平行四边形的面积公式教学设计
平行四边形的面积公式教学设计1
教学内容:
五年级上册第79—81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等
教学准备:
每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:
在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
平行四边形的面积公式教学设计2
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、这个长方形的宽与原来的平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、完成后让学生看书第65页例1
12、测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
平行四边形的面积公式教学设计3
教学目标设计:
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究平行四边形的面积公式
教学难点:理解平行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底
边长×邻边长吗?
今天这节课我们就来研究“平行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述平行四边形的面积。
3分米 2.5厘米
3、这个平行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个平行四边形的'面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?
平行四边形的面积公式教学设计4
教学内容
义务教育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。
教材分析
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
教学目标
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
教学重点
理解并掌握平行四边行的面积计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具、学具准备
课件,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、创设情境,引出课题
1、课件出示情境图。
师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
板书课题:平行四边形的面积.
[设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]
二、探究新知,发现新知
1、猜一猜。
师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?
平行四边形的面积公式教学设计5
教材简析:
《平行四边形的面积计算》九年义务教育北师大版小学数学五年级上册平行四边形的面积、。本单元共包括平行四边形的面积、三角形的面积、梯形的面积。《平行四边形的面积计算》是在学生学习了长方形和正方形面积计算公式之后,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。
教学目标:
1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、能力目标:通过教学活动,向学生渗透“转化”的思想,培养学生的动手操作能力、迁移能力,发展学生的空间观念,同时培养学生合作,交流的意识。
3、情感与价值观:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
教学重难点:
理解平行四边形面积的推导过程,并能运用公式解决实际问题。
教具准备:
多媒体课件
学具准备:
每人准备一张平行四边卡纸,一把剪刀
教学过程:
一、多媒体出示复习题:计算平行四边的高和底。
二、新课
(一)情境导入:
师:同学们,有个施工队的设计人员这样设计了两个花坛(多媒体出示设计图:一个长方形,一个平行四边形)你会求它们的面积吗?你知道哪一个花坛的面积大吗?
生:我会求长方形的面积,平行四边形的面积没有学
师:这一节课我们就来一起探索平等四边形的面积计算公式。(板书课题:平行四边的面积)
(二)探索新知:
1、用数方格的方法探索平行四边形的面积。
A、师:你能用什么方法求平行四边形的面积
生:数方格
师:我们可以用数方格的方法试一试
(同学们拿出材料)
师提示:同学们在数方格时,1个方格代表1平方厘米,不满一格的按半格计算。
让学生在情境中学习数学,使学生认识到生活中有许多数学问题。
引导学生自己发现问题产生解决问题的强烈意识,变学生的被动听老师讲解为学生的主动探索。
给学生提出明确的要求,教给他们正确的方法
B、汇报数的结果
C、小结
用数方格的方法可以算出平行四边形的面积,但不精确,而且较大的面积也不好算,还有更好的方法吗?
2、探究活动:
a、师:既然同学们都意识到到平行四边形的面积与长方形有关,那我们能否把平行四边形转化成一个长方形来计算它的面积?
给学生思考的时间,让学生观察手中的平行四边形,思考如何来操作。
B、让学生动手实践,老师注意巡视和个别指导。
c、让学生互相交流自己的方法
学生在一般情况下可能会有以下两种割补的方法,都应给予肯定。
有些同学通过割补拼出的图形可能不是长方形而是正方形,这时应通过长方形和正方形的关系来加以说明。
d、引导学生小组讨论
师:观察拼出的长方形和原来的平行四边形,你发现了什么?(同时出示问题引导学生思考交流)
思考题:
①拼出的长方形和原来的平行四边形相比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?
鼓励学生大胆猜测,想像,为下一步探索提供思路
对学生的大胆猜测给以鼓励,创设民主和谐的学习氛围。
给学生探索的素材,探索的空间,培养学生勇于探索,勤于思索的精神。
e、让学生叙述自己的推导过程,全班交流
f、利用多媒体课件演示,平行四边形割、移、补的过程,学生注意观察。
老师边演示边推导:我们把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,这个平行四边形的底和长方形的长相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
板书:平行四边形面积=底×高
长方形面积=长×宽
3、平行四边形面积计算公式的应用
a、师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以怎样表示呢?
让每个学生都在练习本上写一写
生回答:S=ah(同时在黑板上标示出来)
b、解决问题:
多媒体出示“做一做”:学生自己读题,然后尝试解答,指一名学生起来说一说自己的是如何解答的。
三、拓展练习:
1、逐一完成多媒体课件作业。
2、完成书中的练习。
四、全课总结:
师:本节课你学会了什么?
你收获了什么?
板书设计
平行四边形面积
1、数方格法
2、转化法平行四边形平移
长方形=长×宽
平行四边形面积=底×高
平行四边形的面积公式教学设计6
教学内容:
人教版五年级上册第87—88页
教学目标:
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
平行四边形、学习单等。
教学过程:
课前布置预习第87——88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
师:对。长方形,那它的面积是指哪一部分呢?请一名学生上来指一指、画一画。它的面积计算公式呢?
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
《平行四边形的面积》教案
巨鹿县堤村校区 张秋焕
教学目标:
1﹑尝试用测量工具和面积公式计算实际生活中平行四边形物体的面积。
2﹑动手操作,能通过割补的办法拼接长方形,并且至少掌握一种拼接的方法。
3﹑讨论并归纳平行四边形面积公式,能用字母表示并能正确书写,会用公式计算一般平行四边形的面积,能找到平行四边形底和高的对应关系。
4、验证公式的正确性,培养学生的质疑和对话能力。
5、感受从未知到已知的探索过程,初步体会转化的数学思想。
教学重点:
理解平行四边形面积公式的推导过程,掌握公式,并会运用。
教学难点:
体会转化的思想,理解平行四边形面积公式的推导过程。
教学准备:
课件,平行四边形剪纸,剪刀,三角板,直尺。
教学过程:
一、创设情境,引出课题
师:开学伊始,各班划分了卫生区,五一班的卫生区是一块长方形空地,五二班的是平行四边形的空地,这两块大小一样吗?
生:一样。
生:不一样。
师:看上去好像差不多,看来用眼睛目测是不准确的,那么有什么更准确的方法来比较大小吗?
生:计算它们的面积再比较。
生:长方形的面积我们会算?面积公式是什么?
生:长×宽。(板书)
师:平行四边形的面积计算方法我们没有学习过,那我们学习过关于它的哪些知识呢? 生答
师:请大家大胆猜想一下,你认为平行四边形的面积如何计算呢?
生:底×高。
生:底×斜边。
是:大家想法很多,今天我们就一起来探索平行四边形面积的计算方法。
二、提供“转化”的数学方法,小组合作,探索平行四边形面积公式。
师:大家想法很多,今天我们就一起来探索平行四边形面积的计算方法。(课件中平行四边形放大)操作之前请看探究提示。
学习任务
找到平行四边形面积的计算公式
学习提示
1.能否利用已知的图形面积知识。
2.可以利用手中的学具剪、拼。
3.在小组内交流讨论
⑴结论是什么
⑵结论是怎么得出的
师:请大家先独立思考,再在小组内交流,一会儿每组指定一名同学汇报讨论的结果。
三、汇报小组探索出的平行四边形面积公式并说明探索过程。
师:同学们合作的非常愉快,下面我们有请各组的发言人把你们小组探索的结果和过程予以介绍。(小组依次汇报)对他们的发言如果有疑问可以随时提出来。
组1:我们组没有探索出公式来,但是我们把我们手里的平行四边形剪开后拼成了一个长方形,可以测量这个长方形的长和宽来求平行四边形的面积。
师:他们组虽然没有探索出平行四边形的面积公式,但是他们做了很多有意义的尝试,这是非常可贵的。刚才他们组说,把平行四边形剪开后拼成了一个长方形,能具体说一说是沿哪里剪开,如何拼呢?
组1:我们是沿着这条直线剪开的。
师:这样做的目的是什么呢?随便沿一条直线剪开就可以吗?
组1:这样剪开能拼成的长方形,角是90°。
师:我们通常把垂直于底边的这条直线叫做什么呢?
生:高。
师:这位同学非常了不起,他想到了这条直线其实就是平行四边形的高,你们认为是不是呢?
生:是。
师:我们为他鼓鼓掌吧,看来我们只要沿着平行四边形的高剪开,就可以拼成长方形了。(由于很多学生说不出这条直线就是高,所以要用特别的鼓掌表扬给予沿高剪开的学生,以加强其他学生的记忆。)
师:哪些组和他们一样,也进行了尝试,把平行四边形剪拼成了一个长方形,但是没有探索出平行四边形的面积公式。(6组中有2组没有探索出最终的公式。)
师:那我们就一起来听听探索出公式小组的结果和探索过程是怎样的。
组2:我们探索出的平行四边形面积公式是底×高。我们也是先把平行四边形沿一条高剪开,然后拼成一个长方形,我们发现这个长方形的面积就是以前的平行四边形面积,长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积就是底×高。
师:他说得好不好啊?
生:好。
师:他们得的结论正确吗?
生:正确。
师:他们的探索过程大家听清楚了吗?如果他们能加上点必要的手势,就会更完美了。我们请他们再说一遍,大家仔细听听看和你们想的一样吗。
组2:我们探索出的平行四边形面积公式是底×高。我们也是先把平行四边形沿一条高剪开,然后拼成一个长方形,我们发现这个长方形的面积就是以前的平行四边形面积,长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积就是底×高。
师:他们剪拼之后,发现了长方形和原来平行四边形的什么奥秘。
生:长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高。
师:你太了不起了,简练而且准确,谁还想尝试再说说。
生:长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高。(板书)
师:又因为长方形和以前的平行四边形面积相等,所以平行四边形的面积就是——。
生:底×高。(板书)
师:非常了不起,你们真是太聪明了。有没有其他组也研究出了平行四边形的面积公式,但是剪拼过程不一样的。
组3:我们也是沿着平行四边形的一条高剪开的,但是我们剪拼成了两个直角梯形,然后拼成长方形,这个长方形的长也是以前平行四边形的底,宽就是以前平行四边形的高,也能探索出公式底×高。
师:这样可以吗?
生:可以。
师:那是不是沿着平行四边形的任意一条高剪开,都可以拼成一个长方形。
生:是的。
师:我不得不赞美他们的智慧,太棒了。我们一般用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,所以s=ah。看来我们要想计算平行四边形的面积,只要知道平行四边形的什么就可以了啊?
生:底,高。
师:那么请大家来帮我解决一开始上课时我的那个难题吧。
师:我们把平行四边形转化成长方形来计算面积,这种把没有学过的知识转化成学过的知识来解决的方法叫做“转化”。(板书)以后我们还会经常运用这种方法来解决问题。
四、课堂练习,巩固新知。
求以上平行四边形的面积。
生:10×6=60平方厘米
五、联系生活,拓展运用。
师:老师最近在买房子,但是现在有一个非常棘手的问题,有两种车库,一种是长方形的,一种是平行四边形的,我该选择哪种呢?你的理由是什么呢?请大家课下思考,并给我一个有依据的建议。板书设计
平行四边形面积的计算
长方形的面积=长×宽平行四边形的面积=底×高
S=a×h S=a·h或S=ah