关于和式的数列不等式证明方法

时间:2019-05-13 09:02:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于和式的数列不等式证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于和式的数列不等式证明方法》。

第一篇:关于和式的数列不等式证明方法

关于“和式”的数列不等式证明方法

方法:先求和,再放缩

1、设数列an满足a10且an

n,2an11an1an,n

N*,记Snbk,证明:Sn1.k1n

(Ⅰ)求an的通项公式;(Ⅱ)设bn

【解析】:(Ⅰ)由

11

11.得为等差数列,1a1an11ann

前项为

1111

1,d1,于是1(n1)1n,1an,an

1

1a11annn

(Ⅱ)bn

n

Snbkk

1

11 练习:数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且

a13,b11,数列{ban}是公比为64的等比数列,b2S264.(1)求an,bn;(2)求证

1113.S1S2Sn

4解:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an3(n1)d,bnqn1

ban1q3ndd6

q642

q3(n1)d依题意有ban①

S2b2(6d)q64

由(6d)q64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d2,q8

故an32(n1)2n1,bn8

n1

(2)Sn35(2n1)n(n2)∴

1111111



S1S2Sn132435n(n2)

11111111(1)232435nn211113(1) 22n1n24

方法:先放缩,再求和 例

1、(放缩之后裂项求和)(辽宁卷21).

在数列|an|,|bn|中,a1=2,b1=4,且an,bn,an1成等差数列,bn,an1,bn1成等比数列(nN)

(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测|an|,|bn|的通项公式,并证明你的结论;(Ⅱ)证明:

*

5…. a1b1a2b2anbn1

2本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分. 解:(Ⅰ)由条件得2bnanan1,an1bnbn1 由此可得

a26,b29,a312,b316,a420,b425. ···················································· 2分

猜测ann(n1),bn(n1). ······················································································· 4分 用数学归纳法证明:

①当n=1时,由上可得结论成立. ②假设当n=k时,结论成立,即

akk(k1),bk(k1)2,那么当n=k+1时,2ak

ak12bkak2(k1)k(k1)(k1)(k2),bk12(k2)2.

bk

所以当n=k+1时,结论也成立.

由①②,可知ann(n1),bn(n1)对一切正整数都成立. ·········································· 7分(Ⅱ)

5.

a1b161

2n≥2时,由(Ⅰ)知anbn(n1)(2n1)2(n1)n. ·············································· 9分 故

11111111

…… a1b1a2b2anbn622334n(n1)

11111111… 622334nn11111115 622n16412

综上,原不等式成立.··································································································· 12分(例

2、(放缩之后等比求和)

(06福建)已知数列an满足a11,an12an1(nN).*

(Ⅰ)求数列an的通项公式;(Ⅱ)证明:

an1a1a2n

...n(nN*)23a2a3an1

22n

(III).设bnan(an1),数列bn的前n项和为sn,令Tn,sn

(i)求证:T1T2T3Tnn;

(ii)求证:T1T2T3Tn;

本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。满分14分。

(I)解:an12an1(nN),*

an112(an1),an1是以a112为首项,2为公比的等比数列。an12n.即 an21(nN).*

(II)证法一:41

4k1k2

1...4kn1(an1)kn.4(k1k2...kn)n2nkn.2[(b1b2...bn)n]nbn,①

2[(b1b2...bnbn1)(n1)](n1)bn1.② ②-①,得2(bn11)(n1)bn1nbn, 即(n1)bn1nbn20,nbn2(n1)bn120.③-④,得 nbn22nbn1nbn0,即 bn22bn1bn0,bn2bn1bn1bn(nN*),bn是等差数列。

证法二:同证法一,得(n1)bn1nbn20 令n1,得b12.设b22d(dR),下面用数学归纳法证明 bn2(n1)d.(1)当n1,2时,等式成立。

(2)假设当nk(k2)时,bk2(k1)d,那么

k2k2bk[2(k1)d]2[(k1)1]d.k1k1k1k1这就是说,当nk1时,等式也成立。bk1

根据(1)和(2),可知bn2(n1)d对任何nN都成立。

*

bn1bnd,bn是等差数列。

ak2k12k11

k1,k1,2,...,n,(III)证明:

ak1212(2k1)

2

aa1a2n

...n.a2a3an12

ak2k11111111k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232k

aa1a2n1111n11n1

...n(2...n)(1n), a2a3an1232222322

3an1aan

12...n(nN*).23a2a3an12

方法:先放缩,再化类等差等比

例1(有界性放缩,迭加)、各项为正数的等比数列an中,a1a310,a3a540,nN*;

(1)求数列an的通项公式;(2)设b11,bn1nn

11,求证:bn1bn3n1 bnan

2an2;分析;(1)(2)证明:因为an1(1

所以an0,n

n

所以an1与an同号,又因为a110,)an,2n

n

an0,即an1an.所以数列{an}为递增数列,所以ana11,n2nn12n1

即an1annann,累加得:ana12n1.

22222

12n1112n1

令Sn2n1,所以Sn23n,两式相减得:

2222222

11111n1n1n1Sn23n1n,所以Sn2n1,所以an3n1,22222222

n1

故得an1an3n1.

即an1an

例2(利用有界性化为类等比)、(安徽卷21).(本小题满分13分)

设数列an满足a00,an1can1c,cN,其中c为实数

*

(Ⅰ)证明:an[0,1]对任意nN成立的充分必要条件是c[0,1];

*

1n1*,证明:an1(3c),nN;312222

(Ⅲ)设0c,证明:a1a2ann1,nN*

313c

(Ⅱ)设0c

解(1)必要性 :∵a10,∴a21c,又 ∵a2[0,1],∴01c1,即c[0,1]

充分性 :设 c[0,1],对nN用数学归纳法证明an[0,1]当n1时,a10[0,1].假设ak[0,1](k1)

则ak1cak1cc1c1,且ak1cak1c1c0

*

∴ak1[0,1],由数学归纳法知an[0,1]对所有nN*成立

(2)设 0c,当n1时,a10,结论成立 3

当n2 时,∵ancan11c,∴1anc(1an1)(1an1an1)∵0C

12,由(1)知an1[0,1],所以 1an1an13 且 1an103

∴1an3c(1an1)

∴1an3c(1an1)(3c)(1an2)(3c)∴an1(3c)

(3)设 0c

n1

n1

(1a1)(3c)n1

(nN*)

122,当n1时,a102,结论成立 313c

n1

当n2时,由(2)知an1(3c)

0

∴an(1(3c)n1)212(3c)n1(3c)2(n1)12(3c)n1 22222n1∴a2]1a2ana2ann12[3c(3c)(3c)

2(1(3c)n)2

n1n1

13c13c

第二篇:《 数列和式不等式的放缩策略》读书笔记

数学通讯(2008年第18期)

数列和式不等式的放缩策略

季强

(江苏省常州高级中学数学组,213003)

数列一直以来也是高考的重点,试卷的压轴题的最后一问出现,在思维能力和方法上要求很高,往往让人束手无策。其实,这类不等式的证明,是有章可循的?遵循什么章呢?

为此,我就收集了一些别人的方法,并把它们摘抄记录了下来。

这类不等式的证明就是要把和求出来,求出后再放缩。更多的情况下是不能直接求和的,这时就需要先把通项放大或缩小,使得每一项按照相同的规律放大或缩小后,把和求出来,求和后再放缩。下面简述几个用来证明数列和式不等式的一般性策略:

策略1:放缩等比求和

当可以直接利用等比数列求和时,求和后放缩。否则,先将通项放缩,从某一项开始放缩后,和式转化为等比数列的和,求和后再放缩。当然,以通项公式为着手点,观察分析,放大或缩小,从而每一项按照相同的规律放大或缩小,求和后再放缩,证得要证的不等式。

策略2:放缩裂相求和

有的数列和式不等式,不能直接求和时,可以先把数列的通项公式分裂成两项之差,求和后在放缩。当通项公式不能分裂成两项之差时,先把通项公式放缩后裂相(即分裂成两项之差),每一项都按照相同的规律放大或缩小后裂相,求和后在放缩。

策略3:单调性求和

有点数列和式不等式的证明,可以利用单调性放缩,当然,也可能是在和式的某一个环节,利用一个相关的数列或函数的单调性进行放缩。

策略4:奇偶相邻相捆绑求和放缩

当要证的和式是正负相间时,仅用通项an是不好放缩的,因为项数为奇数或偶数时,an的符号是变化的,此时可以把奇偶相邻相捆绑求和进行放缩。

策略5:延后放缩求和

和式放得太大或缩得过小,原因是每一项都放得太大或缩得过小,可以用延后放缩法:即不从第一个可以放缩的项开始放缩,而是保留前面若干项的准确值,减小放大的量或减小缩小的量。在不断的调节尝试后,从某一项开始放缩,就能证得要证的结果。

总之,数列和式不等式的证明,关键是要把和求出来。

第三篇:定积分在数列和式不等式证明中的应用

定积分在数列和式不等式证明中的应用

湖北省宜昌市第二中学曹超

邮编:443000电子邮箱:c220032003@yahoo.cn

数列和式不等式aiA(或aiA)的证明通常要用到放缩法,由于放缩法技巧性强,且无固定模式,i

1i1

n

n

在实际解题过程中同学们往往难以掌握。学习了定积分的相关知识后,我们可以利用定积分的定义及几何意义证明此类不等式,下面笔者仅就两例对这种方法加以介绍。

例1

证明:1)1

第2题)

证明:

构造函数f(x)

1

1

1(nN)(高中人教(A)版选修4-5P29,作出函数图象,图(1)中n-1个矩形的面积

1

应为直线x1,xn,x轴和曲

线

f(x)

所围成曲边梯形面积的不足近似值,故



n

x

2dx=2x

2n

=2,所以

图(1)

1



1。

图(2)中n

个矩形的面积和1



应为直线

x1,xn1,x轴和曲

线f(x)所围成的曲边梯形

面积的过剩近似值,故1



n1

x

dx=

图(2)

2x2

n1

=2,不等式得证。

评析:

教材对本题证明给出了提示:

①,实际解题过程中,由于不等式①技巧性强,思维量大,学生如不参考提示很难得到。事实

上,如图(3)所示,根据定积分的定义及几何意义,在区间n,n1(nN)上的曲边梯形的面积大于以区间的右端点n1对应的函数值f(n1)为一边的长,以1

为邻边的长的矩形的面积,小于以区间的左端点n对

图(3)

应的函数值f(n)为一边的长,以1为邻边的长的矩形的面积,即

n1n

x

dx2x2

n1n

代数变形技巧得到,更非“空穴来风”,而是有着明确几何意义的代数表示,数形结合思想在这里得以充分地体现。

例 2对于任意正整数n,试证:(1)当nN时,求证:ln(n1)lnn

(2)

1n1

1n2



1nn

ln

3

1n+1

分析:此题的设计意图是利用第(1)问的结论证明第(2)问。但如果没有第一问作铺垫,第(2)问的证明很难用代数方法得到,如果利用例1所述方法,那么证明变得非常简洁。

证明:(1)证明略。

(2)构造函数f(x)

1x

(x0),作出函数图象,根据yf(x)

在区间n,2n上定积分定义及其几何意义,图(4)中n个矩形的面积和小于由直线xn,x2n,x轴和曲线f(x)围

1x

所,即

成

n的12

边梯形的面积

n1

21n1

ln2nxx

n(n2l

7n)n,l不等式nln

得证。

图(4)

新课标新增的微积分知识有着丰富的数学背景及内涵,所蕴含的数学思想方法为我们问题的解决提供了新的视角,所以我们在平常学习过程中应予以足够的重视。最后提供两道练习题供同学们参考。

1、2、求证:()()(n

n

n

n

n1

nnn)()2nn

1n

1n1

(nN)



1n

证明:对于大于1的正整数n,n2

1

第四篇:数列不等式的证明

数列和式不等式的证明策略

罗红波洪湖二中高三

(九)班周二第三节(11月13日)

数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其实,这类不等式的证明,是有一定的规律的,利用S1

n

a1q

来证明也能事半功倍,下面用几个例子来简述数列和式不等式的证明

S1

n

a1q

常用策略。

一、基础演练:

1、等比数列{an},公比为q,则{an}的前n项和Sn为()

na1(q1A.)

an

a1(1q)1(1qn)a

1q(q1)B.na1C.1qD.11q2、正项等比数列{an},公比为q,0q1,{an}的前n项和Sn,以下说法正确的是()A.S1n

a11qB.Sa11qC.Saa

nn1qD.Sn11q3、正项数列{a},{a的前n项和Sa

nn}n,要证明S1n1q,其中0q1,可以去证明()A.

an1qB.an1aqC.an1qD.a

n1aq nnanan

二、典例精讲:

1、等比数列{a1

n},a11,q2,{an}的前n项和Sn,求证:Sn2

变式

1、正项等比数列{an},{a1n}的前n项和Sn,a11,Sn2恒成立,求证:0q

2例

2、已知数列{an},an1

2n

1,{an}的前n项和S5n,求证:Sn2(Sn3?)

aann变式

2、数列{n1n},a3232n1,a11,{a3

n1n}的前n项和Sn,求证:Sn n

2例

3、(09四川理22)数列{an}的前n项和Sn,对任意正整数n,都有a4an

n5Sn1成立,记bn1a(nN).n

(1)求数列{bn}的通项公式;

(2)记c

nb2nb2n1(nN),{c3

n}的前n项和Tn,求证:Tn

2变式

3、已知a1n

2,求证Sn(1)a1(1)2a2(1)nan1

(2)n

3三、小结

四、课后作业:

1、等比数列{a1

n},a12,q

3,{an}的前n项和Sn,求证:Sn3

2、已知数列{an},an

14n2,{an}的前n项和Sn,求证:S2

n

3

第五篇:放缩法证明数列不等式

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列

满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列

.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。

即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且

. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.

【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在

(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.

(),使

成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与

矛盾;,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析

当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)

.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,即错误!未找到引用源。,

下载关于和式的数列不等式证明方法word格式文档
下载关于和式的数列不等式证明方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    放缩法证明数列不等式

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......

    数列----利用函数证明数列不等式

    数列 1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn (1)确定常数k,求an; (2)求数列{3在等差数列an中......

    探索数列不等式的证明

    探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归......

    数列与不等式证明专题五篇

    数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条......

    数列不等式推理与证明

    2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数......

    构造函数证明数列不等式

    构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3......

    证明不等式方法

    不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法......

    不等式证明若干方法

    安康学院 数统系数学与应用数学 专业 11 级本科生论文(设计)选题实习报告11级数学与应用数学专业《科研训练2》评分表注:综合评分60的为“及格”;......