数列----利用函数证明数列不等式

时间:2019-05-13 09:02:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列----利用函数证明数列不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列----利用函数证明数列不等式》。

第一篇:数列----利用函数证明数列不等式

数列已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)设a10,数列{lg大值。

2已知数列{an}的前n项和Sn

(1)确定常数k,求an;

(2)求数列{

3在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列m2m10a1的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最an12nkn,kN*,且Sn的最大值为8.292an的前n项和Tn。n2bm的前m项和Sm.

第二篇:构造函数证明数列不等式

构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*).例1.求证:23436

ln2ln3lnn2n2n1例2.求证:(1)2,(n2)2(n1)23n

例3.求证:

例4.求证:(1

练习:

1求证:(112)(123)[1n(n1)]e

2.证明:

3.已知a11,an1(1

4.已知函数f(x)是在(0,)上处处可导的函数,若x2n311111ln(n1)1 23n12n111111)(1)(1)e和(1)(1)(12n)98132!3!n!e.ln2ln3ln4lnnn(n1)(nN*,n1)345n14112)a.ae证明.nnn2n2nf'(x)f(x)在x0上恒成立.(I)求证:函数g(x)

(II)当x1f(x)在(0,)上是增函数; x0,x20时,证明:f(x1)f(x2)f(x1x2);(III)已知不等式ln(1x)x在x1且x0时恒成立。

5.已知函数f(x)xlnx.若a0,b0,证明:f(a)(ab)ln2f(ab)f(b).

第三篇:构造函数证明数列不等式答案

构造函数证明数列不等式答案

例1.求证:

ln22ln33ln44

ln33

nn

3

n

5n66

(nN).*

解析:先构造函数有lnxx1lnx11,从而

x

x

ln22ln33ln44

ln33

nn

31(n



n)

因为



n

1123111111111

nnn

2134567892

n1

3n139933

23n13n

6691827

5n



6

n

所以

ln22

ln33

ln44



ln33

n

n

31

n

5n6

3

5n66

例2.求证:(1)2,ln22

ln33



lnnn

2n

n1

2(n1)

(n2)

解析:构造函数f(x)

lnxx,得到

lnnn

lnnn

2,再进行裂项

lnnn

1

1n

1

1n(n1),所以有

ln2,13

ln3ln2,…,13

n

1n

lnnln(n1),1n1

ln(n1)lnn,相

加后可以得到:



1n1

ln(n1)

另一方面SABDE

1n1

ni

1x,从而有

1ni

n

i

ni

1x

n

lnx|nilnnln(ni)取i1

有,lnnln(n1),12

1n

所以有ln(n1)1

,所以综上有



1n1

12!

ln(n1)1



1n

例11.求证:(1)(1

13!)(1

1n!)e和(1

19)(1

181)(1

2n)e.解析:构造函数后即可证明

例12.求证:(112)(123)[1n(n1)]e解析:ln[n(n1)1]2

3n(n1)1

2n3,叠加之后就可以得到答案

例13.证明:

ln23ln34ln45

lnnn1



n(n1)

(nN*,n1)

解析:构造函数f(x)ln(x1)(x1)1(x1),求导,可以得到:f'(x)

1x1

1

2xx1

'',令f(x)0有1x2,令f(x)0有x2,所以f(x)f(2)0,所以ln(x1)x2,令xn1有,lnn

lnnn1

n12

n1

所以

,所以

ln23

ln34

ln45



lnnn1

n(n1)

(nN*,n1)

例14.已知a11,an1(1

1n(n1)

1nn

n)an

n

.证明ane.12

n

解析: an1(1)an

(1

1n(n1)

)an,然后两边取自然对数,可以得

到lnan1ln(1

1n(n1)

n)lnan

然后运用ln(1x)x和裂项可以得到答案)放缩思路:

an1(1

1n

n

2n)anlnan1ln(1

1nn

n)lnanlnan

1nn

n

。于

是lnan1lnan

1nn

n,n1n1

i1

(lnai1lnai)

i1

1n1

1()

11111 2(2i)lnanlna112n2.1nn2ii2

1

即lnanlna12ane.注:题目所给条件ln(1x)x(x0)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论2

an1(1

1n(n1))an

1n(n1)

n

n(n1)(n2)来放缩:

an11(1

1n(n1))(an1)

ln(an11)ln(an1)ln(1

n1

n1

1n(n1)

1i(i1))

1n(n1)

.1n1,

[ln(ai11)ln(ai1)]

i2

i2

ln(an1)ln(a21)1

即ln(an1)1ln3an3e1e.例15.(2008年厦门市质检)已知函数f(x)是在(0,)上处处可导的函数,若xf'(x)f(x)

f(x)x

在x0上恒成立.(I)求证:函数g(x)在(0,)上是增函数;

(II)当x10,x20时,证明:f(x1)f(x2)f(x1x2);(III)已知不等式ln(1x)x在x1且x0时恒成立,求证:

ln2

ln3

ln4

1(n1)

ln(n1)

n

2(n1)(n2)

(nN).*

解析:(I)g'(x)

f'(x)xf(x)

xf(x)x

0,所以函数g(x)

f(x)x

在(0,)上是增函数

(II)因为g(x)在(0,)上是增函数,所以

f(x1)x1

f(x1x2)x1x2

f(x1)

x1x1x2

f(x1x2)

f(x2)x2

f(x1x2)x1x2

f(x2)

x2x1x2

f(x1x2)

两式相加后可以得到f(x1)f(x2)f(x1x2)(3)

f(x1)x1

f(x1x2xn)x1x2xn

f(x1)

x1

x1x2xn

x2

x1x2xn

xn

x1x2xn

f(x1x2xn)

f(x2)x2f(xn)xn

f(x1x2xn)x1x2xnf(x1x2xn)x1x2xn

f(x2)

f(x1x2xn)……

f(xn)

f(x1x2xn)

相加后可以得到:

f(x1)f(x2)f(xn)f(x1x2xn)所以

x1lnx1x2lnx2x3lnx3xnlnxn(x1x2xn)ln(x1x2xn)

令xn

11112222ln2ln3ln4ln(n1),有 222222

34(n1)(1n)

111

ln222

3(n1)2



11112222

34(n1)2

111

2232(n1)2

111ln(n1)n2132



111n



n12n22(n1)(n2)

所以

ln2

ln3

ln4

1(n1)

ln(n1)

n

2(n1)(n2)

(nN).*

(方法二)

ln(n1)(n1)

ln(n1)

(n1)(n2)

11

ln4

(n1)(n2)n1n2

1nln412

ln(n1)ln42

(n1)2n22(n2)1

ln4

所以

ln2

ln3

ln4

又ln41

1n1,所以1ln221ln321ln42

222

1(n1)

ln(n1)

n

2(n1)(n2)

(nN).*

例16.(2008年福州市质检)已知函数f(x)xlnx.若a0,b0,证明:f(a)(ab)ln2f(ab)f(b).解析:设函数g(x)f(x)f(kx),f(x)xlnx,(k0)

g(x)xlnx(kx)ln(kx),0xk.g(x)lnx1ln(kx)1ln令g(x)0,则有

xkx

1

xkx,k2

xk.2xkkx

0

∴函数g(x)在[,k)上单调递增,在(0,k

k2

]上单调递减.kk

∴g(x)的最小值为g(),即总有g(x)g().22

而g()f()f(k

k

k

k2)kln

k2

k(lnkln2)f(k)kln2,g(x)f(k)kln2, 即f(x)f(kx)f(k)kln2.令xa,kxb,则kab.f(a)f(b)f(ab)(ab)ln2.f(a)(ab)ln2f(ab)f(b).

第四篇:数列不等式的证明

数列和式不等式的证明策略

罗红波洪湖二中高三

(九)班周二第三节(11月13日)

数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其实,这类不等式的证明,是有一定的规律的,利用S1

n

a1q

来证明也能事半功倍,下面用几个例子来简述数列和式不等式的证明

S1

n

a1q

常用策略。

一、基础演练:

1、等比数列{an},公比为q,则{an}的前n项和Sn为()

na1(q1A.)

an

a1(1q)1(1qn)a

1q(q1)B.na1C.1qD.11q2、正项等比数列{an},公比为q,0q1,{an}的前n项和Sn,以下说法正确的是()A.S1n

a11qB.Sa11qC.Saa

nn1qD.Sn11q3、正项数列{a},{a的前n项和Sa

nn}n,要证明S1n1q,其中0q1,可以去证明()A.

an1qB.an1aqC.an1qD.a

n1aq nnanan

二、典例精讲:

1、等比数列{a1

n},a11,q2,{an}的前n项和Sn,求证:Sn2

变式

1、正项等比数列{an},{a1n}的前n项和Sn,a11,Sn2恒成立,求证:0q

2例

2、已知数列{an},an1

2n

1,{an}的前n项和S5n,求证:Sn2(Sn3?)

aann变式

2、数列{n1n},a3232n1,a11,{a3

n1n}的前n项和Sn,求证:Sn n

2例

3、(09四川理22)数列{an}的前n项和Sn,对任意正整数n,都有a4an

n5Sn1成立,记bn1a(nN).n

(1)求数列{bn}的通项公式;

(2)记c

nb2nb2n1(nN),{c3

n}的前n项和Tn,求证:Tn

2变式

3、已知a1n

2,求证Sn(1)a1(1)2a2(1)nan1

(2)n

3三、小结

四、课后作业:

1、等比数列{a1

n},a12,q

3,{an}的前n项和Sn,求证:Sn3

2、已知数列{an},an

14n2,{an}的前n项和Sn,求证:S2

n

3

第五篇:利用定积分证明数列和型不等式

利用定积分证明数列和型不等式

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为的图象在点

.(Ⅰ)用表示出(Ⅱ)若;

在内恒成立,求的取值范围;

(Ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图5

故原不等式成立.,所以,

下载数列----利用函数证明数列不等式word格式文档
下载数列----利用函数证明数列不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    利用定积分证明数列和型不等式

    利用定积分证明数列和型不等式 我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些......

    放缩法证明数列不等式

    放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用......

    放缩法证明数列不等式

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......

    探索数列不等式的证明

    探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归......

    数列与不等式证明专题五篇

    数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条......

    数列不等式推理与证明

    2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数......

    高中数学_利用定积分证明数列和型不等式(定稿)

    利用定积分证明数列和型不等式湖北省阳新县高级中学 邹生书我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较......

    利用定积分证明数列和型不等式剖析[大全]

    利用定积分证明数列和型不等式 我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些......