利用方所发证明数列型不等式压轴题

时间:2019-05-12 20:35:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用方所发证明数列型不等式压轴题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用方所发证明数列型不等式压轴题》。

第一篇:利用方所发证明数列型不等式压轴题

思想方法

一、函数与方程思想姓名:

方法1构造函数关系,利用函数性质解题班别:

根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。

232352525例1(10安徽)设a(),b(),c(),则a,b,c的大小关系是()55

5A.acb

B.abcC.cabD.bca

例2 已知函数f(x)12xax(a1)lnx,a1.2(1)讨论函数f(x)的单调性;

(2)证明:若a5,则对任意x1,x2(0,),x1x2,有

f(x1)f(x2)1.x1x2

方法2选择主从变量,揭示函数关系

含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。

例3对于满足0p4的实数p,使xpx4xp3恒成立的x的取值范围是.2方法3变函数为方程,求解函数性质

实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

4函数f(x)x2)的值域是()11B.,3311C.,2222D.,3311A.,44

方法1函数与不等式问题中的数形结合研究函数的性质可以借助于函数的图像,从函数图像上能直观地观察单调性、周期性、对称性等性质。不等式问题与函数的图像也有密切的联系,比如应用二次函数的图像解决一元二次不等式,就体现了数形结合的思想方法。因此,解决不等式问题要常联系对应的函数图像,利用函数图像,直观地得到不等式的解集,避免复杂的运算。

lgx,0x10,例1(10新课标全国卷)已知函数f(x)若a,b,c互不相等,且1x6,x10.2f(a)f(b)f(c),则abc的取值范围是()

A.(1,10)B.(5,6)C.(10,12)D.(20,24)

3x6,x2,若不等式f(x)2xm恒成立,则实数m的取值范围是.变式:函数f(x)2xx2,x2.方法2解析几何中的数形结合解析几何是用方程研究曲线的问题,蕴含着丰富的数形结合思想,往往要先把题目中的几何语言转化为几何图形,然后再结合这种图形(一般为曲线)的几何特征,用代数语言即方程表现出来,从而用代数的方法解决几何问题。

x2y20例2 已知双曲线221(a0,b0)的右焦点为F,若过点F且倾斜角为60的直线与双曲线的右支有且ab

只有一个交点,则此双曲线离心率的取值范围是()

A.(1,2]B.(1,2)C.[2,)D.(2,)

例3 已知P为抛物线y12,则PAPM的(2,0)x上的动点,点P在x轴上的射影为M,点A的坐标为

4最小值是.方法3参数范围问题中的数形结合如果参数具有明显的几何意义,那么可以考虑应用数形结合思想解决问题。一般地,常见的对应关系有:

(1)ykxb中的k表示直线的,b表示直线在轴上的;

(2)bn表示连接(a,b)和(m,n)两点直线的; am

(3(a,b)和(m,n)之间的(4)导数f(x0)表示曲线在点(x0,f(x0))处的。

利用这些对应关系,由数想形,可以巧妙的利用几何法解决。

例4 若直线ykx1与圆xy1交于P、Q两点,且POQ120(其中O为原点),则k的值为()

220'

A.B.C.D.39变式:直线ykx3与圆(x)2(y3)2交于M、N两点,若MN,则k的取值范围值是()

243A.,04

B.C.2D.,03

2方法1概念分类型

有许多核心的数学概念是分类的,比如:直线的斜率、指数函数、对数函数等,与这样的数学概念有关的问题往往需要根据数学概念进行分类,从而全面完整得解决问题。

例1 若函数f(x)axa(a0且a1)有两个零点,则实数a的取值范围是x

方法2运算需要型

分类讨论的许多问题是由运算的需要引发的,比如:除法运算中分母是否为0;解方程、不等式中的恒等变形;用导数求函数单调性时导数正负的讨论;对数运算中底数是否大于1;数列运算中对公差、公比限制条件的讨论等,如果运算需要对不同情况作出解释,就要进行分类讨论.例2 设函数f(x)x3

'92x6xa.2(1)对于任意实数x,f(x)m恒成立,求m的最大值.(2)若方程f(x)0有且仅有一个实数,求a的取值范围.方法3参数变化型

很多问题中参数的不同取值会对结果产生影响,因此,需要对参数的取值进行分类,常见的问题有:含参不等式的求解;解析式中含有参数的函数的性质问题;含参二元二次方程表示的曲线类型;参数的几何意义等.(x+ax2a3a)e(xR),其中aR.例3 已知函数f(x)

(1)当a0时,求曲线yf(x)在点(1,f(1))处的切线方程;

(2)讨论函数f(x)的单调性.22x

思想方法

四、转化与化归思想

方法1抽象问题与具体问题化归

具体化原则,就是把一些抽象问题化归为具体问题,从而解决问题.一般地,对于抽象函数、抽象数列等问题,可以借助于熟悉的具体函数、数列等知识,探寻抽象问题的规律,找到解决问题的突破口和方法.例1 若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1x2)f(x1)f(x2)1,则下列说法一定正确的是()

A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数

方法2一般问题与特殊问题化归

数学题目有的具有一般性,有的具有特殊性.解题时,有时需要把一般问题化归为特殊问题,有时需要把特殊问题化归为一般问题.其解题模式是:首先设法使问题特殊(或一般)化,降低难度,然后解这个特殊(或一般)性的问题,从而使原问题获解.e4e5e6

例2 ,(其中e为自然常数)的大小关系是()162536

e4e5e6

A.162536e6e5e4B.362516e5e4e6C.251636e6e4e5D.36162

5方法3正向思维与逆向思维化归

逆向思维能力是指从正向思维序列到逆向思维序列的转换能力.如果经常注意对问题的逆向思考,不仅可以加深对可逆只是的理解,而且可以提高思维的灵活性.例3 已知集合Ayy(aa1)ya(a1)0,Ayy6y80,若AB0,则实数a的取值范围为.2222

方法4命题与等价命题化归

有的命题若直接考虑,则显得无从下手,若把命题化归为他的等价命题,往往柳暗花明.解题时要注意命题与等价命题的转化,尤其是原命题与逆否命题的转化.例4 设函数f(x)x3bx3cx有两个极值点x1、x2,且x11,0,x21,2.32

(1)求b,c满足的约束条件;(2)证明:10f(x2).1

第二篇:利用定积分证明数列和型不等式

利用定积分证明数列和型不等式

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为的图象在点

.(Ⅰ)用表示出(Ⅱ)若;

在内恒成立,求的取值范围;

(Ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图5

故原不等式成立.,所以,

第三篇:利用定积分证明数列和型不等式

利用定积分证明数列和型不等式

我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证

.分析

这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间

并作图象如图1所示.因函数在上是凹函数,由函

上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以

.例2 求证

.证明 构造函数

而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图

2即,所以.例3 证明。

证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图

3个矩形的面积之和小于曲边梯形的面积,图3

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图4

例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为

(Ⅰ)用表示出 ;

.的图象在点(Ⅱ)若 在内恒成立,求的取值范围;

(Ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即

.图

5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,

第四篇:导数压轴题 导数与数列不等式的证明

导数与数列不等式的证明

例1.已知函数f(x)alnxax3aR(1)讨论函数f(x)的单调性;(2)证明:112131nln(n1)(nN*)(3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5lnn1n122324252n22nn2,nN*(5)证明:ln24ln34ln44ln54lnn4(n1)224344454n44nn2,nN* ln22ln32(6)求证:lnn2n12n12232...n22n1n2,nN(7)求证:122114211182...1122nenN

例2.已知函数f(x)lnxx1。(1)求f(x)的最大值;nnn(2)证明不等式:12nennne1nN*

例3.已知函数fxx2lnx1

(1)当x0时,求证:fxx3;

(2)当nN时,求证:nf1111151 k1k2333...n342nn1

例4.设函数f(x)x2mln(x1)m0

(1)若m12,求f(x)的单调区间;(2)如果函数f(x)在定义域内既有极大值又有极小值,求实数m的取值范围;(3)求证:对任意的nN*,不等式lnn1nn1n3恒成立。

例5.已知函数f(x)ln(x1)k(x1)1(kR),(1)求函数f(x)的单调区间;(2)若f(x)0恒成立,试确定实数k的取值范围;(3)证明:ln23ln34lnnn1n(n1)4nN,n1.导数与数列不等式的证明 收集整理:张亚争 联系电话:*** 1 / 2 例6.已知函数f(x)axbc(a0)的图像在点(1,f(1))处的切线方程为yx1。 x(1)用a表示出b,c;

(2)若f(x)lnx在[1,)上恒成立,求a的取值范围;(3)证明:1

例7.已知函数f(x)2alnxx21。

(1)当a1时,求函数f(x)的单调区间及f(x)的最大值;(2)令g(x)f(x)x,若g(x)在定义域上是单调函数,求a的取值范围;111nln(n1)(n1).23n2(n1)3n2n222222(3)对于任意的n2,nN,试比较与的ln2ln3ln4ln5lnnn(n1)*大小并证明你的结论。

1ln(x1)(x0)x(1)函数f(x)在区间(0,)上是增函数还是减函数?证明你的结论。

k(2)当x0时,f(x)恒成立,求整数k的最大值;x1(3)试证明:(112)(123)(134)(1n(n1))e2n3(nN*).例8.已知函数f(x)

例9.已知函数fxxalnxa0(1)若a1,求fx的单调区间及fx的最小值;(2)若a0,求fx的单调区间;ln22ln32lnn2n12n1(3)试比较22...2与n2,nN的大小,并证明。 23n2n1

例10.已知函数fxlnx,gxxaaR, x(1)若x1时,fxgx恒成立,求实数a的取值范围。(2)求证:

例11.已知函数fxlnxxax

2ln2ln3lnn1n2,nN 34n1n(1)若函数fx在其定义域上为增函数,求a的取值范围;(2)设an1

例12.设各项为正的数列an满足a11,an1lnanan2,nN.求证:an2n1.122Lanlnn12n nN,求证:3a1a2...ana12a2n导数与数列不等式的证明 收集整理:张亚争 联系电话:*** 2 / 2

第五篇:数列----利用函数证明数列不等式

数列已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)设a10,数列{lg大值。

2已知数列{an}的前n项和Sn

(1)确定常数k,求an;

(2)求数列{

3在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列m2m10a1的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最an12nkn,kN*,且Sn的最大值为8.292an的前n项和Tn。n2bm的前m项和Sm.

下载利用方所发证明数列型不等式压轴题word格式文档
下载利用方所发证明数列型不等式压轴题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学_利用定积分证明数列和型不等式(定稿)

    利用定积分证明数列和型不等式湖北省阳新县高级中学 邹生书我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较......

    利用定积分证明数列和型不等式剖析[大全]

    利用定积分证明数列和型不等式 我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些......

    江西高考数学压轴题新解及对证明数列不等式的启示

    江西高考数学压轴题新解及对证明数列不等式的启示江西省萍乡市教研室(337000)曾建强(发表于《中学数学研究》2006年第9期)2006年江西高考理科数学压轴题,是一个数列不等式的证......

    数列不等式的证明

    数列和式不等式的证明策略 罗红波洪湖二中高三(九)班周二第三节(11月13日) 数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其......

    数列不等式题[全文5篇]

    数列不等式综合题示例例1 设等比数列an的公比为q,前n项和Sn0(n1,2,) (Ⅰ)求q的取值范围; (Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2 41n12例2设数列an的前n项的和Snan22•,......

    利用放缩法证明数列不等式的技巧“揭秘”

    龙源期刊网 http://.cn 利用放缩法证明数列不等式的技巧“揭秘” 作者:顾冬生 来源:《新高考·高三数学》2013年第06期 数列型不等式的证明题,常常需要用放缩的方法来解决,但放......

    放缩法证明数列不等式

    放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用......

    放缩法证明数列不等式

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......