩的思想办法以及操纵办法。

(6)本学期是高一的紧张期间,教员承当着两重义务,既要不时夯实根底,增强综合才能的培育,又要浸透无关高考的思惟办法,为三年的进修做好预备。

2、学情份析及相干办法:

高一作为肇端年级,作为从任务教导阶段迈进本质教导征程的顺应阶段,该有的是一份固执。他的非凡性就正在于它的超过性,抱负的期盼与学法的渐变,难度的增强与惰性的天生等等冲突抵触随同着高一重生的生长,面临新课本的咱们也是边探索边改动,建立新的教授教养理念,并落真实讲堂教授教养的各个关键,才干没有负众看。咱们要从先生的看法程度以及实践才能动身,研讨先生的心思特点,做好初三与高一的跟尾任务,协助先生处理好从初中到高中进修办法的过渡。从高一同就留意培育先生杰出的数学思想办法,杰出的进修立场以及进修习气,以顺应高中贯通性的进修办法。详细办法以下:

(1)留意研讨先生,做好初、高中进修办法的跟尾任务。

(2)会合精神打好根底,分项打破难点.所列根底常识根据课程规范计划,着眼于根底常识与重点内收留,要充沛注重根底常识、根本技艺、根本办法的教授教养,为进一步的进修打好坚固的根底,切勿忙于过早的拔高,上困难。同时应放眼高中教授教养全局,留意高考命题中的常识请求,才能请求及新趋向,如许才干兼顾布置,按部就班,使高一的数学教授教养与高中教授教养的全局无机分离。.

(3)培育先生解答考题的才能,经过例题,从方式以及内收留两方面临所学常识停止才能方面的剖析,领导先生理解数学需求哪些才能请求。

(4)让先生经过单位测验,检测本人的实践使用才能,从而实时总结经历,找出缺乏,做好充沛的预备

(5)抓好尖子生与落后生的教导任务,提早睁开数学奥竞提拔以及数学根底教导。

(6)留意使用古代化教授教养手腕辅佐数学教授教养;留意使用投影仪、电脑软件等古代化教授教养手腕辅佐教授教养,进步讲堂服从,激起先生进修兴味。

高一数学教学计划5

一、教学内容

本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求

(一)前半期完成《数学①》主要涉及三章内容:

第一章集合与函数的概念(约13学时)

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章函数的概念与基本初等函数Ⅰ(约14学时)

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

第三章函数的应用(约9学时)

结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

(二)后半期完成《数学④》主要涉及三章内容:

第一章三角函数(约16学时)

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章平面向量(约12学时)

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章三角恒等变换(约8学时)

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

1.掌握两角和与差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式;

3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

三、教学常规要求及建议(要点)

根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。

1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。

2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。

3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。

3、每节课应有教学目标、重点,突出解决的问题和方法、过程。

4、做好教学反思(每周至少有一次)

高一数学教学计划6

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

三、教学内容

第一章集合与函数概念

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

1.1.1集合的含义与表示约1课时9月1日
1.1.2集合间的基本关系约1课时9月4日 | | 9月12日
1.1.3集合的基本运算约2课时

小结与复习约1课时

1.2.1函数的概念约2课时

1.2.2函数的表示法约2课时9月13日 | | 9月25日
1.3.1单调性与最大(小)值约2课时

1.3.2奇偶性约1课时

小结与复习约2课时

第二章基本初等函数(I)

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

2.1.1引言、指数与指数幂的运算约3课时9月27日30日
2.1.2指数函数及其性质约3课时10月8日10日
2.2.1对数与对数运算约3课时10月11日14日
2.2.2对数函数及其性质约3课时10月15日18日
2.3幂函数约1课时10月19日24日

小结约2课时

第三章函数的应用

1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

3.1.1方程的根与函数的零点约1课时10月25日
3.1.2用二分法求方程的近似解约2课时10月26日27日
3.2.1几类不同增长的函数模型约2课时10月30日 | 11月3日
3.2.2函数模型的应用实例约2课时

小结约1课时

考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划7

教学目标 :

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点 :弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程 设计

(一)导入 新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例: ,可见,集合 ,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① A ② A ③ ④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材P8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么B必是A的真子集;

(6) 与 不能同时成立.

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确. 与 表示同一集合;

(4)不正确. 的所有子集是 ;

(5)正确

(6)不正确.当 时, 与 能同时成立.

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则A B C.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

【练习】教材P9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材P9例子

(二) 全集与补集

1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

.

A在S中的补集 可用右图中阴影部分表示.

性质: S( SA)=A

如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

(2)若A={0},则 NA=N*;

(3) RQ是无理数集。

2.全集:

如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系.

高一数学教学计划8

一、指导思想

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学。

二、学情分析及学生情况分析

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新高考我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

三、具体措施

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。、

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一数学教学计划9

一、指导思想:

在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。 二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。

三、学情分析:

本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。

四、教学策略、教研活动:

1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课

题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。

2、做到课后教学反思

上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。

3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。

4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。

3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

4、扎实基础的同时重视数学应用意识及应用能力的培养。

5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透 6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。

高一数学教学计划10

本学期我担任高一(3)、(4)两班的数学教学工作,两班学生共有138人。大部分学生初中的基础较差,整体水平不高。从上课两周来看,学生的学习进取性还比较高,爱问问题的学生比较多;但由于基础知识不太牢固,没有良好的学习习惯,自控本事较差,不能正确地定位自我;所以上课效率一般,教学工作有必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、教学质量目标

(1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

(2)培养学生的逻辑思维本事、运算本事、空间想象本事,以及综合运用有关数学知识分析问题和解决问题的本事。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的本事;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的本事。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会经过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重职责,既要不断夯实基础,加强综合本事的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、教学目标、

(一)情感目标

(1)经过分析问题的方法的教学,培养学生的学习的兴趣。

(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究基本函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时间和空间给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。

(二)本事要求

1、培养学生记忆本事。

(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(2)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

2、培养学生的运算本事。

(1)经过概率的训练,培养学生的运算本事。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算本事。

三、学情分析

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

四、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要资料,坚持抓两头、带中间、整体推进,使每个学生的数学本事都得到提高和发展。

分层推进措施

1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。

4、让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备

5、抓住公式的`推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

6、加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育;同时重视数学应用意识及应用本事的培养。

7、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。

8、注意研究学生,做好初、高中学习方法的衔接工作。集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

高一数学教学计划11

高一年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。数学网高中频道整理了高一数学下册教学计划,希望能帮助教师授课!

本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。

一、指导思想

以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。

二、工作思路

1.在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。

2.以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。

3.教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,

三、教材分析(结构系统、单元内容、重难点)

必修5:

第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;

必修2:

第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;

第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。

四、学情分析

经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。

五、工作目标

1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。

2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。

3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。

4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。

六、具体措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一数学教学计划12

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

高一数学教学计划13

高一年级学生对学习缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。学生意志薄弱,耐挫力差。许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学、去动脑,长期下去,便产生厌学情绪。针对这种情况,特作以下计划:

一、学生状况分析

本学年,我担任高一(9)和(10)班的数学课。两个班整体水平都一般,成绩以中下等为主,中上不多,后进生有很多。其中在中考成绩两个班中都存在20人以上等级分在5分以下。从而看出基础知识不太牢固,当然上课效率也不是很高。

二、教材简析

使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

三、教学任务

本期授课内容为必修1和必修2,必修1在期中考试前完成;必修2在期末考试前完成。

四、教学质量目标

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

分层推进措施

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。在教学的过程中注意降低难度。

(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

高一数学教学计划14

本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、教学目标、

(一)情意目标

(1)经过分析问题的方法的教学,培养学生的学习的兴趣。

(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)本事要求

1、培养学生记忆本事。

(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

2、培养学生的运算本事。

(1)经过概率的训练,培养学生的运算本事。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算本事。

3、培养学生的思维本事。

(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。

(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的本事。

(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1、集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

(2)理解逻辑联结词“或”、“且”、“非”的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。

(3)掌握一元二次不等式、绝对值不等式的解法。

2、函数

(1)了解映射的概念,理解函数的概念。

(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。

(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

3、数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

二、教学重点

1、集合、子集、补集、交集、并集、一元二次不等式的解法

四种命题、充分条件和必要条件、

2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。

3、等差数列及其通项公式、等差数列前n项和公式。

等比数列及其通项公式、等比数列前n项和公式。

三、教学难点

1、四种命题、充分条件和必要条件

2、反函数、指数函数、对数函数

3、等差、等比数列的性质

四、工作措施

抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划15

(一)教学目标

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2.过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

3.情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用.

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

(四)教学过程

教学环节 教学内容 师生互动 设计意图

提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}.

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

生:集合A与B的元素合并构成C.

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

导入新知

形成

概念

思考:并集运算.

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

例2 设集合A = {x | –1

例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

例2解:A∪B = {x |–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

下载高一数学教学计划word格式文档
下载高一数学教学计划.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一数学教学计划

    高一数学教学计划 高一数学教学计划1 一、指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实......

    高一数学教学计划

    高一数学教学计划1 一、指导思想1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方......

    高一数学教学计划

    高一数学教学计划(15篇) 高一数学教学计划1 一、内容及其解析1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直......

    高一数学教学计划

    高一数学教学计划1 一、指导思想:使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象......

    高一数学教学计划

    高一数学教学计划15篇 高一数学教学计划1 指导思想:(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服......

    高一数学教学计划

    高一数学教学计划15篇 高一数学教学计划1 为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节......

    下学期高一数学教学计划

    下学期高一数学教学计划 本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价......

    高一数学学期教学计划

    高一数学学期教学计划15篇 高一数学学期教学计划1 一、基本情况分析任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音......