三角函数、极限、等价无穷小公式

时间:2019-05-14 13:48:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角函数、极限、等价无穷小公式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角函数、极限、等价无穷小公式》。

第一篇:三角函数、极限、等价无穷小公式

三角函数公式整合:

两角和公式

sin(A+B)= sinAcosB+cosAsinB

sin(A-B)= sinAcosB-cosAsinB 

cos(A+B)= cosAcosB-sinAsinB

cos(A-B)= cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式

Sin2A=2SinA•CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ =-2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差

sinαsinβ =-1/2*[cos(α+β)-cos(α-β)]

cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]

sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]

cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]

诱导公式

sin(-α)=-sinα

cos(-α)= cosα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

sin(π/2+α)= cosα

cos(π/2+α)=-sinα

sin(π-α)= sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

1.极限的概念

(1)数列的极限:0,N(正整数),当nN时,恒有xnA

nlimxnA 或 xnA(n)

几何意义:在(A,A)之外,xn至多有有限个点x1,x2,,xN

(2)函数的极限

x的极限:0,X0,当xX时,恒有f(x)A

limf(x)A 或 f(x)A(x)

x几何意义:在(XxX)之外,f(x)的值总在(A,A)之间。

xx0的极限:0,0,当0xx0时,恒有f(x)A

xx0limf(x)A 或 f(x)A(xx0)

几何意义:在x(x0,x0)(x0,x0)邻域内,f(x)的值总在(A,A)之间。

(3)左右极限

左极限:0,0,当x0xx0时,恒有f(x)A

xx0limf(x)A 或 f(x0)f(x00)A

右极限:0,0,当x0xx0时,恒有f(x)A

xx0limf(x)A 或 f(x0)f(x00)A

xx0f(x)Alimf(x)极限存在的充要条件:limxx0(4)极限的性质

唯一性:若limf(x)A,则A唯一

xx0保号性:若limf(x)A,则在x0的某邻域内

xx0A0(A0) f(x)0(f(x)0);f(x)0(f(x)0) A0(A0)

有界性:若limf(x)A,则在x0的某邻域内,f(x)有界

xx02.无穷小与无穷大

(1)定义:以0为极限的变量称无穷小量;以为极限的变量称无穷大量;同一极限 过程中,无穷小(除0外)的倒数为无穷大;无穷大的倒数为无穷小。

注意: 0是无穷小量;无穷大量必是无界变量,但无界变量未必是无穷大量。例如当x时,xsinx是无界变量,但不是无穷大量。

(2)性质:有限个无穷小的和、积仍为无穷小;无穷小与有界量的积仍为无穷小;xx0limf(x)A成立的充要条件是f(x)A(x(x0,x0),lim0)

(3)无穷小的比较(设 lim0,lim0): 若lim则称是比高阶的无穷小,记为o();特别称为o()0,的主部

,则称是比低阶的无穷小; 若limC,则称与是同阶无穷小;

若lim1,则称与是等价无穷小,记为~;

若limkC,(C0,k0)则称为的k阶无穷小;

若lim(4)无穷大的比较: 若limu,limv,且lim无穷大,记为o1(v);特别u称为uvo1(v)v的主部

3.等价无穷小的替换

u,则称u是比v高阶的v若同一极限过程的无穷小量~,~,且lim存在,则 limf(x)f(x)limg(x)g(x)121cos~2111~2 ~ 11(1)n1~na1~lna常用等价无穷小(lim0)sintanarcsinarctanln(1)e111注意:(1)无论极限过程,只要极限过程中方框内是相同的无穷小就可替换;

(2)无穷小的替换一般只用在乘除情形,不用在加减情形;

(3)等价无穷小的替换对复合函数的情形仍实用,即

若limf()f(0),~,则f()~f()

4.极限运算法则(设 limf(x)A,limg(x)B)(1)limf(x)g(x)limf(x)limg(x)AB(2)limf(x)g(x)limf(x)limg(x)AB

特别地,limCf(x)Climf(x),limf(x)limf(x)An

nn(3)limf(x)limf(x)A(B0)g(x)limg(x)B5.准则与公式(lim0,lim0)准则1:(夹逼定理)若(x)f(x)(x),则

lim(x)lim(x)A  limf(x)A

准则2:(单调有界数列必有极限)

若xn单调,且xnM(M0),则limxn存在(xn收敛)

n准则3:(主部原则)

limo()o()o()lim; lim111lim11

2o1(2)o1(2)o()公式1: limsinsinx 11

 limx0x1xlim(1x)x0公式2: e

1lim(1)nnn1lim(1lim(11)e

)公式3: lim(1)elim,一般地,lim(1)felimf

0anxnan1xn1a0anxnan公式4:limlimm1xbxmbxbxmxbmm10mbm6.几个常用极限(a0,a1)(1)limnnmnm nmna1,limnn1;(2)limxx1,limxx;

nx0x(3)limex,limex0;(4)limlnx; x0x0x0110q11limarctanq1x0x2n(5);(6)limq

nq1limarctan11x2x0不存在q1

第二篇:高等数学等价无穷小替换_极限的计算

西南石油大学《高等数学》专升本讲义

讲义

无穷小 极限的简单计算

【教学目的】

1、理解无穷小与无穷大的概念;

2、掌握无穷小的性质与比较 会用等价无穷小求极限;

3、不同类型的未定式的不同解法。【教学内容】

1、无穷小与无穷大;

2、无穷小的比较;

3、几个常用的等价无穷小 等价无穷小替换;

4、求极限的方法。【重点难点】

重点是掌握无穷小的性质与比较

用等价无穷小求极限。难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。

【授课内容】

一、无穷小与无穷大

1.定义

前面我们研究了n数列xn的极限、x(x、x)函数fx的极限、xx0(xx0、xx0)函数f(x)的极限这七种趋近方式。下面我们用

西南石油大学《高等数学》专升本讲义

x*表示上述七种的某一种趋近方式,即

*nxxxxx0xx0xx0

定义:当在给定的x*下,f(x)以零为极限,则称f(x)是x*下的无穷小,即limfx0。

x*.例如, limsinx0, 函数sinx是当x0时的无穷小x011lim0, 函数是当x时的无穷小.xxx(1)n(1)nlim0, 数列{}是当n时的无穷小.nnn【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。

定义: 当在给定的x*下,fx无限增大,则称fx是x*下的无穷大,即limfx。显然,n时,n、n2、n3、都是无穷大量,x*【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如

limex0,limex,xx所以ex当x时为无穷小,当x 时为无穷大。

2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果fx为无穷大,则11为无穷小;反之,如果fx为无穷小,且fx0,则为无穷大。fxfx小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。

3.无穷小与函数极限的关系: 定理1 limf(x)=A?f(x)x®x0xA+(x),其中(x)是自变量在同一变化过程xx0(或x)中的无穷小.证:(必要性)设limf(x)=A,令(x)=f(x)-A,则有lim(x)=0,x®x0x®x0f(x)A(x).西南石油大学《高等数学》专升本讲义

(充分性)设f(x)=A+(x),其中(x)是当x®x0时的无穷小,则

xx0limf(x)=lim(A+(x))Alim(x)A.xx0xx0【意义】

(1)将一般极限问题转化为特殊极限问题(无穷小);(2)给出了函数f(x)在x0附近的近似表达式f(x)»A,误差为(x).3.无穷小的运算性质

定理2 在同一过程中,有限个无穷小的代数和仍是无穷小.【注意】无穷多个无穷小的代数和未必是无穷小.但n个之和为1不是无穷小.例如,n时,是无穷小,nn定理3 有界函数与无穷小的乘积是无穷小.如:lim(1)nn1110,limxsin0,limsinx0 x0xxnx推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小.推论2 常数与无穷小的乘积是无穷小.推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较

例如,当x®0时,x,x2,sinx,x2sin都是无穷小,观察各极限:

1xx2lim0,x2比3x要快得多;x03xsinx1,sinx与x大致相同;

x0x1x2sinxlimsin1不存在lim.不可比.2x0x0xxlim极限不同, 反映了趋向于零的“快慢”程度不同.1.定义: 设,是自变量在同一变化过程中的两个无穷小,且¹0.=0,就说是比高阶的无穷小,记作=o();(2)如果limC(C0),就说与是同阶的无穷小;

特殊地如果lim=1,则称与是等价的无穷小,记作~;

(3)如果limk=C(C?0,k0),就说是的k阶的无穷小.(1)如果lim3 西南石油大学《高等数学》专升本讲义

例1 证明:当x0时,4xtan3x为x的四阶无穷小.4xtan3xtanx34lim()4,故当x0时,4xtan3x为x的四阶无穷小证:lim.4x0x0xx例2 当x0时,求tanxsinx关于x的阶数.解limtanxsinxtanx1cosx1lim(),tanxsinx为x的三阶无穷小.x0x0x3xx222.常用等价无穷小:当x0时,(1)sinx~x;(2)arcsinx~x;(3)tanx~x;(4)arctanx~x;(5)ln(1x)~x;(6)ex1~x

x2(7)1cosx~(8)(1x)1~x(9)ax-1~lna*x

2用等价无穷小可给出函数的近似表达式: lim1,lim0,即o(),于是有o().12例如sinxxo(x),cosx1x2o(x2).3.等价无穷小替换 定理:设~,~且lim证:lim存在,则limlim.lim()limlimlimlim.2tan22xex1.;

(2)lim例3(1)求lim x01cosxx0cosx112(2x)2解:(1)当x0时,1cosx~x,tan2x~2x.故原极限=lim= 8

x®012x22x2(2)原极限=lim2x0x2例4 求lim=1

2tanxsinx.3x0sin2x错解: 当x0时,tanx~x,sinx~x.原式lim4

xx=0

x0(2x)3西南石油大学《高等数学》专升本讲义

正解: 当x0时,sin2x~2x,tanxsinxtanx(1cosx)~13x, 213x1故原极限=lim23.x®0(2x)16【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。例5 求limtan5xcosx1.x0sin3x12xo(x2).2o(x)1o(x2)1225x5x+o(x)+x+o(x)x2x5.2lim原式=limx®0x0o(x)33x+o(x)3x解: tanx5xo(x),sin3x3xo(x),1cosx

三、极限的简单计算

1.代入法:直接将xx0的x0代入所求极限的函数中去,若fx0存在,2x53x42x12;若fx0不存在,我们也能知道属即为其极限,例如limx193x32x4x29于哪种未定式,便于我们选择不同的方法。例如,lim就代不进去了,但

x3x3我们看出了这是一个

0型未定式,我们可以用以下的方法来求解。02.分解因式,消去零因子法

x29limx36。例如,limx3x3x33.分子(分母)有理化法

x253x253x2532x15lim例如,lim

2x22x15x22x152x15x53x2 lim

x22x4

limx2x2 x22x2

2 西南石油大学《高等数学》专升本讲义

又如,limxx221xlim1x1x2x0

4.化无穷大为无穷小法

13+-3x+x-7x例如,lim2=limx2x-x+4x12-+x这个无穷大量。由此不难得出

7x2=3,实际上就是分子分母同时除以x242x2a0,nmba0xma1xm1am0lim0,nm xbxnbxn1b01n,nm

1xlimx2x11x(分子分母同除x)。1,21x又如,limx21nn255lim1,再如,limn(分子分母同除5n)。nnn35n315n例如,limxarctanx10,(无穷小量乘以有界量)。x3x2x14x1.又如,求lim2x1x2x3解:lim(x22x3)0,商的法则不能用

x15.利用无穷小量性质、等价无穷小量替换求极限

x22x30又lim(4x1)30,lim0.x1x134x1由无穷小与无穷大的关系,得lim4x1.x1x22x3再如,等价无穷小量替换求极限的例子见本节例3—例5。6.利用两个重要极限求极限(例题参见§1.4例3—例5)7.分段函数、复合函数求极限 西南石油大学《高等数学》专升本讲义

例如,设f(x)1x,x0,求limf(x).2x1,x0x0,两个单侧极限为解: x0是函数的分段点

x02limf(x)lim(1x)limf(x)lim(x1)1, 1,x0x0x0左右极限存在且相等, 故limf(x)1.x0【启发与讨论】 思考题1:当x?0时,y11sin是无界变量吗?是无穷大吗? xx

解:(1)取x012k2(k0,1,2,3,)

y(x0)2k, 当k充分大时,y(x0)M.无界,21(2)取x0(k0,1,2,3,)

2k当k充分大时,xk, 但y(xk)2ksin2k 0M.不是无穷大.

结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.思考题2:若f(x)0,且limf(x)A,问:能否保证有A0的结论?试举例

x说明.解:不能保证.例f(x)11 x0, f(x)0 limf(x)

xxx1A0.xxlim思考题3:任何两个无穷小量都可以比较吗?

解:不能.例如当x时f(x),g(x)1xsinx都是无穷小量 x7 西南石油大学《高等数学》专升本讲义

但lim较.g(x)limsinx不存在且不为无穷大,故当x时f(x)和g(x)不能比xxf(x)【课堂练习】求下列函数的极限

excosx(1)lim;

x0xexcosxex11cosxlimlim1 解:原极限=limx0x0x0xxx1x(2)求limx0(1cosx)ln(1x)3sinxx2cos【分析】 “”型,拆项。0011223sinxxcosxcos3sinx3xx=lim= 解:原极限=limx0x02x2x22x5x54x43x2(3)lim ;

x2x54x1【分析】“抓大头法”,用于

型 355x55x解:原极限=lim=,或原极限=lim5=

x241252x2xx4x54x3(4)lim(x2xx);

x【分析】分子有理化 解:原极限=limxx2xxx=limx11=

11x12x21)(5)lim(2x2x4x2【分析】型,是不定型,四则运算法则无法应用,需先通分,后计算。

x13x2x2x21)=lim2解:lim(2=lim=

x2x2x2x44x2x2x48 西南石油大学《高等数学》专升本讲义

(6)limx0x2x932

【分析】“子。0”型,是不定型,四则运算法则失效,使用分母有理化消零因0x2x293解:原极限=lim=6 2x0x(7)求lim(n12n).222nnn和解:

n时,是无穷小之先变形再求极限.1n(n1)12n12n1112limlim(222)limlim(1).22nnnnnnnnn2n2【内容小结】

一、无穷小(大)的概念

无穷小与无穷大是相对于过程而言的.1、主要内容: 两个定义;四个定理;三个推论.2、几点注意:(1)

无穷小(大)是变量,不能与很小(大)的数混淆,零是唯一的无穷小的数;

(2)无穷多个无穷小的代数和(乘积)未必是无穷小.(3)无界变量未必是无穷大.二、无穷小的比较: 1.反映了同一过程中, 两无穷小趋于零的速度快慢, 但并不是所有的无穷小都可进行比较。高(低)阶无穷小;等价无穷小;无穷小的阶。

2.等价无穷小的替换:

求极限的又一种方法, 注意适用条件.三、极限求法(不同类型的未定式的不同解法);a.多项式与分式函数代入法求极限;b.消去零因子法求极限;c.无穷小因子分出法求极限;d.利用无穷小运算性质求极限;e.利用左右极限求分段函数极限.

第三篇:【论文提纲】等价无穷小函数求极限

等价无穷小函数求极限

1.绪论

1.1研究背景和意义

1.2研究现状

1.3文章结构

2.基础知识

2.1等价无穷小相关概念

2.2等价无穷小代换定理及证明

2.3等价无穷小代换定理推广及证明

3.等价无穷小求函数极限应用及推广

4.总结

第四篇:求极限的方法三角函数公式

高数中求极限的16种方法——好东西

假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)LHopital 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0

LHopital 法则分为3中情况0比0 无穷比无穷 时候 直接用0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

第一部分 三角函数公式

·两角和与差的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

·三倍角公式:

sin(3α)= 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α)= 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)= tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

·n倍角公式:

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα+1))

csc(α/2)=±√((2secα/(secα-1))

·辅助角公式:

Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)

Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)

·万能公式

sin(a)=(2tan(a/2))/(1+tan^2(a/2))

cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)=(2tan(a/2))/(1-tan^2(a/2))

·降幂公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1+cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1+cos(2α))

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·其它公式

·两角和与差的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

·三倍角公式:

sin(3α)= 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α)= 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)= tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

·n倍角公式:

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα+1))

csc(α/2)=±√((2secα/(secα-1))

·辅助角公式:

Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)

Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)

·万能公式

sin(a)=(2tan(a/2))/(1+tan^2(a/2))

cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)=(2tan(a/2))/(1-tan^2(a/2))

·降幂公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1+cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1+cos(2α))

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·其它公式

1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a)sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=[sin(α/2)+cos(α/2)]^2

1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a)sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=[sin(α/2)+cos(α/2)]^2

第五篇:大学高等数学等价无穷小

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。

1.做乘除法的时候一定可以替换,这个大家都知道。

如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x)= lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x)= lim f(x)/u(x)* u(x)/v(x)* v(x)/g(x)其中两项的极限是1,所以就顺利替换掉了。2.加减法的时候也可以替换!但是注意保留余项。

f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看:

f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的!

问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。

比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x),所以ln(1+x)+x和2x是等价无穷小量。但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x),此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。

碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2)那么

ln(1+x)-x=-x^2/2+o(x^2)这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。从上面的例子就可以看出来,余项很重要,不能直接扔掉,因为余项当中包含了一定的信息。而且只要保留余项,那么所做的就是恒等变换(注意上面我写的都是等式)而不是近似,这种方法永远是可行的,即使得到不定型也不可能得出错误的结论。等你学过带余项的Taylor公式之后对这一点就会有更好的认识。

高数教了一段时间了,对于等价无穷小量代换法求极限为什么只能在乘除中使用,而不能在加减的情况下使用的条件感到有些疑惑,于是找了一些资料,仔细的研究了这个问题,整理如下:

等价无穷小的定义及常用的等价无穷小

无穷小量是指某变化过程中极限为0的变量。而等价无穷小量是指在某变化过程中比值极限为1的两个无穷小量。

常用的等价无穷小有:

sinx∼tanx∼arctanx∼arcsinx∼ln(1+x)∼x(x→0)

sin⁡x∼tan⁡x∼arctan⁡x∼arcsin⁡x∼ln⁡(1+x)∼x(x→0)1−cosx∼x22,1+x−−−−−√n−1∼xn(x→0)1−cos⁡x∼x22,1+xn−1∼xn(x→0)等价无穷小量在求极限问题中非常重要。恰当的使用等价无穷小量代换常常使极限问题大大简化。但是有时却不能使用等价无穷小量代换。

等价无穷小替换原理

定理1:设α,α1,β,β1α,α1,β,β1是某一变化过程中的无穷小量,且α∼α1,β∼β1α∼α1,β∼β1,若limαβlimαβ存在,则limαβ=limα1β1limαβ=limα1β1。

例1: limx→0ln(1+3x)sin2x.limx→0ln⁡(1+3x)sin⁡2x.解:

limx→0ln(1+3x)sin2x=limx→03x2x=32.limx→0ln⁡(1+3x)sin⁡2x=lim

x→03x2x=32.例2:

limx→0tanx−sinxx3.limx→0tan⁡x−sin⁡xx3.错误解法:

limx→0tanx−sinxx3=limx→0x−xx3=0.limx→0tan⁡x−sin⁡xx3=limx→0x

−xx3=0.正确解法:

limx→0tanx−sinxx3=limx→0sinx(1−cosx)x3⋅cosx=limx→01−cosxx2⋅cosx=limx→012cosx=12.limx→0tan⁡x−sin⁡xx3=limx→0sin⁡x(1−cos⁡x)x3⋅cos⁡x=limx→01−cos⁡xx2⋅cos⁡x=limx→012cos⁡x=12.从上面的解法可以看出,该题分子不能直接用等价无穷小量替代来做,下面我们分析产生错误的原因:等价无穷小之间本身一般并不相等,它们之间一般相差一个较它们高阶的无穷小,由函数f(x)f(x)在点x=0x=0处的泰勒公式,即麦克劳林公式:

f(x)=f(0)+f′(0)x+f”(0)2!x2+⋯+f(n)(0)n!xn+o(xn)f(x)=f(0)+f′(0)x+f”(0)2!

x2+⋯+f(n)(0)n!xn+o(xn)很容易有:

tanx=x+x33+2x515+o(x5).(x→0)tan⁡x=x+x33+2x515+o(x5).(x→0)sinx=x+x33!+x55!+x77!+⋯+(−1)m−1x2m−1(2m−1)!+o(x2m−1).(x→0)sin⁡x=x+x33!+x55!+x77!+⋯+(−1)m−1x2m−1(2m−1)!+o(x2m−1).(x→0)由此可知,sin{x}与tan{x}相差一个较xx的三阶无穷小,此三阶无穷小与分母x3x3相比不可忽略,因为把上述结论代入原式得

limx→0tanx−sinxx3=limx→0x33+x33!+o(x3)x3=12.limx→0tan⁡x−sin⁡xx3=limx→0x33+x33!+o(x3)x3=12.由此,我们可以得出:加减情况下不能随便使用等价无穷小。

下面我们给出一个在加减情况下使用等价无穷小的定理并加以证明。在这里我们只讨论减的情况,因为我们知道加上一个数可以看成减去这个数的负数。为方便,首先说明下面的定理及推论中的无穷小量其自变量都是xx,其趋近过程都相同:x→0x→0,在有关的极限中都省去了极限的趋近过程。

定理2:设α,α1,β,β1α,α1,β,β1是某一变化过程中的无穷小量,且α∼α1,β∼β1α∼α1,β∼β1,则α−β∼α1−β1α−β∼α1−β1的充分必要条件是limαβ=k≠1limαβ=k≠1。

证明:

1∘1∘充分性:

α∼α1,β∼β1⇒limαα1=limββ1=1α∼α1,β∼β1⇒limαα1=limββ1=1

limαβ=k≠1,limα1β1=k≠1limαβ=k≠1,limα1β1=k≠1

则 limα−βα1−β1=limαβ1−ββ1α1β1−1=k−1k−1=1limα−βα1−β1=limαβ1−ββ

1α1β1−1=k−1k−1=1

α−β∼α1–β1.α−β∼α1–β1.2∘2∘必要性:

α∼β,α1∼β1⇒limα−βα1−β1=1α∼β,α1∼β1⇒limα−βα1−β1=1

lim(α−βα1−β1−1)=0lim(α−βα1−β1−1)=0

通分得

limα−α1α1−β1−limβ−β1α1−β1=0limα−α1α1−β1−limβ−β1α1−β1=0

所以

limαα1−11−βα1−lim1−ββ1α1β1−1=0limαα1−11−βα1−lim1−ββ1α1β1−1=0

limαα1=1,limββ1=1limαα1=1,limββ1=1

所以

lim01−βα1−lim0α1β1−1=0lim01−βα1−lim0α1β1−1=0

所以

limβ1α1=k≠1⇒limα1β1=k≠1limβ1α1=k≠1⇒limα1β1=k≠1

limαβ=limα1β1.limαβ=limα1β1.所以

limαβ=k≠1,limα1β1=k≠1.limαβ=k≠1,limα1β1=k≠1.由1∘,2∘1∘,2∘得,原命题成立。证毕。

这样一来,就得到了差形式无穷小量等价代换的充要条件。例3:

limx→01−cosx+2sinxarcsin2x−sinx.limx→01−cos⁡x+2sin⁡xarcsin⁡2x

−sin⁡x.解:

1−cosx∼x22,−2sinx∼−2x,2arcsinx∼2x,sinx∼x(x→0)1−cos⁡x∼x22,−2sin⁡x∼−2x,2arcsin⁡x∼2x,sin⁡x∼x(x→0)所以

limx→01−cosx−2sinx=0≠1,limx→02arcsinxsinx=2≠1limx→01−cos⁡x−2sin⁡x=0≠1,limx→02arcsin⁡xsin⁡x=2≠1

由定理2得

limx→01−cosx+2sinxarcsin2x−sinx=limx→x22+2xx=2.limx→01−cos⁡x+2sin⁡xarcsin⁡2x−sin⁡x=limx→x22+2xx=2.例4:

limx→0arctan2x+arcsin5xsin3x.limx→0arctan⁡2x+arcsin⁡5xsin⁡3x.解:

arctan2x∼2x,arcsin5x∼5x,sin3x∼3x(x→0)arctan⁡2x∼2x,arcsin⁡5x

∼5x,sin⁡3x∼3x(x→0)又

limarctan2x−arcsin5x=−25≠1limarctan⁡2x−arcsin⁡5x=−25≠1

由定理2得

limx→0arctan2x+arcsin5xsin3x=2x+5x3x=73.limx→0arctan⁡2x+ar

csin⁡5xsin⁡3x=2x+5x3x=73.总结

本文指出,在有加减的情况下不能随便运用等价无穷小代换求极限,并且指出了在有加减的情况下能够使用等价无穷小代换的充分必要条件。对于不满足条件的情况,根据给出的泰勒展开公式,可以求出。

下载三角函数、极限、等价无穷小公式word格式文档
下载三角函数、极限、等价无穷小公式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角函数公式表

    角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义......

    高中数学-三角函数公式

    两角和公式 sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB)t......

    三角函数变换公式

    两角和公式 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ –cosαsinβ tan(α+β) = (t......

    差函数的等价无穷小替换(合集5篇)

    差函数的等价无穷小替换这里介绍一些求极限等问题的特殊技巧,基本上可以涵盖所有的求极限题目,因为,我们所学的初等函数有五类,反三角函数,对数函数,幂函数,三角函数,指数函数,简称反......

    高数极限与函数等价代换公式[样例5]

    高数极限与函数等价代换公式(考试必备) 当x0时,有下列公式成立: sinx~xarcsinx~x tanx~xarctanx~x 1cosx~12x~secx1 2ax1~xlnaex1~x a(1Bx)1~aBx loga(1x)~ x lna......

    三角函数公式及证明

    三角函数公式及证明 (本文由hahacjh@qq.com 编辑整理 2013.5.3) 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB的长度等于; B点的横坐标xcos,纵坐标ysin ; (由 三角形OBC面积......

    高等数学等价替换公式(精选五篇)

    无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无......

    三角函数中万能公式总结

    两角和与差的三角函数 三角函数基本公式总结 1.和、差角公式 sin()sincoscossin;cos()coscossinsin; tg()tgtg. 1tgtg2.二倍角公式 sin22sincos;cos2cos2sin22cos2112sin2; tg22tg.......