构造函数,利用导数证明不等式

时间:2019-05-15 14:10:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《构造函数,利用导数证明不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《构造函数,利用导数证明不等式》。

第一篇:构造函数,利用导数证明不等式

构造函数,利用导数证明不等式

湖北省天门中学薛德斌2010年10月

1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).

2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.

求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).

3、已知m、nN,且mn,求证:(1m)(1n).

nm

4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例

5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x1、x2,且

2x1x2,证明:fx2

12In2.4a0,b0,例

6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x

11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例

7、(1)已知x0,求证:

第二篇:构造函数,结合导数证明不等式

构造函数,结合导数证明不等式

摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐含,联想构造等方法进行证明.关键词:构造函数;求导;证明;不等式

利用导数证明不等式是四川高考压轴题的热点题型之一,此类问题的特点是:问题以不等式形式呈现,“主角”是导数,而不等式的证明不仅技巧性强,而且方法灵活多变,因此构造函数成为证明不等式的良好“载体”,如何有效合理地构造函数是证明不等式的关键所在,下面以实例谈谈如何构造函数的若干解题策略.注:此题也可用数学归纳法证明.解后感悟:函数隐藏越深,难度就越大,如何去寻找证明不等式的“母函数”是解决问题的关键,通过合理变形,展开思维联想的翅膀,发现不等式背后的隐藏函数,便会柳暗花明.结束语:导数为证明不等式问题开辟了新方法,使过去不等式的证明方法,从特殊技巧变为通性通法,合理构造函数,能使解题更具备指向性,剑之所指,所向披靡.

第三篇:导数证明不等式构造函数法类别(教师版)

导数证明不等式构造函数法类别

1、移项法构造函数

1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1 从其导数入手即可证明。

【解】f(x)1x1 x1x1∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数

当x0时,f(x)0,即f(x)在x(0,)上为减函数 故函数f(x)的单调递增区间为(1,0),单调递减区间(0,)

于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0 ∴ln(x1)x(右面得证),现证左面,令g(x)ln(x1)111x1,则g(x) 22x1x1(x1)(x1)当x(1,0)时,g(x)0;当x(0,)时,g(x)0,即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数g(x)在(1,)上的最小值为g(x)ming(0)0,110 x1111ln(x1)x ∴ln(x1)1,综上可知,当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1)

2、作差法构造函数证明 【例2】已知函数f(x) 图象的下方;

分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,即只需证明在区间(1,)上,恒有122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的 23122xlnxx3,23122xlnxx3成立,设F(x)g(x)f(x),x(1,),考虑到23F(1)10 6要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。【解】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F(x)2xx= 当x1时,F(x)=

xxx从而F(x)在(1,)上为增函数,∴F(x)F(1)∴当x1时 g(x)f(x)0,即f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)

3、换元法构造函数证明

10 623x的图象的下方。31111)23 都成立.nnn1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒

n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。233213x3(x1)2【解】令h(x)xxln(x1),则h(x)3x2x在x(0,)上恒正,x1x1322 所以函数h(x)在(0,)上单调递增,∴x(0,)时,恒有h(x)h(0)0,即xxln(x1)0,∴ln(x1)xx

对任意正整数n,取x32231111(0,),则有ln(1)23 nnnn【警示启迪】当F(x)在[a,b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.

4、从条件特征入手构造函数证明

【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证: af(a)>bf(b)

【解】由已知 xf(x)+f(x)>0 ∴构造函数 F(x)xf(x),' 则F(x) xf(x)+f(x)>0,从而F(x)在R上为增函数。

ab ∴F(a)F(b)即 af(a)>bf(b)【警示启迪】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明。若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结。

5、主元法构造函数

例.(全国)已知函数f(x)ln(1x)x,g(x)xlnx(1)求函数f(x)的最大值;

ab)(ba)ln2.2ab)中以b为主变元构造函数, 证明:对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(2(2)设0ab,证明 :0g(a)g(b)2g(设F(x)g(a)g(x)2g(ax'axax.)]lnxln),则F'(x)g'(x)2[g(222' 当0xa时,F(x)0,因此F(x)在(0,a)内为减函数.' 当xa时,F(x)0,因此F(x)在(a,)上为增函数.从而当xa时, F(x)有极小值F(a).因为F(a)0,ba,所以F(b)0,即g(a)g(b)2g(又设G(x)F(x)(xa)ln2.则G'(x)lnxlnab)0.2axln2lnxln(ax).2' 当x0时,G(x)0.因此G(x)在(0,)上为减函数.因为G(a)0,ba,所以G(b)0,即g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x x解:(1)f′(x)= ae-x,∵f(x)在R上为增函数,∴f′(x)≥0对x∈R恒成立,-x-x-x-x-x 即a≥xe对x∈R恒成立 记g(x)=xe,则g′(x)=e-xe=(1-x)e,当x>1时,g′(x)<0,当x<1时,g′(x)>0.

知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a≥1/e, 即a的取值范围是[1/e, + ∞)(2)记F(X)=f(x)-(1+x)=exx12x1x(x0)2x

x 则F′(x)=e-1-x, 令h(x)= F′(x)=e-1-x,则h′(x)=e-1 当x>0时, h′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0 即F′(x)>0 ,∴F(x)在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x.

7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)11xe1x2

8.构造形似函数

例:证明当bae,证明ab ba

例:已知m、n都是正整数,且1mn,证明:(1m)(1n)

nm4

【思维挑战】

1、设a0,f(x)x1ln2x2alnx 求证:当x1时,恒有xlnx2alnx1

2、已知定义在正实数集上的函数

f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22求证:f(x)g(x)

3、已知函数f(x)ln(1x)xb,求证:对任意的正数a、b,恒有lnalnb1.1xa4、f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有()

(A)af(b)≤bf(a)(C)af(a)≤f(b)

【答案咨询】

1、提示:f(x)1 ∴

(B)bf(a)≤af(b)(D)bf(b)≤f(a)2lnx2a2lnx1,当x1,a0时,不难证明xxxf(x)0,即f(x)在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xlnx2alnx1

123a222、提示:设F(x)g(x)f(x)x2ax3alnxb则F(x)x2a

2x(xa)(x3a)=(x0)a0,∴ 当xa时,F(x)0,x 故F(x)在(0,a)上为减函数,在(a,)上为增函数,于是函数F(x)在(0,)上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x)

3、提示:函数f(x)的定义域为(1,),f(x)11x 1x(1x)2(1x)2∴当1x0时,f(x)0,即f(x)在x(1,0)上为减函数

当x0时,f(x)0,即f(x)在x(0,)上为增函数

因此在x0时,f(x)取得极小值f(0)0,而且是最小值

x1,即ln(1x)1 1x1xa1bab1 于是ln1 令1x0,则1bx1abab因此lnalnb1

a于是f(x)f(0)0,从而ln(1x) f(x)f(x)xf'(x)f(x)F(x)

4、提示:F(x),F(x),故在(0,+∞)上是减函数,由ab 02xxx有f(a)f(b) af(b)≤bf(a)故选(A)ab

第四篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2

1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈R,0

bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数

bx∴y= ∵m>0 ∴f(m)> f(0)

∴ama> bmb例

6、求证:ab1ab≤

ab1ab(a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=

x,可证得f(x)在[0,∞)上是增函数(证略)1x 而 0<∣a+b∣≤∣a∣+∣b∣

得 f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab1ab≤

ab1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—

x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。

1x222x2证明:设 y=,则yx-x+y=0 21x ∵x为任意实数 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤

22x11 ∴—≤≤

21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y

对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。

22证明:∵lgxlgy > 0(x>1,y>1)∴原不等式可变形为:Lga≥

lgxlgylgxlgy22

2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥10

2即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx<(x≠0)12x2xx 证明:设f(x)=-(x≠0)x122 例

9、证明不等式:

xxx2xx ∵f(-x)=-= x+ x122212xxx

[1-(1-2)]+ 12x2xx =-x+= f(x)x122 = ∴f(x)的图象关于y轴对称

x ∵当x>0时,1-2<0,故f(x)<0 当x<0时,根据图象的对称性知f(x)<0 故当 x≠0时,恒有f(x)<0 即:xx<(x≠0)x122 [小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

第五篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号

何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)

2∵b、c∈R,∴⊿≤0

即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。3

abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc

2∴⊿=(b2)24(b22b1)3b24b0,即:0b

4同理可求得a,c0, 34。

3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2 由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:a14b14c14d1﹤6。

解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)2

=8x22(4a14b14c14d1)x4.(abcd1)

由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求

解析:构造函数f(x)(=(1axa)2(149的最小值。abc2xb)2(3cx)2 1492)x12x1,(abc1)abc

111由f(x)0(当且仅当a,b,c时取等号),632

149得⊿≤0,即⊿=144-4()≤0 abc

111149∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a

求证: ama> bmb

[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不

等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈R,0

bxbabaf(x)==1-bxbx证明:令 f(x)=

∵b-a>0

ba+ 在R上为减函数 bx

ba+从而f(x)= 在R上为增函数 bx∴y=

∵m>0∴f(m)> f(0)∴ama> bmb

6、求证:ab

1ab≤ab

1ab(a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=x,可证得f(x)在[0,∞)上是增函数(证略)1x

而0<∣a+b∣≤∣a∣+∣b∣

得f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab

1ab≤ab

1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较

法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—1x1≤≤ 221x

2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是

构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。1x222

x2证明:设 y=,则yx-x+y=0 21x

∵x为任意实数

22∴上式中Δ≥0,即(-1)-4y≥0

411得:—≤y≤ 22

1x1∴—≤≤ 21x22∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最

大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。22证明:∵lgxlgy > 0(x>1,y>1)

∴原不等式可变形为:Lga≥lgxlgy

lgxlgy2

22lgxlgy)2lgxlgy令 f(x)= == 222222lgxlgylgxlgylgxlgylgxlgy

22而 lgx>0,lgy>0,∴lgx+lgy ≥ 2lgxlgy > 0

∴2lgxlgy≤1 22lgxlgy

∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥102即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx<(x≠0)12x

2xx 证明:设f(x)=-(x≠0)x122 例

9、证明不等式:

xxx2xx∵f(-x)=-= x+ x122212

xxx[1-(1-2)]+12x2

xx=-x+= f(x)x122=

∴f(x)的图象关于y轴对称

x∵当x>0时,1-2<0,故f(x)<0

当x<0时,根据图象的对称性知f(x)<0

故当 x≠0时,恒有f(x)<0

即:xx<(x≠0)x122

[小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

下载构造函数,利用导数证明不等式word格式文档
下载构造函数,利用导数证明不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    构造函数证明不等式

    构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l......

    利用导数证明不等式

    利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0, 要证不等式变为:x>0时,f(x)>f(0), 这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x......

    利用导数证明不等式

    利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......

    导数证明不等式构造函数法类别(学生版)

    导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:......

    构造法证明函数不等式

    构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函......

    构造函数法证明不等式

    构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等......

    构造函数证明数列不等式

    构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3......

    谈利用导数证明不等式.

    谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维......