数学教学要加强学生思维训练(精选合集)

时间:2019-05-13 23:35:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学教学要加强学生思维训练》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学教学要加强学生思维训练》。

第一篇:数学教学要加强学生思维训练

数学思维是数学教学的灵魂,指导学生阅读课本是学生获取知识的重要手段之一,只有优化教与学的各个环节,才能使读与思有机地结合,而课堂中有目的阅读和积极的思维又能促进学生学得扎实、学得灵活,因此,我在课堂教学中进行了以下一些尝试:

一、着眼于“疑”,是读与思的前提与基础

数学是比较抽象的一门基础科学,要想使儿童有很强的求知欲,必须激

发他们的兴趣,从而使之积极、主动地阅读和操作学习材料,并促进思维发展。课堂中我常抓住契机,巧妙设疑,利用学生好胜的欲望,为读与思做好铺垫:例如在教《长方体和正方体的表面积》一课时,我先拿出长方体的教具,然后把它展开,用手演示一下长方体的表面有多大,接着设疑:“什么是长方体的表面积呢?”学生们看着刚才我手中还是立体图,转眼间成了平面图形,就想它们之间的关系,那到底什么是长方体的表面积呢?思考片刻后,同学们纷纷举手发表自己的意见,并且想急于知道自己所说的是否正确。这时,我就说:“同学们,请翻开书看课本上如何讲的?是否和你所说的一样?”学生们此时对数学书产生了浓厚兴趣,轻声地读出了长方体和正方体表面积的概念。

因此,“读’是理解的前提,“疑”是思维的开端。教学中围绕知识要点,制造悬念,能诱发学生迫切阅读的动机。

二、着力于“导”,是读与思的关键与重点

课堂中,教师主导不仅是用恰当的方式启迪学生的求知欲,更要引导学生读例题、读思维过程进行自学,善于抓住学生的反馈信息进行思维训练,通过训练让学生自己学会所学的内容,让全体同学的智力在原有基础上有所提高。

例如在教《较复杂的百分数应用题》时,根据例题是求一个数比另一个数多百分之几,我给学生出了三个思考题:(1)该题题意是什么,找出条件和问题;(1)题中的关键句是什么,该句说的什么意思:(3)如何列式解答,是否有不同的方法,学生通过这三道思考题自学例题,深刻理解例题中所阐述的思维过程,并四人小组讨论,一一解答问题,也层层深入地思考,根据教师的导读,学生条理了思维过程,正确列出算式,而且用不同的方法解答了该题。

我在他们的回答过程中进行点拨,重点突出、难点突破、引导学生自己发现规律;求一个数比另一个数多百分之几就是求一个数比另一个数多的量是这个数的百分之几。所以,要使学生思路条理,必须在教师的主导下,以读为本、读出过程、读出思路、读出方法。

三、着手于“练”,是读与思的巩固与升华

课堂练习是巩固知识,加深理解,形成技能技动的最好途径。而在练习时,读题、审题,不仅是良好的学习习惯,最重要的是为分析、综合,辨别等思维方式奠定了基础。因而,着手于“练”,是读与思的巩固与升华。

例如在《长方体和正方体的表面积》的练习中,设计了求火柴盒的外壳、内壳的表面积、学生读练习题时,要注意图中所求的内容进行区分,然后思考火柴盒内壳、外壳分别是几个面,并且将如何求,才可动手来做。在《稍复杂的百分数应用题》中,我将例题租加变化,将“增加了”改成“增加到”,让学生读出不同之处,再做出正确答案,这样就提高的学生解题的灵活性。

教学中,精心设计练习,提高知识内化的过程,利用学生数学能力的培养。

总之,在教法的各个环节上,重视教给学生学习的方法,加强读和思的训练,使学生终生受益。

第二篇:数学思维训练

上楼下楼的过程中,也蕴藏着许多数学问题,今天我们就来学习楼梯中的数学,日常生活中与爬楼梯类似的问题还有锯木头的段数问题,敲钟遇到的时间问题等,都是比较特殊的问题。

1、爬楼梯遇到的层次问题,主要明白几楼与几层楼梯是不同的,从底楼起,楼数比楼梯层数多1。即:楼数=楼梯层数+1

楼梯层数=楼数-1

2、锯木头的段数问题,主要明白锯成木头的段数比锯木头的次数多1。

即:段数=次数+1

次数=段数-1

3、敲钟遇到的时间问题,主要明白敲的次数比钟声之间的间隔多1。即:次数=间隔数+1

间隔数=次数-1 解决这类应用题,先要考虑以上提到的这些差别,再选择恰当的解题方法。

1、聪聪住的这幢楼共有6层,每层楼梯20级,她家住在五楼,聪聪每次回家要走多少级台阶才能到自己住的那一层?

分析与解答:聪聪住在五楼,从底楼走到五楼其实走了5-1=4(层)楼梯。每层楼梯20级,要求从底楼走到五楼的台阶数,其实就是求4个20是多少。

(1)

聪聪从底楼到五楼要走几层楼梯?

(2)

聪聪从底楼到五楼要走几级楼梯?

答:聪聪每次回家要走

级台阶才能到自己住的那一层。试一试1:冬冬住在11楼,他他发现第8层到第9层有25级台阶,从底楼到冬冬家一共有多少级台阶?

2、小红家住六楼,她从底楼走到二楼用1分钟,那么她从底楼走到六楼要用多少分钟?

分析与解答:从底楼到六楼其实爬了6-1=5(层)楼梯,小红从底楼到二楼用了1分钟,即走一层楼梯要用1分钟,所以从底楼到六楼要用1×5=5(分)。

(1)

从底楼到六楼要爬几层楼梯?

(2)

从底楼到六楼要爬几分钟?

答:她从底楼走到六楼要用

分钟。

试一试2:许亮家住五楼,他从四楼到五楼需要30秒,他从底楼走到五楼要多少秒?

例3:把一根粗细均匀的木料锯成5段,每锯一次要用3分钟,一共要用多少分钟?

分析与解答:要把木料锯成5段,其实只需要锯5-1=4次,每锯一次要3分钟,要求一共用了多少分钟,就是求4个3分钟是多少?(1)

把木料锯成5段,要锯几次?

(2)

一共要锯多少分钟?

答:一共要用

分钟。

试一试3:把一根16米长的钢管锯成4段,每锯一次用6分钟,一共需要几分钟?

例4:时钟3点钟敲3下,6秒钟敲完;6点钟敲6下,几秒钟敲完? 分析与解答:时钟敲3下,中间有2个间隔,2个间隔用了6秒,由此可知每个间隔用了

6÷2=3秒;时钟敲6下,中间有6-1=5个间隔,所用时间就是5个3秒。

(1)

敲3下钟声之间有几个间隔?

(2)

每个间隔用多少秒?

(3)

敲6下钟声之间有几个间隔?

(4)

敲6下钟声用了多少时间?

答:

秒钟敲完。

试一试4:时钟12秒钟敲了7下,敲11下需要几秒?

例5:六一儿童节同学们参加队列表演,有32人参加,每4人一行,前后两行间隔2米,这个队列全长多少米? 解:(1)可以站几行?

(2)有多少个间隔?

(3)队列有多长?

答:这个队列全长

米。

试一试5:学校组织同学去看电影,三(2)班40个同学排成两路纵队,前后相邻两个同学之间的距离是1米。三(2)班的队伍长多少米?

例6:某工厂厂庆,在一条长40米的大路两侧插彩旗,从起点到终点共插了22面,相邻两面彩旗之间的距离相等,相邻两面彩旗之间相距多少米?

解:(1)每侧有多少面彩旗?

(2)每侧有多少个间隔?

(3)相邻两面彩旗之间相距多少米?

答:相邻两面彩旗之间相距

米。

试一试6:在学校一条长24米的走廊两边摆菊花,从起点到终点共摆了18盆,相邻两盆之间的距离相等,相邻两盆之间相距多少米? 练习:

1、乐乐家住四楼,每次回家要走72级台阶,如果每层台阶一样多,每个楼层有多少个台阶?

2、王阿姨到一幢十层大楼的第八层办事,不巧停电,电梯停开,她从一楼走到四楼用了48秒,用同样的速度走到8楼,需要多少秒?

3、把一根钢管锯成小段,一共花了25分钟,已知每锯开一段需要5分钟,这根钢管锯成了几段?

4、时钟4点钟敲4下,9秒钟敲完,8点钟敲8下,几秒钟敲完?

5、同学们在两幢楼房间栽树,每隔5米栽一棵,一共栽了8棵,这两幢楼房相隔多少米?

6、李强用同样的速度在公园的林荫道上散步,他从第1棵树走到第10棵树用了9分钟,当他走了20分钟,他应该走到第几棵树?(相邻两棵树之间的距离相等)如果路的一边从头到尾种了50棵树,他从头到尾共需要走多少分钟?

7*、云和小亮两人比赛爬楼梯,小云跑到3楼时,小亮恰好跑到2楼,照这样计算,小云跑到9楼时,小亮跑到几楼?

试一试5:猴山上有大猴子22只,小猴子的只数是大猴子的4倍,中猴子有43只,三种猴子一共有多少只?

例6:强强去外婆家,如果他来回都步行要用90分钟。如果他去时步行,回来时乘车一共用了58分。他回来时乘车要用多少分钟? 分析与解答:根据来回都步行要用90分钟可以求出他去时步行用的时间,又知道他去时步行,回来时乘车一共用了58分,可以求出他回来时乘车要用多少分钟。(1)他去时步行用了多少时间?

(2)回来时乘车用多少分钟?

综合算式:

答:他回来时乘车要用

分钟。

试一试6:邮递员叔叔去某地送信,来回都骑车要用48分钟,如果他去时骑车,回来时步行,一共要用95分钟。他回来时步行要用多少分钟? 练习:

1、在学雷锋活动,三年级同学做好事73件,五年级同学做好事的件数是三年级的3倍。两个年级共做好事多少件?

2、爸爸今年30岁,是小明年龄的5倍,爸爸今年比小明大多少岁?

3、花圃里有48盆鸡冠花,是郁金香的4倍,郁金香的盆数比月季花少18盆,花圃里有多少盆月季花?

4、书架上摆数三层图书,第一层有32本,第二层有28本,第二层和第三层的总本数是第一层的2倍,第三层有多少本图书?

5、学校体育器材室足球84只,是排球只数的2倍,篮球有56只,三种球一共有多少只?

6、李老师上班时坐车,下班时步行,在路上共用50分钟,如果往返都步行要用80分钟。如果往返都坐车,只需多少分钟?

7、爸爸共买回56个鸡蛋,过了几天后,吃掉的鸡蛋是还剩的6倍,还剩多少个鸡蛋?

学 会 倒 着 想

例1:一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问长到4厘米时要用多少天?

分析与解答:由题中条件可知:每天毛毛虫的长度都是前一天的2倍,倒着想,就是前一天的长度是后一天的一半。我们就从第16天长到16厘米一天一天往前推算:

(1)第15天长到多少厘米?

(2)第14天长到多少厘米?

答:长到4厘米时要用

天。

试一试1:一条小青虫由幼虫长到成虫,每天长一倍,20天能长到20厘米。问长到5厘米时要用多少天? 例2:一个数减16加上240,再除以7得40,求这个数是多少? 分析与解答:我们先理清题中的顺序:如下:

用倒着想的方法思考,就是从原来运算的逆运算一步一步地推想。最后是除以7得40,如果不除以7,那应该是40×7=280;如果不加上240,那应该是280-240=40;如果不减去16,那应该是16+40=56。

答:这个数是。

试一试2:一个数如果加上5,乘5,减去5,再除以5,结果还是5。这个数是多少?

例3:小丽在做一道加法计算题时,由于粗心,把个位上的4看作7,十位上的8看作2,结果和是306。正确的答案应该是多少? 分析与解答:要求正确的答案,就要知道两个正确的加数。看错的加数是27,因此得到错误的和是306。我们倒着想,根据逆运算可以得到一个没有看错的加数是306-27=279。题中已知一个正确的加数是84,所以,正确的和应该是:

(1)

(2)

答:正确的答案应该是。

试一试3:小明在做一道加法计算题时,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案应该是多少? 例4:一根铁丝剪去一半,再减去余下的一半,还剩14分米,这根铁丝原来长多少分米?

分析与解答:根据题意,画出线段图:

从上面的线段图可以看出,剩下的14分米和余下的一半同样多。那么,原来铁丝长的一半就是14×2=28分米。所以这根铁丝原来长就是:

答:这根铁丝原来长

米。

试一试4:小华用压岁钱的一半买了一只新书包,又用余下的一半买了几本文艺书,还剩15元,小华的压岁钱一共有多少元? 例5:小红、小丽、小华三人分苹果,小红得的比总数的一半多1个,小丽得的比剩下的一半多1个,小华得10个。原来有多少个苹果? 分析与解答:根据题意,画线段图:

为什么小华得10个,这是因为小丽得到剩下的一半多1个,如果小丽只得了剩下的一半,那么小华应该得到10+1=11个,也就是剩下的另一半,这样也就说明了小丽得到了同样多的11个,我们由此可以算出小红取去后剩下的苹果数是11×2=22个。同样,如果小红得的是总数的一半,那么剩下的应该是22+1=23个。显然,总数的另一半也就是23个,那么苹果总数应该是23×2=46个。(1)如果小丽只得剩下的一半,那么小华该得多少个?

(2)小红取了后,还剩多少个苹果?

(3)如果小红只得总数的一半,应剩多少个?

(4)原来有多少个苹果?

答:原来有

个苹果。

试一试5:小明看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,还剩下15页没看。这本故事书一共有多少页?

例6:三只笼子里共养24只兔子,如果从第一只笼子里取出4只放到第二只笼里,再从第二只笼里取出3只放到第三只笼里,那么三只笼里的兔子就一样多。原来三只笼里各养了多少只兔子?

分析与解答:根据题意可知,第一只、第三只笼子里的兔子只发生了一次变化,而第二只笼里的兔子只数发生了两次变化;三只笼里的兔子不管怎样移动,兔子的总只数是不变的,我们从变化的结果“三只笼里的兔子就一样多”可知,最后每只笼子的兔子都是24÷3=8只。再对照条件,把各笼里的兔子还原,就得到了原来各养了多少只。(1)三只笼子最后各有多少只兔子?

(2)第一只笼子原来有多少只兔子?

(3)第二只笼子原来有多少只兔子?

(4)第三只笼子原来有多少只兔子?

答:第一只笼子原来有

只兔子;第二只笼子原来有

只兔子;第三只笼子原来有 只兔子。

试一试6:小青、小白、小华都喜爱画片,如果小青给小白11张画片,小白给小华20张画片,小华给小青5张画片后,他们三人的画片张数就同样多。已知他们三人共有画片150张,他们三人原来各有多少张画片? 练习:

1、有种水草每天能长一倍,8天能长满一池塘。长满半池塘要几天?

2、一个数的5倍加上6减去10再除以9,得4。这个数是多少?

3、小马虎在做一道减法题时,把减数十位上的8错看成5,个位上的7错看成1,结果求出的错误的差是236。正确的差是多少?

4、某人乘火车从甲地到乙地,行了全程的一半时开始睡觉,当他醒来时发现火车又行了睡时剩下路程的一半,这时离乙地还有100千米。甲乙两地相距多少千米?

5、妈妈从副食店买回一些鸡蛋。第一天吃了全部的一半又一个,第二天吃了余下的一半又2个,第三天吃了3个,恰好吃完。妈妈买回多少个鸡蛋?

6、有甲、乙、丙、丁四篮苹果,如果从甲篮拿出10个给乙篮,从乙篮拿出12个给丙篮,从丙篮拿出20个给丁篮,从丁篮拿出14个甲篮后,四篮苹果的个数相等,已知四篮共有苹果120个。原来四篮各有多少个苹果?

加减法应用题

用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。

应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。

这一讲主要介绍利用加、减法解答的简单应用题。

例1 小玲家养了46 只鸭子,24 只鸡,养的鸡和鹅的总只数比养的鸭多5 只。小玲家养了多少只鹅? 解:将已知条件表示为下图:

表示为算式是:24+?=46+5。由此可求得养鹅(46+5)-24=27(只)。答:养鹅27 只。

若例1 中鸡和鹅的总数比鸭少5 只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。由此可求得养鹅46-5-24=17(只)。例2 一个筐里装着52 个苹果,另一个筐里装着一些梨。如果从梨筐里取走18 个梨,那么梨就比苹果少12 个。原来梨筐里有多少个梨? 分析:根据已知条件,将各种数量关系表示为下图。

有几种思考方法:

(1)根据取走18 个梨后,梨比苹果少12 个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。

(2)根据取走18 个梨后梨比苹果少12 个,我们设想“少取12 个”梨,则现有的梨和苹果一样多,都是52 个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。

(3)根据取走18 个梨后梨比苹果少12 个,我们设想不取走梨,只在苹果筐里加入18 个苹果,这时有苹果52+18=70(个)。

这样一来,现有苹果就比原来的梨多了12 个(见下图)。由此可求出原有梨(52+18)-12=58(个)。

由上面三种不同角度的分析,得到如下三种解法。解法 1:(52-12)+18=58(个)。解法 2:52+(18-12)=58(个)。解法 3:(52+18)-12=58(个)。答:原来梨筐中有58 个梨。

例3 某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多15 块,巧克力糖比水果糖多28 块。又知巧克力糖的块数恰好是小白兔软糖块数的2 倍。三年级一班共买了多少块糖果?

分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。先求出哪一种糖的块数最简便呢?我们先把已知条件表示为下图。

由上图可求出,小白兔软糖块数=15+28=43(块),水果糖块数=43+15=58(块),巧克力糖块数=43×2=86(块)。糖果总数=43+58+86=187(块)。答:共买了187 块糖果。

例4 一口枯井深230 厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬110 厘米,而夜晚却要向下滑70 厘米。这只蜗牛哪一个白天才能爬出井口?

分析与解:因蜗牛最后一个白天要向上爬110 厘米,井深230 厘米减去这110 厘米后(等于120 厘米),就是蜗牛前几天一共要向上爬的路程。因为蜗牛白天向上爬110 厘米,而夜晚又向下滑70 厘米,所以它每天向上爬110-70=40(厘米)。

由于120÷40=3,所以,120 厘米是蜗牛前3 天一共爬的。故第4 个白天蜗牛才能爬到井口。

若将例4 中枯井深改为240 厘米,其它数字不变,这只蜗牛在哪个白天才能爬出井口?(第5 个白天)练习: 1.甲、乙、丙三人原各有桃子若干个。甲给乙2 个,乙给丙3 个,丙又给甲5 个后,三人都有桃子9 个。甲、乙、丙三人原来各有桃子多少个?

2.三座桥,第一座长287 米,第二座比第一座长85 米,第三座比第一座与第二座的总长短142 米。第三座桥长多少米?

3.(1)幼儿园小班有巧克力糖40 块,还有一些奶糖。分给小朋友奶糖24块后,奶糖就比巧克力糖少了10 块。原有奶糖多少块?(2)幼儿园中班有巧克力糖48 块,还有一些奶糖。分给小朋友奶糖26块后,奶糖就只比巧克力糖多18 块。原有奶糖多少块? 4.一桶柴油连桶称重120 千克,用去一半柴油后,连桶称还重65 千克。这桶里有多少千克柴油?空桶重多少?

5.一只蜗牛从一个枯水井底面向井口处爬,白天向上爬110 厘米,而夜晚向下滑40 厘米,第5 天白天结束时,蜗牛到达井口处。这个枯水井有多深?若第5 天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)6.在一条直线上,A 点在B 点的左边20 毫米处,C 点在D 点左边50 毫米处,D 点在B 点右边40 毫米处。写出这四点从左到右的次序。

7.(1)五个不同的数的和为172,这些数中最小的数为32,最大的数可以是多少?

(2)六个不同的数的和为356,这些数中,最大的是68,最小的数可以是多少?

第三篇:关于数学思维训练教学的探讨

关于数学思维训练教学的探讨

数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。

思维训练是教学思维论在教学实践中的具体体现。数学思维论是思维科学的一个重要分支,它是构成数学课程论、学习论的灵魂。数学教材是以逻辑思维为主线,贯穿各个知识点。教学中培养学生能力的基础是发展学生思维,发展思维不可能脱离教学内容独立进行。因此,我们可以有理由认为,在数学教学中实施思维训练是教学思维论在教学实践中的体现。

一、数学思维训练教学模式探索

关于数学思维训练的课堂教学,目前还处在实验探索中。但根据思维训练的目标与指导思想,以及广大教师多年来的探索研究,以问题为中心、以教材内容为素材、以思维训练为主线的课堂教学结构已初具雏形。依据数学思维的问题性特征,我们可将数学思维训练的课堂教学的基本模式概括为:提出问题--展示新课--思维扩展--思维训练--思维测评。在这一模式中,教师是问题暴露、思维点拨、启迪、诱导者,学生是思维的主体,是知识的探索、发现和获取者。

1.提出问题,创设情境问题“是数学的心脏”,是思维的起点。有问题才会有思考,思维是从问题开始的。巧妙恰当地提出问题,创设良好的思维情境,能够迅速集中学生注意力,激发学生的兴趣和求知欲。这是上好数学思维训练课的首要环节。问题的提出,首先要从教材入手,寻找思维素材。其次是通过对教材内容的再加工,设计一些具有疑问性、思维性、说理性、扩散性、等特点的问题,使学生产生认知冲突,进入思维“角色”,成为思维的主体。2.研究问题,展示新课人的理性认识过程是由表象的具体到思维的抽象,再由思维的抽象上升到思维的具体的过程。研究数学问题的过程首先是由具体到抽象的过程,在此环节中,将数学问题转化加工为例题形式,使被抽象出来的数学问题再回到实践中去验证,这一阶段是学生的思维定向阶段,是运用思维探索规律学会抽象的过程。但探索研究的关键是学生的参与,思维操作的关键是激励学生进入积极的思维状态。因此,教师要依据学生的思维特征、认知规律,从知识的发生、发展、形成过程中随机设计学生参与的最大开发口,暴露思维过程,让学生多动脑、动手、动口,给学生主动研究、探索、分析、归纳、推理和判断等数学活动的时空。

3.解决问题,思维扩展这一环节是知识的形成阶段,属抽象思维的高级阶段。数学教学过程实质上是由一连串的转化过程所构成的。学生接受新知识要借助于旧知识,而旧知识的思维形式往往会成为新知识思维形式的障碍(如思维定势),因此,教师首先要抓好教学过程中数学思想方法的渗透,在数学知识的质变(往往是重点)过程中,帮助学生实现思维活动的转折,排除思维活动的障碍(往往是难点),渡过思维操作的“关卡”,以实现思维发展。教师要切忌用自己的思维取代学生思维,要正确处理知识与思维的关系,即:“已有知识--思维--新知识”。知识是思维的基础,而思维又属于知识的知识。知识有助于思维,但不能取代思维。在这一环节的教学中,要注重学生思维潜力的挖掘,发挥其既是知识的产物、又是知识媒介的双重作用。

4.发展问题,思维训练教学中,注意结合学生的心理特点和认识水平从不同角度、不同层次、不同侧面有目的、有针对性地不断设计组编一些探索型、开放型、判断改错型、归纳与综合型等题目,为学生提供多种类型的思维训练素材,这是发展学生的思维能力所不可缺少的。这要求教师注重挖掘课本典型题例的潜在功能,充分发挥它的导向、典型、发展和教育作用,反复渗透与运用数学思维方法,把数学知识溶入活的思维训练中去,并在不断的“问题获解”过程中深化、发展学生的思维。

5.总结问题,思维测评思维测评是对学生思维品质的检测与评定形式。测评方法可小型多样,因课堂内容及学生实际情况而定,如选编一些口答、抢答、限定时间解答等题型对学生进行思维品质单项测评或多项综合测评。学生可先自我评价,体验成功的乐趣。在测评中,教师要注重把握学生思维的过程和特点,了解其弱点,既不轻易放过学生出现的问题,也不盲目地下结论,而应以此为契机认真研究优生与差生的心理特征与思维特征,探索优生“见微知著”的跨越性思维的奥秘和差生产生思维障碍的原因,从思维学和心理学的角度出发,通过变化教学结构、设计思维层次、调控思维节奏,对学生进行有效的思维训练,促进学生良好思维品质的形成,提高课堂教学质量。

二、数学思维训练与传统“一言堂”教学的对比探索

1.改变了以传授知识为主的传统教学模式,开发了数学知识的双向教育功能传统的课堂教学仅限于知识的传授,数学思维训练的课堂教学把数学思想方法这一“暗河流”的发掘与渗透作为思维训练的突破口,使数学学习成为学生思维发展的载体,成为名副其实的数学活动,使学生获取的数学知识这一“明河流”不再是孤立的、零碎的,而是以系统完整的“集成块”形式纳入学生的认知结构。这从根本上改变了“为教知识而教”的“注入式”的教学模式,真正发挥了知识的全部教育功能。

2.克服了传统教学中重结论、轻过程的弊端,使学生成为主动的知识探索者与发现者数学思维训练的课堂教学,第一位的教学目标是过程,知识的获取是积极思维的自然归宿。“问题--研究--解决”是课堂教学的三大环节,在这三个环节的进程中,让学生充分感知知识的发生、形成的脉络,在原有认识基础上,在直观感知的氛围中,促使学生进行主动、丰富地想象与猜测,诱导他们进行合理的类比、归纳、抽象、概括,让他们自己去发现结论、说明结论、应用结论,并在不断发现、不断探究、不断解决问题的过程中学会学习,实现“教是为了达到不需要教”,是我们应有的教学追求。

3.变传统教学中被动的“补”为主动的“进”,减轻学生过重的课业负担数学思维训练教学是以本节课内容为中心,探索研究知识,在思维障碍的排除中获取思维成果,以新的知识为思维起点,这就要对本节课负责,节节清,单元清,以“进”取代传统教学的对旧知识的'补"。不增加授课时数,而增大课堂内学生学习活动的训练量,有利于减轻学生过重的课业负担,大面积提高教学质量。

第四篇:数学教学中的思维训练

数学教学中的思维训练

青腰中学:欧征

“要让学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能;初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其它学科学习中的问题,增强应用数学的意识。”这是《新课标》的教学目标。

由此可见,学习数学知识能提高人的智商,让人做聪明人。那么,对于我们数学教师来说。数学教学不仅是让学生掌握知识,更重要的是要让学生开拓思维,应用数学解决生活实践中相应的问题。培养学生用科学的思考方法才是我们数学教学的最终目标。

那么,如何在数学教学开发学生的智商、训练学生的思维? 第1,自主学习,理解数学思维。

数学概念、结论的得出。很多时候不是老师讲解例题就能让学生理解的,必须经过形象事例的堆积,让学生经历知识产生的过程,才能领悟与理解。

老师上课讲解例题后,很多学生只是对例题了解明白了。然而相同的题目,换了几个数字,换了一种说法,就能难倒一大片学生。这是为何?很多老师对这种现象都会很无奈的说天下怎么会有这么蠢的学生。

其实不能说这样被难倒的学生个个都蠢。绝大多数来说是没有理解数学思维。不知道来历,为什么要那样子做。所以必须让学生自主学习,让学生经历知识的产生过程。

第2,巧设练习,渗透数学思考方法。

科学的有层次的设计练习,才能让学生进行思维的训练。教师在布置作业和练习时,要有意思的布置一些引导学生发散思维的题目。

先是模仿练习,让学生巩固基本知识和基本技能。然后是变式练习,让学生理解知识和发展思维。

最后是应用练习,解决问题的过程中看到的是学生在综合应用学习的数学知识,但同时看不到的是数学的思想方法。

第3,自主反思,领悟思想方法。

自主反思,这一过程是没有任何人可以替代的。在数学学习过程中,教师要有意识的引导学生自觉地检查自己的思维活动,反思自己的解题方法,总结异同,总结经验教训。

以上三个步骤缺一不可。拿《数制之间的转换》一课来说。首先,教师要作三步走,一是设计学生的自主学习的学案。让学生在熟知的十进制的基础上

通过自学的方式,领悟进制的思维。

其次,教师要出示由简单到难,由浅入深的练习,让学生巩固基本知识。然后是变换练习,发散思维。

最后,还要留给学生自己反思的空间。让学生围绕一个中心,去总结。

总而言之,熟能生巧需要简单训练,但是完全的机械训练最终导致学生不能真正的熟能生巧。随着课改的深入,让学生学有价值的数学,获得必要的数学,在数学上得到不同的发展,已经不再是口号,是我们正在努力实现的目标,教师只有真正领悟数学学习的思想方法,并渗透在设计的练习中,引导学生体会其中的数学思想方法,才能真正推动学生数学知识结构的发展并进一步自觉延伸。

第五篇:关于数学教学中学生思维训练的探讨

关于数学教学中学生思维训练的探讨

思维是人类的一种重要活动。人们对于它的研究、探讨在不断地发展进步,甚至创造出了可以模仿人的思维活动的电脑。在理论上取得的成果也颇丰,对于思维生理机能的揭示,还有从各个不同的角度对思维进行的分类,(例如,有的把它分为形象思维有和抽象思维;有的把它分为求同思维和求异思维;有的认为思维是聚敛的和发散型的;有的认为思维有正向和逆向之分等),这些对于思维的进一步研究,都有十分重要的价值。

本人多年从事基础教育,在初中数学教学中,对于学生学习数学的思维活动进行了一定的探讨,把学生学习数学的思维活动作了分层次划分。我认为,不妨把他们的思维活动划分成单向单步思维、单向多步思维和多向多步思维。他们在掌握数学知识实现课程目标的过程中,总是由最简单的单向单步思维过渡到单向多步思维,乃至于发展到多向多步思维。我们知道,数学是训练学生思维的广播操。新课标要求我们把训练学生的思维,培养学生的数学思想作为一项重要的工作来抓,因此我们要根据学生思维形成和发展的规律,对他们进行有计划,有目的的训练,由量变到质变,在实现认知目标,情感目标和能力目标的同时,逐步实现思维应达到的目标——形成创造性思维的能力。

一、注重单向单步思维的训练,形成牢固的思维基础

我们在实施数学教学活动中,学生的思维方向基本上是明确的,当他们遇到一个简单的数学问题时,在大脑里立即产生一个单向的思维个体,而解决问题又只需一步完成,我们把这种从一个知识点到另一个知识点,单方向,单步骤的思维称为单向单身思维。

二、单向单步思维是连续性思维的基础,是思维的最小单元,思维的目的性明确,时间短。前人对这种思维非常重视,他们总是力图把所有数学知识都浓缩在这一个个的单向单步思维单元里,由“因”到“果”,由“题设”到“结论”,总结出了许多公理、定理、公式,便于人们记忆,成为后人思维向前延伸的基石。

思维的源泉是知识和信息。学生的单向单步思维就是对已有的人类思维成果的学习,包括简单的重复,探索性的验证,创造性的发现。作为教师,主要是根据不同的情形,不同的学习内容,抓好这种思维品质的培养。1.使他们的单向单步思维具有完备性。在教学中对照目标,启发讨论逐步的实现目标,做到有问有答,有布置有检查,及时补充他们思维过程中的缺陷,克服半途而废或弄个一知半解的坏毛病。例如学习等腰梯形的性质:等腰梯形ABCD(AD∥BD)同一底角上的两个角相等,使学生不仅知道∠B=∠C,而且要知道∠A=∠D。2.使他们的单向单步思维具有准确性。在教学中为了达到目标,要一步一个脚印,脚踏实地。只有每个单向单步思维的准确性,才能保证整个连续性思维的准确性,不然的话,思维的结果是错误的没有意义。

三、在教学中,我们要加强一题多解的训练,扩大学的思路范文作文,也就是增大学生的思维方向。例如。计算,按照所学的方法,一步一步的施行乘法运算,再合并同类项,得出结果后,提请他们思考,有没有其它方法?思维过程:原式= 显然,既简单又明了。使学生在完成某一思维过程后,总要考虑还有没有更好的思维途径,克服思维过程中的满足感。使思维具有一定的探索性,从而发展到具有一定的创造力。

总之,学生在学习数学知识的过程中,他们是学习的主体,会根据不同的学习目标,单向单步思维,单向多步思维,多向多步思维交替出现。我们教师是学生学习的主导者,只有了解了他们思维的这些特点,才能在各种教学活动中加强引导,不断实现预定的目标。

下载数学教学要加强学生思维训练(精选合集)word格式文档
下载数学教学要加强学生思维训练(精选合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学思维训练计划

    六年级第一学期思维训练课计划 指导思想:数学思维训练是一种学科思维训练,是结合日常的数学教学活动,以数学知识与技能为载体,根据数学思维发展的规律和一般思维训练的原理,针对......

    三年级数学思维训练

    三年级数学思维训练1、有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字 “6”,参加三项体育比赛的各有几人? 2、龙龙和亮亮去公园玩,想买门票,但钱......

    二年级数学思维训练)

    二年级数学思维训练题(1) 1.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁? 2.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人? 3.有一本书,小华第一天看了2页,以后每......

    一年级数学教学中的思维训练

    61、一年级数学教学中的思维训练 学校的重要任务是培养具有好钻研的、创造性的、探索性的思维的人。我认为童年正是培养思维的时期,而教师是悉心地造就学生的机体和精神世界......

    小学五年级数学思维训练教学总结

    数学教学过程的基本目标是促进学生的发展,按照新课标的基本理念,它不只是让学生获得必要的数学 知识,技能还应当包括在启迪思维、解决问题,情感与态度等方面的发展,那么思维训练......

    浅析小学数学教学中的思维训练

    浅析小学数学教学中的思维训练 数学教学主要是数学思维活动的教学。学生初步的逻辑思维能力的发展需要有一个长期的培养和训练过程。数学教学的思维训练,是根据学生的思维特......

    浅谈数学教学中的思维训练(精选五篇)

    浅谈数学教学中的思维训练 固安县柳泉镇中心校 张振波 数学教学的核心是发展学生的数学思维。二期课程改革的根本在于要带给学生充实的思维过程。因此,可以说数学教学也就是......

    浅谈低年级数学教学中的思维训练

    浅谈低年级数学教学中的思维训练 锦州师专初教一系普师2001级2班 董 薇指导教师:岳 强 培养学生初步的逻辑思维能力,是九年义务教育全日制小学数学教学大纲规定的小学数学教学......