压轴题型训练6-构造向量证明不等式

时间:2019-05-14 15:55:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《压轴题型训练6-构造向量证明不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《压轴题型训练6-构造向量证明不等式》。

第一篇:压轴题型训练6-构造向量证明不等式

构造向量证明不等式

教材中有关向量的内容,其中两个向量的数量积有一个性质:ab|a||b|cos(其中θ为向量a与b的夹角),则|ab|||a||b|cos|,又1cos1,则易得到以下推论:

(1)ab|a||b|;(2)|ab||a||b|;

(3)当a与b同向时,ab|a||b|;当a与b反向时,ab|a||b|;(4)当a与b共线时,|ab||a||b|。以上推论在证明不等式问题中有重要应用。

一、证明不等式

1已知a、bR,ab1,求证:2a12b122。证明:设m=(1,1),n(2a1,2b1),则

mn2a12b1,|m|2,|n|2a12b12

由性质mn|m||n|,得2a12b122

练习1.若a,bR,ab2,求证:2a12b123 例2 已知xyz1,求证:xyz证明:设m=(1,1,1),n=(x,y,z),则

222*1。3mnxyz1|m|3,|n|2xyz22222

由性质|mn||m||n|,得xyz2221 3a2b2c2abc例3 已知a,b,cR,求证:。bccaab2证明:设m(abc,),n(bc,ac,ab),bccaaba2b2c2,|n|2(abc)bcacab则mnabc,|m|222a2b2c2abc由性质|mn||m||n|,得 bccaab2 1

a2b2c2练习2.设a,b,cR,且abc2,求证:1

bccaab*abc,提示:构造m,nbccaab4422bc,ca,ab

332例4 已知a,b为正数,求证:(ab)(ab)(ab)。证明:设m(a,b),n(a,b),则22244222mna3b3|m|ab,|n|ab23322244

由性质|mn||m||n|,得(ab)(ab)(ab)例5 设a,b,c,dR,求证:adbca2b2c2d2。

证明:设m=(a,b),n=(c,d),则mnadbc

|m|a2b2,|n|c2d2

由性质ab|a||b|,得adbc

二、比较大小

例6 已知m,n,a,b,c,dR,且pp,q的大小关系为()

A.pq

B.pq

C.p

D.p,q大小不能确定

a2b2c2d2

abcd,qmancbd,那么mn解:设h(ma,nc),k(bd,),则 mnhkabcd|h|manc,|k|bd

mn由性质|hk||h||k|得abcd即pq,故选(A)

三、求最值

mancbd mn例7 已知m,n,x,yR,且mna,xyb,那么mx+ny的最大值为()

A.2222ab abB.C.2a2bD.2a2b2 2 2 解:设p=(m,n),q=(x,y),则 由数量积的坐标运算,得pqmxny 而|p|m2n2,|q|x2y2

从而有mxnym2n2x2y2

ab,故选(A)。

2222当p与q同向时,mx+ny取最大值mnxy例8

求函数y152x152x(x)的最大值。

22解:设m(2x1,52x),n(1,1),则

mn2x152x|m|2,|n|2

由性质mn|m||n|,得y当

2x152x22

12x1152x时,即x3时,ymax2 2

四、求参数的取值范围

例9 设x,y为正数,不等式xyaxy恒成立,求a的取值范围。

解:设m(x,y),n(1,1),则

mnxy,|m|xy,|n|2

y2xy 由性质mn|m||n|,得x又不等式xyaxy恒成立,故有a2

第二篇:压轴题型训练5-构造函数证明不等式

构造函数证明不等式

函数是高中数学的基础,是联系各个数学分支的桥梁和纽带.在不等式的证明中,我们可根据不等式的结构特点,建立起适当的函数模型,利用函数的单调性、凸性等性质,灵活、巧妙地证明不等式.一、二次函数型:

1.作差构造法.例1.求证:abcabbcca.分析:将a视为变量,考察函数faabcabbcc.由于该二次函数的图象开口向上,22222

2且3bc0,故fa0.结论获证.例2.设a,b,c为ABC的三条边,求证:a2b2c2<2abbcca.分析:构造函数fxx2bcxbc.∵fx图象开口向上,对称轴xbc.∴fx222

在,bc上单调递减.∵a,b,c为ABC的三条边,∴bc<a<bc(不妨设bc)∴fafbc.∵fbcbc2bcbcbc4cbc0.∴fa0.即结论成立.2.判别式构造法.2222例3.已知a,b,c,d都是实数,且ab1,cd1.求证:acbd1.222acbd4ab分析:所证结论即是222c2d20.故可构造函数

fxa2b2x22acbdxc2d2.由于fxax2acxc222bx222bdxd2axcbxd0.22

当且仅当xcd时取“=”号.又因为fx的图象开口向上,故必有0.结论成立.ab

2练习1.求证:acbdab22c2d2.点拨:证法同例3.该题是柯西不等式的特殊情形.其一般形式是:

nnnnnn2222xbi2证之.aibiaibi.可构造函数fxaix2aibi

i1i1i1i1i1i12

练习2.已知a,b是不相等的两个正数,求证:

aba3b3a2b22.2点拨:构造函数fxabx2ab22xa3b3axabxb证之.22

练习3.已知a,b都是正数,x,yR,且ab1,求证:

ax2byaxby.222

点拨:构造函数fzabz2axbyzaxbyazxbzy证之.242

练习4.求证:31aa1aa



.点拨:构造函数fx3x21aa

二、分式函数型:

x1a

a4x1xaxa2证之.例4.已知a,b,m都是正数,并且ab,求证:

分析:构造函数fx

ama

.bmb

baxa

0.故fx在x0,.由于当x0,时,fx

2xbxb

0,上是增函数.∵fx在x0处右连续,∴fx在0,上是增函数.∵m0 ∴

fmf0 即

ama.bmb

ab

1.1ab

例5.已知a1,b1,求证:

1a2ax

0.分析:构造函数fxx1,1.由于当x1,1时,fx2

1ax1ax

故fx在1,1上是增函数.∵fx在x1处右连续,在x1处左连续.∴fx在1,1上是增函数.∵1b1 ∴f1fbf1 ,即1

ab

1, 即1ab

ab

1.1ab

练习5.已知cab0,求证:

点拨:构造函数fx

ab.cacb

x

x0,c

cx

abc

.ambmcm

练习6.已知ABC的三边长分别是a,b,c.且m为正数.求证:

点拨:构造函数fx

x,x0,.易证fx为增函数.由于abc, xmabcababab

故fabfc.即.而.abmcmambmabmabmabm

abc故有.ambmcm

练习7.求证:

ab1ab

ab1ab

.分析:构造函数fx

三、幂函数型:

x,x0,证之.1x

3223

例6.如果a,b都是正数,且ab,求证:ababab.分析:abababab

n

*

553223

a

b2.考察函数fxx,(nN)在0,上的单调性,显然fx在0,上为增函数.3322

若ab,则ab, ab,所以ab



aa

b20; b20。

3322

若ab,则ab, ab,所以ab

332

所以ababab.利用函数的单调性证法可以将上述结论推广为: 若a、b是正数且ab,求证:a四、一次函数型:

例7.设a,b,c0,1,求证:abcabbcca1.分析:构造函数fa1bcabcbc1,a0,1.∵f0bcbc11cb10,f11bcbcbc1bc0.∴对任意a0,1,恒有fa0.故原不等式成立.五、三角函数型:

222

2例8.已知a,b,c,d都是实数,且ab1,cd1.求证:acbd1.55322

3mn

bmnambnanbm.(m,nN*)

cossinsin 分析:设acos,bsin, ccos,dsin.则acbdcoscos1.练习8.设x,yR,且xy1,求证

:x2xyy点拨:设xrcos,yrsin.其中r1.以下略.六、构造函数,利用函数图象的凸性: 例9.求证3+7<2

5分析:考察函数f(x)=x的图象,特征是上凸函数.对任意x1,x20,,且x1x2,都有:

f(x1)f(x2)

2f3f7所以,f5.2

1即(+7)<.2

两条结论:

(1

值之和越大.(2)下凸函数,区间中点相同时,两端“距离”区间中点越近,两端点函数值之和越小.练习9.已知:fxtanx,x0,1

x,xxx, 若 且,试判断0,1212fx1fx2与222

xx

f12的大小.2

练习10.已知:fxlgx

x1,若0x1x2,试比较

lgAlgB

fx1fx2与2

xx

f12的大小 2

练习11.求证:lg

AB2

AB0.以上表明,若能清楚不等式所反映的图象意义,就会给证明提供思路.七、构造连续函数,应对含离散型变量的不等式问题: 例10.已知m,n是正整数,且1﹤m<n.证明1m>1n.n

m

分析:不等式1m>1n两边取对数,得:ln1m>ln1n.n

m

n

m

整理,得:

ln1mln1n>.mn

构造函数gx

ln1x

x

x2.x

ln1x

求导,得:gx1x.2x

当x2时,可得:0<

x

<1,ln1xln3>1.1x

故gx<0.所以gx在2,上是减函数.∵gx在x2处右连续.∴gx在2,上是减函数.∵m<n,∴ gm>gn.即

n

m

ln1mln1n>.mn

整理,得:1m>1n.注:不等式1m>1n也可化为:1m

n

m

m

>1n

1n

.这时,可研究函数

hx1xe

1x

ln1xx的单调性证之.n

1练习12.已知n是正整数且n≥3.求证:n

点拨:不等式n

n1

n

>n1.n

>n1两边取自然对数,整理得:

lnnlnn1>.n1n

构造函数fx

lnx

可证之.x

lnfx

说明:根据所构造函数的结构特点,我们将函数转化为lnfx型或e

型,方便了对函数的求导运算.不等式证明的数学模型,除本文介绍的函数模型外,还可建立向量模型、解析几何模型、方程模型等.

第三篇:向量法证明不等式

向量法证明不等式

高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n=2,3时的情况.设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

规定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.(注:a·b可记为(a,b),表示两向量的内积),有

由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.一、利用向量模的和与和向量的模的不等式(即

例1设a,b,c∈R+,求证:(a+b+c)≤++≤.证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),则由

综上,原不等式成立.点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.作单位向量j⊥AC

j(AC+CB)=jAB

jAC+jCB=jAB

jCB=jAB

|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

即|CB|sinC=|AB|sinA

a/sinA=c/sinC

其余边同理

在三角形ABC平面上做一单位向量i,i⊥BC,因为BA+AC+CB=0恒成立,两边乘以i得i*BA+i*AC=0①根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC

步骤1

记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

第四篇:构造向量巧解不等式问题

构造向量巧解有关不等式问题

新教材中新增了向量的内容,其中两个向量的数量积有一个性质:ab|a||b|cos(其中θ为向量a与b的夹角),则|,又,则易得到以1cos1ab|||a|||bcos|

下推论:

(1)ab|ab|||;

(2)|ab||a||b|;

(3)当a与b同向时,ab|ab|||;当a与b反向时,ab|a||b|;

(4)当a与b共线时,|ab||a||b|。

下面例析以上推论在解不等式问题中的应用。

一、证明不等式

例1已知a。、bR,ab12证明:设m=(1,1),n,则 2a2b1)

ab

1||2||a12b1

2ab12由性质m n|m||n|,得yz1,求证:xyz例2已知x。

证明:设m=(1,1,1),n=(x,y,z),则 2221

3mnxyz1

||3,|n|xyz

222222 mnm|||||n,得xyz由性质|

22213a2b2c2abcR,求证:例3已知a,b,c。bccaab2

222abc)证明:设m,ab)bccaab

则m nabc

222abc||||2(abc)bcacab

第1页(共4页)

-----------

a2b2c2abc由性质| mn||m||n|,得bccaab2222例4已知a,b为正数,求证:(。ab)(ab)(ab)

证明:设m (a,b),n(a,b),则

33mnab

224442233222||ab,|n|ab

由性质|mn||m||n|,得 222

44422332(ab)(ab)(ab)

dacd。,b,c,dR例5设a,求证:a

证明:设m=(a,b),n=(c,d),则

mnadbc

2222 ||ab||cd222

由性质ab|ab|||,得

222adacd

二、比较大小

Rda例6已知m,n,a,b,c,d

p,q的大小关系为()

A.pqB.pqC.p

hkabcd

bd |h|manc,|k|mn

hk||hk|||得 由性质|

bcdman即pq,故选(A)

bd mn

三、求最值

例7已知m,n,x,y,且m,那么mx+ny的最大值为na,xybR

()A.2222abB.ab

2C.a2b2

2D.a2b2

解:设p=(m,n),q=(x,y),则

由数量积的坐标运算,得p qmxny

而|| mn||xy

从而有m xnmxy

当p与q同向时,mx+ny取最大值m,故选(A)。nxyb

例8求函数的最大值。x)

解:设,则 x2x),n(1,1)***2

mn2x12x

|m|2,|n|2

由性质mn|m||n|,得

x2x2

四、求参数的取值范围 113 时时,y2max22x2x

yy例9设x,y为正数,不等式x恒成立,求a的取值范围。

yn),(1,1)解:设,则

||xy||2

由性质mn|m||n|,得

xyxy yy又不等式x恒成立

故有a2

黑龙江省大庆市66中学(163000)

第五篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2

1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈R,0

bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数

bx∴y= ∵m>0 ∴f(m)> f(0)

∴ama> bmb例

6、求证:ab1ab≤

ab1ab(a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=

x,可证得f(x)在[0,∞)上是增函数(证略)1x 而 0<∣a+b∣≤∣a∣+∣b∣

得 f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab1ab≤

ab1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—

x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。

1x222x2证明:设 y=,则yx-x+y=0 21x ∵x为任意实数 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤

22x11 ∴—≤≤

21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y

对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。

22证明:∵lgxlgy > 0(x>1,y>1)∴原不等式可变形为:Lga≥

lgxlgylgxlgy22

2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥10

2即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx<(x≠0)12x2xx 证明:设f(x)=-(x≠0)x122 例

9、证明不等式:

xxx2xx ∵f(-x)=-= x+ x122212xxx

[1-(1-2)]+ 12x2xx =-x+= f(x)x122 = ∴f(x)的图象关于y轴对称

x ∵当x>0时,1-2<0,故f(x)<0 当x<0时,根据图象的对称性知f(x)<0 故当 x≠0时,恒有f(x)<0 即:xx<(x≠0)x122 [小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

下载压轴题型训练6-构造向量证明不等式word格式文档
下载压轴题型训练6-构造向量证明不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    构造一次函数证明不等式

    构造一次函数证明不等式一次函数是同学们非常熟悉的函数.由一次函数ykxb的图象可知,如果f(m)0,f(n)0,则对一切x(m,n)均有f(x)0.我们将这一性质称为一次函数的保号性.利用一......

    构造函数证明不等式

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......

    构造函数证明不等式

    构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l......

    向量 不等式(高考题型与方法)

    向量(高考题型与方法)1.已知向量a=1),b=(0,-1),c=(k。若a-2b与c共线,则k=___________________。2.已知向量a,b满足a1,b2, a与b的夹角为60°,则ab3.已知平面向量,,1,2,(2),则2a的值是4.如图......

    用向量可以证明不等式

    运用向量可以证明不等式向量一章中有两处涉及到不等式,其一,aa+bab或-bab;其二,abab。前者的几何意义是三角形两边之和大于第三边,两边之差小于第三边,后者是数量积的性质,这两个结......

    构造法证明函数不等式

    构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函......

    构造函数法证明不等式

    构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等......

    巧用构造法证明不等式

    巧用构造法证明不等式构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数......