第一篇:数列不等式的证明举例
1.已知数列an满足a11,an12an1nN
(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列bn满足4b114b214b314bn1(an1)bn,证明:bn是等差数列;(Ⅲ)证明:1112nN aa3an13
2分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩。
解:(1)an12an1,an112(an1)
故数列{an1}是首项为2,公比为2的等比数列。
an12n,an2n
1(2)4b114b214b314bn1(an1)bn,4(b1b2bnn)2nbn
2(b1b2bn)2nnbn①
2(b1b2bnbn1)2(n1)(n1)bn1②
②—①得2bn12(n1)bn1nbn,即nbn2(n1)bn1③
(n1)bn12nbn2④
④—③得2nbn1nbnnbn1,即2bn1bnbn1
所以数列{bn}是等差数列
11111(3) n1n1an21222an1
11111111111设S,则S()(S)a2a3an1a22a2a3ana22an1
21212S a2an13an1
3点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。
2.已知函数f(x)xln1x,数列an满足0a11,an1fan;数列bn满足b1,bn1(n1)bn, nN*.求证:
(Ⅰ)0an1an1;1212
an2;(Ⅱ)an12
(Ⅲ)若a1则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。
*解:(Ⅰ)先用数学归纳法证明0an1,nN.(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时, 因为0 又f(x)在0,1上连续,所以f(0) x2x2 ln(1x)x, 0 x2 0,知g(x)在(0,1)上增函数.由g(x)1x 又g(x)在0,1上连续,所以g(x)>g(0)=0.an2an2 fan>0,从而an1.因为0an1,所以gan0,即22 11n1b (Ⅲ)因为 b1,bn1(n1)bn,所以bn0,n1 ,222bn bbb1 所以bnnn12b1nn!————① ,bn1bn2b12 an2aaaaaaaaa,知:n1n,所以n=23n12n1 , 由(Ⅱ)an122an2a1a1a2an122, n≥2, 0an1an1.2 a1n2a121a1a2an1 a1 222222 由①② 两式可知: bnann!.因为a1 点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。 3.已知数列an满足a1 (Ⅰ)求数列an的通项公式an;(Ⅱ)设bn an1 1(n2,nN).,ann 41an1 21an,求数列bn的前n项和Sn; (Ⅲ)设cnansin (2n1),数列cn的前n项和为Tn.求证:对任意的nN,2 Tn 4. 7 分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。解:(Ⅰ)又 1211,(1)n(1)n(2(1)n1],anan1anan1 11n 1,数列(1)3是首项为3,公比为2的等比数列. a1an (1)n11nn1 .(1)3(2),即ann1an321 (Ⅱ)bn(32n11)294n162n11. 1(14n)1(12n)Sn96n34n62nn9. 1412(2n1) (1)n1,(Ⅲ)sin 2(1)n11 .cnn1nn1 3(2)(1)321 1111当n3时,则Tn 2n1 31321321321 n21 [1(1]1111111)23n11 47322813232111111147484[1()n2]. 286228684847 T1T2T3,对任意的nN,Tn. 7点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列an的通项 4.已知函数f(x)= 52x,设正项数列an满足a1=l,an1fan. 168x (1)写出a2、a3的值;(2)试比较an与的大小,并说明理由; 4n 51n (3)设数列bn满足bn=-an,记Sn=bi.证明:当n≥2时,Sn<(2-1). 44i 1分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 52an7 3解:(1)an1,因为a11,所以a2,a3.168an84(2)因为an0,an10,所以168an0,0an2.5 548(an)an 552an53, an1 4168an432(2an)22an 因为2an0,所以an1与an同号,44 515555 因为a10,a20,a30,„,an0,即an.444444 531531 (an1)bn1(3)当n2时,bnan 422an1422an1 31bn12bn1,224 所以bn2bn122bn22n1b12n3,(12n) 1111 所以Snb1b2bn(2n1) 421242 点评:本题是函数、不等式的综合题,是高考的难点热点。 3n 数列和式不等式的证明策略 罗红波洪湖二中高三 (九)班周二第三节(11月13日) 数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其实,这类不等式的证明,是有一定的规律的,利用S1 n a1q 来证明也能事半功倍,下面用几个例子来简述数列和式不等式的证明 S1 n a1q 常用策略。 一、基础演练: 1、等比数列{an},公比为q,则{an}的前n项和Sn为() na1(q1A.) an a1(1q)1(1qn)a 1q(q1)B.na1C.1qD.11q2、正项等比数列{an},公比为q,0q1,{an}的前n项和Sn,以下说法正确的是()A.S1n a11qB.Sa11qC.Saa nn1qD.Sn11q3、正项数列{a},{a的前n项和Sa nn}n,要证明S1n1q,其中0q1,可以去证明()A. an1qB.an1aqC.an1qD.a n1aq nnanan 二、典例精讲: 例 1、等比数列{a1 n},a11,q2,{an}的前n项和Sn,求证:Sn2 变式 1、正项等比数列{an},{a1n}的前n项和Sn,a11,Sn2恒成立,求证:0q 2例 2、已知数列{an},an1 2n 1,{an}的前n项和S5n,求证:Sn2(Sn3?) aann变式 2、数列{n1n},a3232n1,a11,{a3 n1n}的前n项和Sn,求证:Sn n 2例 3、(09四川理22)数列{an}的前n项和Sn,对任意正整数n,都有a4an n5Sn1成立,记bn1a(nN).n (1)求数列{bn}的通项公式; (2)记c nb2nb2n1(nN),{c3 n}的前n项和Tn,求证:Tn 2变式 3、已知a1n 2,求证Sn(1)a1(1)2a2(1)nan1 (2)n 3三、小结 四、课后作业: 1、等比数列{a1 n},a12,q 3,{an}的前n项和Sn,求证:Sn3 2、已知数列{an},an 14n2,{an}的前n项和Sn,求证:S2 n 3 放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数) ② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式 ④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项 (2)与求和相关的不等式的放缩技巧: ① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 ② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向) ③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。 ④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。 (3)放缩构造裂项相消数列与等比数列的技巧: ① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项) ② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。 注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响 (4)与数列中的项相关的不等式问题: ① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形 ② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例: 类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。). (1)求错误!未找到引用源。的通项公式; (2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围. 例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。 (1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型 二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项; ②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列; ②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形: (1)错误!未找到引用源。,(2)错误!未找到引用源。 注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。 错误!未找到引用源。可推广为:错误!未找到引用源。 错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。 (1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。; (2)求错误!未找到引用源。; (3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。. ⑴ 求证:数列错误!未找到引用源。为等差数列; ⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围; ⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。 3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列 满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围; (3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。. (1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式; (2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值; (3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。. 5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数. (1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。. (3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列 分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列 .都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列 为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由; (2)求证: 错误!未找到引用源。; (2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列; (2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合; (3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*. (1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式; (2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。. (1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值. 放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数) ② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式 ④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项 (2)与求和相关的不等式的放缩技巧: ① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 ② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向) ③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。 ④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。 (3)放缩构造裂项相消数列与等比数列的技巧: ① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项) ② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响 (4)与数列中的项相关的不等式问题: ① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形 ② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例: 类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。). (1)求错误!未找到引用源。的通项公式; (2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围. 【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。 (2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。 (1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】 试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型 二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项; ②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列; ②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。. 方法、规律归纳: 常见的放缩变形: (1)错误!未找到引用源。,(2)错误!未找到引用源。 注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。 错误!未找到引用源。可推广为:错误!未找到引用源。 错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。 (1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。; (2)求错误!未找到引用源。; (3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析 (3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。 即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。 即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。. ⑴ 求证:数列错误!未找到引用源。为等差数列; ⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围; ⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。 要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。. 【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式. 3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且 . 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围; (3)是否存在正整数,使,请说明理由. 【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在 (2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当. (),使 成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与 矛盾;,即,此时 4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。. (1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式; (2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值; (3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。. 【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析: (1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。 试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。. 点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。 5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数. (1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由. (2)当错误!未找到引用源。时,求证: 错误!未找到引用源。. (3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析 当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。. 6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1) .(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由; (2)求证: 错误!未找到引用源。; (2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列; (2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合; (3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析 解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*. (1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式; (2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。. (1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值. 【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。 (3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,即错误!未找到引用源。, 放缩法证明不等式 1、设数列an的前n项的和Sn 43an 13 2n n 1 3(n1,2,3,) n (Ⅰ)求首项a1与通项an;(Ⅱ)设Tn an42 n n 2Sn (n1,2,3,),证明:Ti i1 解:易求 SnTn (其中n为正整数) n n 432 n an n 13 2 n1 4n 23 n 2 n1 2 n1 121 n Sn 2 n1 121 11 nn1 22121 所以: i1 Ti 3131 1n12212122、求证:(1) 11法1:数归(两边都可以) 法2:放缩裂项 法3:定积分放缩(2) 22 nN) 1n1n 31n 11n 法1:放缩一: n(n1) (n2) Sn 1n 1n (1336 52)(15 1653 1n1 1n) =1 1336 121400 11 121400 1 23893600(1 1 24003600 .放缩二: 1n 1n1 (n1)(n1) 2n1 n1),(n2) Sn54 1n (11 2) 111111111()22435n2nn1n1 1111151115 ()().223nn142233 放缩三: 1n 1n (n 112)(n 12) (1n 1n 12)2(12n1 12n1),(n1) Sn 1n 12(13 12n1 12n1)12(13 12n1) 法2:数归——加强命题:常用的放缩公式: 1n(n1) 2n n1 1n 1n 1n 1n(n1)1n ;n n12nn n1; n n 2n1; ab ambm (ba0,m0) 1k k(k1)(k1) 1n11k(k1) 111* (k2,kN) 2k(k1)k(k1) 1nk nkn1k! 1n2 ... kn11 (k3) (k2) ;212 n1n k!k(k1)(k2) n an 例3:已知: 1 (nN ),求证:ai i1 n2 法1:均值不等式:即证 715n2 ... 212 n1 n 1 n2 也即: 715 ... 212 n n1 n 1 而 : 715 ... 212 n1 1 n 法2:放缩后裂项求和 an 21212 n1n 1( 212(21 n n)1 n1 = 1 21(2 n1 n 1)(21) n = 21 n n1 1) 法3:数归,但是直接去证是不行的,要转化为一个加强命题 4.定义数列如下:a12,an1anan1,nN 证明:(1)对于nN恒有an1an成立。 2 (2)当n2且nN,有an1anan1a2a11成立。 (3)1 2006 1a1 1a2 1a2006 1。 解:(1)用数学归纳法易证。 (2)由an1anan1得:an11an(an1)an1an1(an11)…… a21a1(a11)以上各式两边分别相乘得: an11anan1a2a1(a11),又a12an1anan1a2a11(3)要证不等式1 2006 1a1 1a2 1a2006 1,可先设法求和: 1a1 1a2 a2006,再进行适当的放缩。 an11an(an1) 1an111an1a1 1an1 1an 1an11a2 1an111a2006 (1a111 1a211)(1a21 1a31)(1a20061 1a20071) a11 a200711 1 a1a2a2006 1 又a1a2a2006a1 2006 2 2006 1 1a1a2a2006 1 2006 原不等式得证。 5.已知数列an中an i i n nn 21,求证:ai(ai1)3.i1 方法一:ai(ai1) n i 2121 i i i (21)(22) i i1 i1 (21)(21) i1 1 121 i . i1 ai(ai1) (21) (121 121)(121 121)(12 n1 1 121 n)3 121 n 3.方法二: ai(ai1) i i (21) i 122 i 122 i 122 i 22 i i1 .(i2) n i1 ai(ai1)2 n1 2(1 12)3n1 n1 3.n 法3:数归证 i1 ai(ai1)3 121 n 3.(即转化为证明加强命题) 6、已知函数fxln1xx,数列an满足: a1 2,ln2lnan1an1anf an1an. (1)求证:ln1xx;(2)求数列an的通项公式; (3)求证不等式:a1a2annln2lnn2. 解:(1)fxln1xx,f'x 11x 1 x1x,当1x0时,f'x0,即yf(x)是单调递增函数;当x0时,f'x0,即yf(x)是单 调递减函数. 所以f'00,即x0是极大值点,也是最大值点 fxln1xxf00ln1xx,当x0时取到等号.(2)法1:数学归纳法(先猜想,再证明) 法2:由ln2lnan1an1anfan1an得2an1an1an1,an1 12an,an11 12an 1 an12an,1an1 1 1an1 1,即数列 1 2,公差为1,是等差数列,首项为 a11an1 nn1 ∴ an1 n1an . (3)法1: a1a2an1 111 1 121 1 111 n 23n1n1 又∵x0时,有xln1x,令x 1n112 0,则 1n2 ln1ln n1n1n11 ∴n 3 345n1n2 nlnlnlnlnln n1234nn1n 2n2 nln n12 nln 343 ln2 n nl ∴a1a2annln2lnn2 . 法2:积分法要证原命题,即证: 12 ln(n2)ln2 n11 1113n12 12 n2 1x dxlnx n22 法3:数归证明:7.1、(1)求证:2 n ln(n2)ln2 n1 2n1(n2,nN) nn1n01 法1:2CnCn...CnCn; 法2:数学归纳法 法3:函数法(求导) 8.若nN,证明:()+()+…+(n n * n n n1n)+(n nn) n ee1 提示:借助e1x证明 x 数列已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)设a10,数列{lg大值。 2已知数列{an}的前n项和Sn (1)确定常数k,求an; (2)求数列{ 3在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列m2m10a1的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最an12nkn,kN*,且Sn的最大值为8.292an的前n项和Tn。n2bm的前m项和Sm.第二篇:数列不等式的证明
第三篇:放缩法证明数列不等式
第四篇:放缩法证明数列不等式
第五篇:数列----利用函数证明数列不等式