第一篇:不等式的证明方法论文
重庆三峡学院毕业设计(论文)
题目:不等式的证明方法
院 系 数学与统计学院 专 业 数学与应用数学(师范类)年 级 2009级 学生姓名 杨家成 学生学号 200906034134 指导教师 向以华
完成毕业设计(论文)时间 2013 年 5 月
目 录
摘要................................................................I Abstract...........................................................II 引言................................................................1
杨家成:不等式的证明方法
2013届数学与应用数学专业(师范类)毕业设计(论文)
例1 已知a1,a2an都是正数,求证:
aii1i1nn1n2. ai证明:构造两个数组:
a1,a2an;2111,a1a2an,由柯西不等式,得
2anii1nn21n1,即 aii1aii1ainanii121n21,i1i1ain2所以aaii1i11in2.
2.2.2 均值不等式
定理1.2设a1,a2,an是n个正数,则HnGnAnQn称为均值不等式.其中
Hnn111a1a2an,Gnna1a2an,Ana1a2an,n222aa2an.Qn1n例2 已知0a1,xy0,求证:logaaxayloga2xy21. 8证明:由0a1,a0,a0,得,axay2axay2axy,从而 logaaxayloga2axyloga2xy2,故只要证明xy11,即xy即可. 2842211111xyxxx,等号在x(这时y)时取得,24244所以logaaxayloga21. 8
杨家成:不等式的证明方法
2.2.3 排序不等式
定理1.3 设a1a2an,b1b2bn则有
a1bna2bn1anb
(倒序积和)
a1br1a2br2anbrn(乱序积和)
a1b1a2b2anbn,(顺序积和)
其中r1,r2,,rn是1,2,,n的一个排列,即
倒序积和≤乱序积和≤顺序积和. 例3 设a1,a2,,an是n个互不相同的自然数,证明:
1an111aa12. 2223n2n证明:设b1,b2,bn是a1,a2,,an的一个排列且b1b2bn,11,所以由排序不等式,得,22n2bnanba2b12a. 122222n2nbnb111又因为b11,b22,,bnn,故b12,22n22nan111a即1a12.
23n22n2说明:排序不等式适用于与数的排列相关的问题.因1从应用中,可看出在利用重要不等式来证明不等式时必须注意重要不等式所需要的条件,以及有时需要变形等适当处理,凑成重要不等式的形式.除了已介绍的二种方法,分析法、综合法、反证法、换元法、构造法、放缩法、数学归纳法等也能解决初等数学中多数不等式证明问题,但对于一些不等式的证明,单靠初等方法是不够的,因此,需要借助高等数学知识微积分来更进一步扩广加深证明不等式的研究.接下来就探讨微积分在证明不等式中的应用.2013届数学与应用数学专业(师范类)毕业设计(论文)
3.1 利用函数的单调性
在证明不等式中最常见,最有用的方法之一就是函数单调性法,先来看相关定理.定理 3.1 设函数fx在区间I上可导,则fx在I上递增(减)的充要条件是:
fx00.
证明:“”若fx为增函数,则对每一个x0I当xx0时有
fxfx00令xx0即得fx0. xx0“” 若fx在区间I上恒有fx0,则对任意的x1,x2Ix1x2应用拉格朗日中值定理,存在x1,x2I,使得fx2fx1fx2x10由此得到fx在I上为增函数.
定理 3.2 设函数yfx在a,b上连续,在a,b内可导,① 若在a,b内,fx0,那么函数yfx在a,b上严格单调增加; ② 若在a,b内,fx0,那么函数yfx在a,b上严格单调递减.例1 求证:当0x证明:设fx
fx由0x2时,sinx2x.
sinx,x0,,x2xcosxsinxxtanxcosx,22xx2,sinxxtanx可知,fx0,即fx在0,上严格递减,2又由于fx在x2处连续,故fxf2. 2nn例2 已知m,n都是正整数,且1mn,证明:不等式1m1n. 证明:原不等式等价于ln1mln1n,令 mn
杨家成:不等式的证明方法
fxfxln1x,x2,则
xx1xln1xxxln1xx1ln1x0,1xx21xx21xx2即fx在2,上严格递减,所以fmfn,即1mn1nm成立.
说明:对幂指式情况,常取对数,作辅助函数来帮助证明.由以上例题可总结出函数的单调性法的证明不等式步骤:
① 移项(或其它等价变形)使不等式一端为0,另一端为所作的辅助函数fx; ②讨论fx 符号来确定fx在指定区间的增减性,③根据函数的单调性及区间端点处的函数值即可得证.其中步骤① 是关键,作出适当辅助函数fx,值得注意的是步骤②讨论fx符号,有时一阶导的符号不能判断,这就需要判断二阶导数的符号,若仍旧不能判断,再求三阶导数,重复上述过程.例3 求证:tanxx,x0,. xsinx2证明:即证明tanxx0,即sinxtanxx2. xsinx2设fxsinxtanxx,则f0f0f00,而
fxsinxsec2x12secxtan3x4sec3xtanx0,fx0,命题得证.
例4 求证:当x0时,x21lnxx1.
2x21x10,故f在0,上递增. 证明:设fxlnx,x0,则fxxx1x1x12,即x21lnxx1; x1x12当x1时,fxf10,得lnx,即x21lnxx1,x1当0x1时,fxf10,得lnx综上,结论命题得证.
利用函数的单调性是证明不等式的一种常用方法,与之类似的是利用函数的极值与最值,但是这里比较的是极值与端点值,而不是0与端点值.2013届数学与应用数学专业(师范类)毕业设计(论文)
3.2 利用微分中值定理
微分中值定理主要有罗尔中值定理、拉格朗日中值定理、柯西中值定理,其中应用最广泛的是拉格朗日中值定理.定理3.3(拉格朗日中值定理)函数f满足如下条件:
(ⅰ)f在区间a,b上连续,(ⅱ)f在区间a,b内可导,fbfa. bafbfaxa. 证明: 作辅助函数Fxfxfaba则在a,b上至少存在一点使得 f显然FaFb0且F在a,b上满足罗尔中值定理的条件,故存在a,b使得Fffbfa0,移项即得 bafbfa. fba
由拉格朗日公式特点看出,拉格拉日中值定理适用于证明含有函数及其导数,且出现函数之差,自变量差及fx的表达式的不等式.例1 证明: 对一切h1,h0成立不等式证明:设fxln(1x),x[1,h],hln1hh. 1hf(x)在区间[1,h]上满足拉格朗日中值定理,则
ln(1h)ln(1h)ln1h,01,1hhhh,1h1h当h0时,由01可推知,11h1h,hhh,1h1h当h0时,由01可推知,11h1h,从而得到所要证明的结论.
例2 求证:sinxsinyxy.证明:设 f(x)sinx,则sinxsiny(xy)sin(xy)cos,故sinxsiny(xy)cosxy.由以上二例可总结出应用拉格朗日中值定理证明不等式的步骤:
杨家成:不等式的证明方法
①构造函数f(x),并确定对应区间[a,b]; ②对f(x)在[a,b]上运用拉格朗日中值定理;
③利用与 a、b 之间大小关系,题中所给条件,放大或缩小f(),从而推得不等式.步骤中关键是 2013届数学与应用数学专业(师范类)毕业设计(论文)
故有f(例2求证:2eab1b)f(x)dx. a2ba121212ex2dx2.
11x2x2f(x)e,x,证明:设,则,令f(x)0,x0,f(x)2xe2211而f()f()e2,f(0)1,22121221fmax1,fmine即e12ex1,11111x2e()2edx(),1222221212122eexdx2.
2说明:当证明某积分不等式大于等于或小于等于定数时,往往利用转化为求原函数最值较为简单.除了积分性质,积分中值定理也常用于证明不等式.4.2 利用积分中值定理
积分中值定理包括积分
杨家成:不等式的证明方法
证明:设F(x)F(x)x0f(t)dtxx02,则
xf(x)f(t)dtxf(x)f()(0x),x依题意,得,f()f(x),F(x)0 .
在[0,)上单调递减,得,F(a)F(b),即a0f(x)dxabb0f(x)dxba0,af(x)dxbf(x)dx.
0运用积分中值定理,可将积分不等式转化为函数不等式来证明,同样的思路也应用到变限积分法中.4.3 利用二重积分证明不等式
有时将一元函数的积分问题转化为二元函数的二重积分问题,会给解题带来方便.定理4.2 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D(x,y)|axb,cyd上可积,且
f(x)g(y)dxdyDbaf(x)dxg(y)dy.
cd例1 设函数f(x)与g(x)在[a,b]上连续,证明Cauchy-Schwarz积分不等式bbb22af(x)g(x)dxaf(x)dxag(x)dx.
2证明:记积分区域D[a,b][a,b],利用定积分与积分变量符号无关的性质等,有bbbaf(x)g(x)dxaf(x)g(x)dxaf(y)g(y)dyf(x)g(x)f(y)g(y)dxdy D 12222[f(x)g(y)f(y)g(x)]dxdy 2Dbb1b21b222f(x)dxg(y)dyf(y)dyg(x)dx aaaa22
2013届数学与应用数学专业(师范类)毕业设计(论文)
bb
af2(x)dxg2(y)dy.
a以上就是要介绍的积分在证明不等式的几种方法,从应用中,可看出运用积分与微分证明不等式方法类似,都主要是利用相关的性质,公式.由以上可以看出,微积分对证明不等式起到了重要作用.对于某些初等方法无法证明的不等式,适当地利用微积分知识就可以证明.在具体证明中要依据题设和待证不等式的结构特点,内在联系,选择适当的证明方法.至于如何选择方法,这就得熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点,通过摸清问题本质特征,使得难解性问题转化为可解性问题.
杨家成:不等式的证明方法
从而fn1n1的充要条件为(1Pn)0,n1
现取PKK,K112n1nn
则fn(1)(1)(1,)23nn1n1(n1)!n1n1n1
而(1Pn)(1)0,n1n1n1n1n1
n1,n1(n1)!n1.(n1)!n1N
分析:欲证此不等式,可从考虑相应的级数入手,若能证明级数收敛且
(n1)!1即可.n1n由上可看出要利用概率论的方法对不等式进行证明,关键在于针对不等式的具体形式,构造相应的概率模型,再利用概率论的相关性质、定理加以证明,从而可以使一些不等式的证明大大简化.2013届数学与应用数学专业(师范类)毕业设计(论文)
致谢
论文即将完成,回顾这篇论文的完成,是单单靠自己完成不了的,从选题到研究方法,从资料查询到写稿,从初稿到修改,直至最终定稿,无不受到向以华老师的悉心指导,深深关切.整个书写论文过程中,向老师的治学严谨,平易近人深深地影响了我,让我在收获专业知识的同时,也获得关于治学,关于为师的道理,相信这将对我以后的学习工作带来不小的启迪.因此,借此机会,向尊敬的向老师表达我由衷的谢意!参考文献
[1] 华东师范大学数学系.数学分析.高等教育出版社,2001.6.[2] 陈传理,张同君.竞赛数学教程.高等教育出版社,1996.10.[3] 曹敏谦.数学分析习题集题解(三).上海交通大学印刷厂,1979.[4] 魏全顺.微分在不等式证明中的应用,湖南
第二篇:证明不等式的方法论文
证明不等式的方法
李婷婷
摘要: 在我们数学学科中,不等式是十分重要的内容。如何证明不等式呢?在本文中,我主要介绍了不等式概念、基本性质和一些从初等数学中总结出的证明不等式的常用方法,分别有比较法、综合法、放缩法、数学归纳法、换元法、判别式法、分解法方法。证明不等式的方法多种多样,在这里我就只例举这些方法。证明不等式方法因题而异,灵活多变,技巧性强。通过学习这些证明方法,使我们进一步掌握不等式证明,可以帮我们解决生活中的许多实际问题。
关键字:不等式;数学归纳法;函数;单调性
不等式作为一个重要的分析工具和分析的手段,在数学中具有举足轻重的地位,不等式的证明可分为推理性问题和探索性问题,推理性问题是指在特定条件下,阐释证明过程,解释内在规律,基本方法有比较法,综合法;探索性问题大多是与自然数有关的证明问题,常采用观察—归纳—猜想—证明的方法思路,以数学归纳法完成证明,不等式证明还有其他方法:换元法,放缩法等。不等式的证明没有固定的程序,证法因题而易,技巧性强。希望通过这些方法的学习。我们可以很好的认识数学的一些特点,从而开扩我们的数学视野。
1不等式概念及基本性质
1.1不等式的概念:表示不相等关系的式子。
实数集内的任意两个数a,b总是可以比较大小的,如果ab是正数,则ab;如果ab是零,则ab;如果ab是负数,则ab。反过来也对。即有 a≧bab0这里符号表示等价于。
这个定义虽然简单,实际它反映不等式的性质。许多不等式的证明,是从这个定义出发。首先,根据不等式的定义,容易证明下述不等式的简单性质,这些性质是证明其他不等式的基本工具。
1.2不等式基本性质
1.2.1abba(对称性)1.2.2若ab,bc,则ac(传递性)1.2.3若ab,则abbc(加法保序性)
1.2.4若ab,c0,则acbc(乘正数保序性)1.2.5若ab,cd,则acbd.若ab,cd,acbd.ab0,cd0,则acbd.11.1.2.6若ab,ab0,则ab
ab.1.2.7若ab0,dc0,则cd
1.2.8若ab0,nN,则anbn,nanb.1.2.9若ab0,m,nN,则a1.2.10含绝对值的不等式
mnb,amnmnb.mn(1)xax2a2axaxbaabxab(2)xaa0x2a2xa或xa.3ababab.4a1a2...ana1....an.1.2.11若a,bR,则a20,ab0.21.2.12若a,bR,则abab.符号当且仅当ab时成立。由这个不等式还可以得到22x2y2xyxyx,yR,22另一些常用的不等式:
ba2a,bR.ababc3abc.符号当且仅当abc时成立。1.2.13若a,b,cR,则
3
2证明不等式的基本策略
2.1比较策略
比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。比较证明不等式的一般步骤是:作差——变形——判断——结论。为了判断作差后的符号,有时要把这个差变形为一个常数,或者一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。
2.2分析综合策略
分析综合法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。两者在证明思路上存在着明显的互逆性。
综合法是由已知条件和已知不等式出发,推导出所要证明的不等式;分析法则要逐步找出使结论成立的充分条件,最后归结为已知不等式或者已知条件。对于条件简单而结论复杂的不等式,往往要通过分析法或者分析法与综合法交替使用来寻找证明的途径。
2.3构造策略 所谓构造,就是当某些数学问题用通常的办法难以奏效时,根据题设条件和结论的特征性质,从新的角度、用新的观点观察分析、解释对象,抓住反映问题的条件与结论之间的内在联系,用已知数学关系为支架,构造出满足条件或结论的数学对象,使原题中隐晦不清的关系和性质在新构造中的数学对象中清楚地展现出来,从而借助该数学对象解决数学问题的 2 方法。
用构造法解题时,被构造的对象是多种多样的,按它的内容,分为某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的。在运用构造法解题时,一要明确构造的目的,即为什么要构造;二要弄清楚问题的特点,以便依据特点、确立方案、实现构造、达到目的。
3证明不等式的基本方法和技巧
3.1 比较法
比较法是证明不等式的最基本,最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。3.1.1 作差法
在比较两个实数a和b的大小时,可借助ab的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.abba [例1] 已知a、bR,求证:abab,等号当且仅只当ab时成立。
[分析] 由于要证的不等式关于a,b对称,且式子不复杂,比较的式子都由字母a,b组成,左右两式存在公因式ab,可考虑用作差法来做,作差判断符号。
[证明] 设ab0.bbab0,aabbabbaabbbaabbab0,从而原不等式得证。显然上面的不等式当且仅aabbabab时等号成立,故原不等式当且仅当ab时成立等号。
[评价] 因为做差法是根据差值的符号来判断,所以在 比较差值的时候容易出错,一定要谨慎。3.1.2 作商法
在证题时,一般在a,b均为正数时,借助
aa1或1来判断其大小,bab步骤一般为:作商——变形——判断(大于1或小于1).[例2]已知a2,求证:loga1alogaa1 [分析] 先判断不等号两边是否是正数。因为a>2,所以logaa10,logaa10,这时我们可考虑用作商法来比较大小,利用对数函数公式,通过变形化简即可判断了。
[证明] 由原题得:
logaa1loga1a1logaa11 logaa1logaa1logaa12又因为
logaa1logaa1logaa1logaa12logaa214log2aa422
1所以原式>1,故命题得证。
[评价]首先判断了左右两式均是正数,而且是对数形式,这种常用作商法目的在于好利用公式约分化简,构造容易比较大小的形式得出结论。3.2 综合法
利用某些已经证明过的不等式,例如算术平均数、几何平均数的定理、均值定理等等,利用这些不等式的性质,推导出所要证明的不等式,这个证明方法就是综合法。
[例3]a,b,c为互不相容的正数,且abc1,求证:
111abc.abc[分析] 因为abc1且a,b,c为互不相容的正数。观察前后的式子联想起我们所学的均值定理a1a2anna1a2an。把1换成abc的形式带入式子,化简之后就得nbc+ac+ba,再根据学过的均值定理来构造式子,变形化简可证。
[证明] 化简过程为:
111bcacacababbcbcacbabcacacababbcabc222abc,所以111abc.故命题得证。这样的方法主要靠平时知识的积累和应用。abc[评价]先化简后我们得到的式子就可把整个不等式看成一个整体,根据不等式定理、性质经过变形、运算,导出欲证的不等式。3.3放缩法
是要证明不等式A
11来做,缩小分母,扩大不等号左边的式子。2n(n1)n 4 [证明] 1111 2nn(n1)n1n11111111151171()().22222123n223n1n42n4[评价]此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
3.4 数学归纳法
对于含有n(nN)的不等式,当n取第一个值时不等式成立,如果使不等式在nk(nN)时成立的假设下,还能证明不等式在nk1时也成立,那么肯定这个不等式对n取第一个值以后的自然数都能成立.[例5]:证明不等式
111...1nN.n1n23n1[分析]:此题是一个与自然数n有关的命题,首先想到数学归纳法。可分析n=1时,当n=k时,当n=k+1时三种情况来讨论,若在假设下都成立,那么足以说明n在定义内取任何值都使原式成立。
111131.n1n2n3122假设当nk,不等式成立111...11.k1k2k33k4要证当nk1时不等式成立,即[证明] 1当n1,11111112...11.k1k23k13k23k33k4k13k13k23k4 [评价] 对于由不完全归纳法得到的某些与自然数有关的数学命题我们常用数学归纳法来做,在验证命题 n=k(n整数)正确的基础上,证明命题具有传递性,而第二步实际上是一次逻辑的推理代替了无限的验证过程,所以说数学归纳法是一种合理、切实可行的科学证明方法,实现了有限到无限的飞跃。3.5 换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化.主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若xy1,可设xcos,ysin;②若xy1,可设xrcos,yrsin0r1;③对于含有的不等式,由于x1,可设xcos;④若xyzxyz,由tanAtanBtanCtanAtanBtanC知,可设
2222xtanA,ytanB,ztanC其中ABC。(2)增量换元法:在对称式(任意交换 5 两个字母,代数式不变)和给定字母顺序(如abc0等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如ab1,可以用a1t,bt进行换元。
2222 [例6] 已知x,yR且xy1.求证x2xyy2.[分析] 在式中有xy≤1不 等式,可联想到上面性质中的第②点:若x2y21,可设xrcos,yrsin0r1,化为三角函数来带入要证明的式子就较为简便。
[证明] 设xrcos,yrsin,r1,则22x22xyy2r2cos22cossinsin2r2cos2sin22r2sin22.4
[评价]这里用的三角代换是换元法的一种。题目形式上比较复杂,但有一定的规律,则可采用变量代换法,通过换元,把生疏的结构转化为重要不等式形式使证题思路自然、简捷。它的基本思路是:按照代数式的结构特点选用适当的三角公式,进行三角代换,把代数题转化为三角题,从而用三角知识去解。3.6 判别式法
根据已知的或构造出来的一元二次方程,一元二次不等式,二次函数的根,解集,函数的性质等特征确定出其判别式应满足的不等式,从而推出欲证的不等式方法。判别式法应用
2f(y)xg(y)x(y)0形极其广泛,它的使用范围是“解答函数的解析式可以转化为
2式的一类函数的最大(小)值或值域问题”,学习时注意对x项系数f(y)0和f(y)0两种情况的讨论。
2f(y)xg(y)(y)0,f(y)0,依据xR,0求出y的范围。方法:①由②讨论f(y)0时的x的值是否是函数y的定义域中的值?若是,则y的范围含f(y)0a1x2b1xc1ab2a2xb2xc2的y值,是否不含这个值.本题解法对证明形如“,a1x2b1xc1cda2xb2”的不等式具有一般性。
1x2x13[例7] 求证:22x12。
[分析] 此题目不等号中间式子可构造成一元二次函数,要注意对x的系数的两种情况讨论 6 x2x1y22(1y)xx1y0,x1证明:设,则
2y1xR,14(1y)0,得(1)当时,由13y,(y1)2 2
2(1y)xx1y0,得x=0(2)当y=1时,由x2x1yx21的定义域中的一个值,所以y=1是它的值域中的一个值.由(1)而x=0是函数131x2x13y2222x12。和(2)知,即[评价] 用判别式法证明不等式,实际上就是求函数的最大(最小)值或值域.它的使用
2f(y)xg(y)(y)0,f(y)0形式的一类函数范围是“解答函数的解析式可以转化
2的最大(小)值或值域问题”,学习时注意对x项系数f(y)0和f(y)0两种情况的讨论。
3.7 分解法
按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的.[例8] 求证:11111111 26122030426[分析] 此题不等号左边为同分子异分母的7个分数和,分母的结构特点是从1开始每相邻两个自然数乘积,符号为加减交替,可利用我们学过的式子使相同式子相消,即可得答案。[证明] 因为
111来做,n(n1)nn1111
n(n1)nn***1=<原题得2233445566776 所以 原式=1-证。
[评价]只要利用学过的公式来分解式子就更容易了,但这题要注意符号,符号容易出错。3.8函数极值法
在不等式证明中,我们常常构造函数f(x),而f(x)构造好后,如果在所给函数区间上无法判断f(x)符号,即当函数不具有单调性时,可以考虑用极值与最值的方法进行证明
[例9] 设xR,求证:4cos2x3sinx21.8[分析] 此题可构造成一元二次方程的顶点式进行证明。
31[证明] f(x)cos2x3sinx12sin2x3sinx2sinx2
48当sinx231时,f(x)max2;48当sinx1时,f(x)min4.故 4cos2x3sinx21.8[评价]这题难在于化简f(x)来构造函数,用一元二次方程的顶点式求最值较易。3.9函数单调法
当x属于某区间,有f(x)0,则f(x)单调上升;若f(x)0,则f(x)单调下降.推广之,若证f(x)g(x),只须证f(a)g(a)及f(x)g(x),(x(a,b))即可.[例10] 证明不等式e1x,x0.[分析] 所求不等式中有e,结构不复杂,求导数是它本身,这样用求导法来做应容易。靠导数求单调性就可把极值求出,即可证明不等式。
[证明]设fxe1x,则f'xe1。xxxx故当x0时,f'x>0,f严格递增; 当x0时,f'x0严格递减。
又由于f在x0处连续,则当x0时fxf00,从而得证。
[评价]此题目具有幂指数函数形式,对不等式进行移项、整理,在此基础上根据函数单调性证明之。利用函数单调性证明不等式,不等式两边必须可导,对所构造的辅助函数f(x)应在某闭区间内连续,开区间内可导,然后通过在开区间f'x的符号判断间上的单调性,根据单调性来解决不等式问题。
f(x)在闭区4小结
不等式的证明方法很多,远远不止以上所述,每一种方法都具有一定的特点和使用性,并有一定的规律可循,只有在多分析多总结的基础上,才能把握问题的实质,熟练运用各种证明技巧,提高解决问题的水平。各种证明方法之间也并不是孤立的,有时一个不等式也可能有好多种证明方法。我们在证明不等式中不必拘泥某种单一的方法,需要因地制宜根据不同的情况选择不同的方法来论证,可根据具体的情况灵活选择最简单、最优化的方法,从而达到最佳的证明效果,体现数学的简洁性和实用性。
经过这段时间的毕业论文设计和对相关资料的收集,我对于不等式的证明有了深刻的了解和认识。学习了这些方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽 8 象思维能力以及养成勤于思考、善于思考的良好学习习惯。
参考文献: [1]李长明,周焕山.初等数学研究[M].北京:高等教育出版社,1995,253-263.[2]叶慧萍.反思性教学设计-不等式证明综合法[J].数学教学研究,2005,10(3):89-91 [3]张顺燕 数学的思想、方法和应用[M]北京:北京大学出版社。2003 [4]数学分析.华东师范大学数学系(第三版)[M].北京:高等教育出版社,1999,87.[5]李海港,张传法.利用均值不等式求最值的技巧[M].学术期刊:高中数理化(高二)GAOZHONG SHU-LI-HUA。2007年第1期。
[6]霍连林.著名不等式[M].北京:中国物质出版社,1994,123-124.[7]张卫斌.中学数学不等式证明的常用策略与技巧[M].《新课程(中学)》2010年第12期
第三篇:证明不等式方法
不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法
比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab
2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤
1分析:通过观察可直接套用: xy≤x2+y2
2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥
33综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥
4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn
3求证:2f(n)≤f(2n)
4分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明:即证 |a-c|<c2-ab
即证(a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)
25放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<
2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>
ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=
1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<
b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例
7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<
1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤
3(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431
4证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+
2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
7反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤
2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q
3将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾∴p+q≤
2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0
8数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边>2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2>2k+1·2k+3
〈二〉(2k+2)2>(2k+1)(2k+3)
〈二〉4k2+8k+4>4k2+8k+3
〈二〉4>3③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132
49构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2(x≠0)
证明:设f(x)=x1-2x-x2(x≠0)
∵f(-x)
=-x1-2-x+x2x-2x2x-1+x
2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2
|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|
练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab
10添项法
某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。
1倍数添项
若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。
例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+
∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc
当且仅当a=b,b=c,c=a即a=b=c时,等号成立。
2平方添项
运用此法必须注意原不等号的方向
例14 :对于一切大于1的自然数n,求证:
(1+13)(1+15)…(1+12n-1> 2n+1 2)
证明:∵b > a> 0,m> 0时ba> b+ma+m
∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>
∴(1+13)(1+15)…(1+12n-1)>2n+1 2)
3平均值添项
例15:在△ABC中,求证sinA+sinB+sinC≤3
32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π
3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y
2∴上式成立
反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332
∴sinA+sinB≠sinC≤332
练习11 在△ABC中,sin A2sinB2sinC2≤18
4利用均值不等式等号成立的条件添项
例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18
分析:若取消a≠b的限制则a=b= 12时,等号成立
证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①
同理b4+3(12)4 ≥b②
∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③
∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立
1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。
正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。
6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz
错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz
错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:
x2y2+y2z2+z2x2x+y+z ≥ xyz
6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥
1x 1y
错证:∵yn-1xn+xn-1yn-1x-1y
=(xn-yn)(xn-1-yn-1)xnyn
n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-
1同号,∴yn-1xn+xn-1yn≥ 1x-1y
错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。
正解:应用比较法:
yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn
① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0
所以(xn-yn)(xn-1-yn-1)xnyn
≥0故:yn-1xn+xn-1yn≥ 1x-1y
② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|
又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y
综合①②知原不等式成立
第四篇:数学不等式证明方法论文开题报告
湖北大学
本科毕业论文(设计)开题报告 题目高中数学不等式的证明方法
姓名梁艳平学号 ***7 专业年级
2011级数学与应用数学 指导教师付应雄职称副教授
2015年03月03日
本课题的研究目的及意义
现实世界中的量有相等关系,也有不等关系,凡是与比较量的大小有关的问题,都要用到不等式的知识。不等式在解决最优化、最优控制、经济等各类实际问题中有广泛的应用,它是学习和研究现代科学和技术的一个基本工具。
不等式在中学数学中占有重要地位,在历年高考中颇为重视。由于不等式的形式各异,所以证明方法灵活、技巧多样,因此不等式的证明也是中学数学的难点之一。为了突破难点,我认为有必要对一些常见的证明方法和典型例题进行一些思考、研究和总结。
已了解的本课题国内外研究现状。
不等式的证明方法在国内外的研究都趋于高深、复杂、多方向化。不等式的证明方法也大多用于竞赛和考察数学素养。
本课题的研究内容
本课题主要研究不等式一些常见的证明方法:比较法,综合法,分析法,反证法,放缩法,数学归纳法,换元法,构造法和判别式法等。
本课题研究的实施方案、进度安排。
首先通过查阅国内外相关文献资料对不等式的证明方法做一个全面的了解,并了解学生对于不等式的证明方法的掌握程度与思考方式,其次,对于每种方法要举出一个典型的例子来帮助读者理解。
2015年1月——2014年2月:搜集、分析资料,确定题目;
2015年3月初:开题报告;
2015年3月初——3月底:撰写论文初稿;3月31日前提交纸质版初稿;
2015年4月中旬前:修改论文,定稿:外文翻译;
2015年4月底:论文答辩。
已查阅的主要参考文献
[1]胡汉明.不等式证明问题的思考方法.数学通讯.2004(11).[2]韩京俊.初等不等式的证明方法.哈尔滨工业大学出版社.[3]严镇军.不等式.人民教育出版社.[4]王胜林.卫赛民.证明不等式的几种特殊方法,数学通讯.[5]张联升.名师伴你行.北京光明日报出版社.2006.01.26-27页
[6]马勇.新课标高中基础知识点.北京教育出版社.2007.113-114页
[7]李长明,周焕山.初等数学研究.高等教育出版社(253-262页)
[8]韩京俊.初等不等式的证明方法.哈尔滨工业大学出版社.[9]王胜林.卫赛民.证明不等式的几种特殊方法.数学通讯.[10]华罗庚.数学归纳法.北京科学出版社,2002.[11]南山.柯西不等式与排序不等式.上海教育出版社,2007.[12]E.贝肯巴赫,R.贝尔曼.不等式入门.北京大学出版社,1985.[13]G.H.哈代,J.E.李特伍德,G.波里亚.不等式.北京科学出版社,1965.指导教师意见 签名: 年月日
系或专业审核意见1.通过;
负责人: 年月日
2.完善后通过;
3.不通过
第五篇:不等式证明若干方法
安康学院 数统系数学与应用数学 专业 11 级本科生
论文(设计)选题实习报告
11级数学与应用数学专业《科研训练2》评分表
注:综合评分60的为“及格”; <60分的为“不及格”。