用导数证明不等式举例[优秀范文五篇]

时间:2019-05-13 21:42:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用导数证明不等式举例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用导数证明不等式举例》。

第一篇:用导数证明不等式举例

用导数证明不等式举例

函数类不等式证明的通法可概括为:证明不等式f(x)g(x)(f(x)g(x))的问题转化为证明f(x)g(x)0(f(x)g(x)0),进而构造辅助函数h(x)f(x)g(x),然后利用导数证明函数h(x)的单调性或证明函数h(x)的最小值(最大值)大于或等于零(小于或等于零)。例1 已知x(0,

2),求证:sinxxtanx

分析:欲证sinxxtanx,只需证函数f(x)sinxx和g(x)xtanx在(0,

2)上单调

递减即可。证明:

令f(x)sinxx,其中x(0,

2)

则f/

(x)cosx1,而x(0,

2)cosx1cosx10

所以f(x)sinxx在(0,

2)上单调递减,即f(x)sinxxf(0)0

所以sinxx;

令g(x)xtanx,其中x(0,

2)

则g/(x)1

1cos2xtan2

x0,所以g(x)xtanx在(0,2)上单调递减,即g(x)xtanxg(0)0 所以xtanx。

综上所述,sinxxtanx

评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。根据不等式的对称性,本例也可以构造辅助函数为在(0,

2)上是单调递增的函数(如:

利用h(x)xsinx在(0,

2)上是单调递增来证明不等式sinxx),另外不等式证明时,区间端点值也可以不是我们所需要的最恰当的值(比如此例中的f(0)也可以不是0,而是便于放大的正数也可以)。因此例可变式为证明如下不等式问题: 已知x(0,

2),求证:sinx1xtanx1

证明这个变式题可采用两种方法:

第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式

sinxx以后,根据sinx1sinxx来证明不等式sinx1x;

第二种证法:直接构造辅助函数f(x)sinx1x和g(x)xtanx1,其中x(0,

2)

然后证明各自的单调性后再放缩或放大(如:f(x)sinx1xf(0)10)例2 求证:ln(x1)x

分析:令f(x)ln(x1)x,经过求导易知,f(x)在其定义域(1,)上不单调,但可以利用最值证明不等式。证明:令f(x)ln(x1)x 函数f(x)的定义域是(1,),f'(x)=

1x

1.令f'(x)=0,解得x=0,当-10,当x>0时,f'(x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0 所以f(x)ln(x1)xf(0)0 即ln(x1)x

练习:求证:1

x1x31,其中x1,.例3:当x0时,证明不等式ex

1x

x2

成立。

证明:设fxex1x

1x2,则f'xex2

1x.令g(x)ex

1x,则g'(x)ex

1.当x0时,g'xex

10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,即f'(x)0在0,恒成立。f(x)在0,上单调递增,又f(0)0,ex1x

x0,即x0时,ex1x

x成立。利用导数知识证明不等式是导数应用的一个重要方面,也成为高考的一个新热点,其关键是构造适当的函数,判断区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式。21.(本题满分12分)

已知函数f(x)

(1x)

n

aln(x1),其中nN*,a为常数.(I)当n2时,求函数f(x)的极值;

(II)当a1时,证明:对任意的正整数n,当x2时,有f(x)x1.【标准答案】

(Ⅰ)解:由已知得函数f(x)的定义域为x|x1,当n2时,f(x)1

(1x)

aln(x1),所以f(x)2a(1x)2(1x)3.(1)当a0时,由f(x)

0得x11

1,x211,此时f(x)

a(xx1)(xx2)

(1x)3

当x(1,x1)时,f(x)0,f(x)单调递减; 当x(x1,)时,f(x)0,f(x)单调递增.(2)当a0时,f(x)0恒成立,所以f(x)无极值. 综上所述,n2时,当a0时,f(x)在x1

f1a1ln2

2a.当a0时,f(x)无极值.(Ⅱ)

证法二:当a1时,f(x)

(1x)n

ln(x1).

当x2时,对任意的正整数n,恒有

(1x)n

1,故只需证明1ln(x1)≤x1. 令h(x)x1(1lnx(1))x

2xln,(x2,,则h(x)1

1x2

x1

x1,当x2时,h(x)≥0,故h(x)在2,上单调递增,因此当x2时,h(x)h(2)0,即1ln(x1)x1成立. 故当x2时,有1

(1x)n

ln(x1)x1.

即f(x)x1.

第二篇:导数证明不等式

导数证明不等式

一、当x>1时,证明不等式x>ln(x+1)

f(x)=x-ln(x+1)

f'(x)=1-1/(x+1)=x/(x+1)

x>1,所以f'(x)>0,增函数

所以x>1,f(x)>f(1)=1-ln2>0

f(x)>0

所以x>0时,x>ln(x+1)

二、导数是近些年来高中课程加入的新内容,是一元微分学的核心部分。本文就谈谈导数在一元不等式中的应用。

例1.已知x∈(0,),求证:sinx

第三篇:用导数证明不等式

用导数证明不等式

最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于0.这样就能说明原不等式了成立了!

1.当x>1时,证明不等式x>ln(x+1)

设函数f(x)=x-ln(x+1)

求导,f(x)'=1-1/(1+x)=x/(x+1)>0

所以f(x)在(1,+无穷大)上为增函数

f(x)>f(1)=1-ln2>o

所以x>ln(x+

12..证明:a-a^2>0其中0

F(a)=a-a^

2F'(a)=1-2a

当00;当1/2

因此,F(a)min=F(1/2)=1/4>0

即有当00

3.x>0,证明:不等式x-x^3/6

先证明sinx

因为当x=0时,sinx-x=0

如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0,求导数有sinx-x的导数是cosx-1

因为cosx-1≤0

所以sinx-x是减函数,它在0点有最大值0,知sinx

再证x-x³/6

对于函数x-x³/6-sinx

当x=0时,它的值为0

对它求导数得

1-x²/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。

要证x²/2+cosx-1>0x>0

再次用到函数关系,令x=0时,x²/2+cosx-1值为0

再次对它求导数得x-sinx

根据刚才证明的当x>0sinx

x²/2-cosx-1是减函数,在0点有最大值0

x²/2-cosx-1<0x>0

所以x-x³/6-sinx是减函数,在0点有最大值0

得x-x³/6

利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立

令f(x)=x-x²x∈

则f'(x)=1-2x

当x∈时,f'(x)>0,f(x)单调递增

当x∈时,f'(x)<0,f(x)单调递减

故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得

f(0)=0,f(1)=0

故f(x)的最小值为零

故当x∈(0,1)f(x)=x-x²>0。

i、m、n为正整数,且1

求证(1+m)^n>(1+n)^m

方法一:利用均值不等式

对于m+1个数,其中m个(2+m),1个1,它们的算术平均数大于几何平均数,即

/(m+1)>^

即1+m>(2+m)^

即(1+m)^(1/m)>^

由此说明数列{(1+m)^(1/m)}是单调递减的。

方法二:导数方法

令f(x)=(1+x)^(1/x),x>0

求导数

f'(x)=(1+x)^(1/x)*/x^2

为了考察f'(x)的正负

令g(x)=x/(1+x)-ln(1+x),x>=0

g'(x)=-x/(1+x)^2<0,x>0

因此g(x)0,亦即f'(x)<0

因此f(x)在(0,+∞)上单调递减。

令A*B*C=K的3次方

求证(1+A)的-(1/2)次方加(1+B)的-(1/2)次方加(1+C)的-(1/2)次方>=(1+K)的-(1/2)次方

化成函数,f(x),求导,可知其单调区间,然后求最大最小值即可。

理论上所有题目都可以用导数做,但有些技巧要求很高。

(1+A)^-1/2+(1+B)^-1/2+(1+C)^-1/2

=(1+A)^-1/2+(1+B)^-1/2+(1+K^3/AB)^-1/2=f(A,B)

对A求导,f'(A,B)A=0,可得一个方程,解出即得。

第四篇:应用导数证明不等式

应用导数证明不等式

常泽武指导教师:任天胜

(河西学院数学与统计学院 甘肃张掖 734000)

摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等式,以导数为工具来证明不等式。

关键字: 导数 不等式最值中值定理单调性泰勒公式

中图分类号: O13

Application derivative to testify inequality

ChangZeWu teachers: RenTianSheng

(HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula

1.利用微分中值定理来证明不等式

在数学分析中,我们学到了拉格朗日中值定理,其内容为:

定理1.如果函数fx在闭区间a,b上连续,在开区间a,b上可导,则至少存在一点a,b,使得f'()

拉格朗日中值定理是探讨可微函数的的几何特性及证明不等式的重要工具,我们可以根据以下两种方法来证明。

(1)首先,分析不等式通过变形,将其特殊化。其次,选取合适的函数和范围。第三,利用拉格朗日中值定理。最后,在根据函数的单调性和最大值和最小值。

(2)我们可根据其两种等价表述方式

①f(b)f(a)f'(a(ba))(ba),01

②fahfaf'ahh,01

我们可以的范围来证明不等式。f(b)f(a)。ba

11(x0)例1.1证明不等式ln(1)x1x

证明第一步变形1 ln(1)ln(1x)ln(x)x

第二步选取合适的函数和范围

令f(x)lnttx,1x

第三步应用拉格朗日中值定理

存在x,1x使得f'()f(1x)f(x)(1x)(x)

即ln(1x)ln(x)1

而 <1+x 1 1x

1x1)而0x 即ln(x1xln(1x)ln(x)

例 1.2证明:h>-1且h0都有不等式成立:

hln(1h)h 1h

证明:令f(x)=ln(1+x),有拉格朗日中值定理,0,1使得

ln(1h)f(h)f(0)f'(h)h

当h>0时有

1h11h,当1h0时有

11h1h0,即h.1h1hh;1h1h1hh.1h1h

2.利用函数单调性证明不等式

我们在初等数学当中学习不等式的证明时用到了两种方法:一种是判断它们差的正负,另一种是判断它们的商大于1还是小于1.而我们今天所要讨论的是根据函数的导数的思想来判断大小。

定理:设函数f(x)在a,b上连续,在a,b可导,那么

(1)若在a,b内f'(x)0则f(x)在a,b内单调递增。

(2)若在a,b内f'(x)0则f(x)在a,b内单调递减。

使用定理:要证明区间a,b上的不等式f(x)g(x),只需令F(x)f(x)。g使在(x)a,b上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 设x0证明不等式ln(1x)xex

证明:令F(x)ln(1x)xex(x>0)

显然F(0)0

1exx21xx(x>0)F'(x)exex1x(1x)e

现在来证明exx210

令f(x)exx21显然f(0)0

当x0时f'(x)ex2x0

于是得f(x)在x0上递增

故对x0有f(x)f(0)f(x)0

而(1x)ex0

所以F'(x)0故F(x)递增

又因为F(0)0

所以F(x)0

所以ln(1x)xex成立

3.利用函数的最大值和最小值证明不等式

当等式中含有“=”号时,不等式f(x)g(x)(或f(x)g(x)) g(x)f(x)0(或g(x)f(x)0),亦即等价于函数G(x)g(x)f(x)有最小值或F(x)f(x)g(有最大值。x)

证明思路:由待正不等式建立函数,通过导数求出极值并判断时极大值还是极小值,在求出最大值或最小值,从而证明不等式。

1例3.1证明若p>1,则对于0,1中的任意x有p1xp(1x)p1 2

证明:构造函数f(x)xp(1x)p(0x1)

则有f'(x)pxp1p(1x)p1p(xp1(1x)p1)

令f'(x)0,可得xp1(1x)p1,于是有x1x,从而求得x1。由于2

函数f(x)在闭区间0,1上连续,因而在闭区间0,1上有最小值和最大值。

由于函数f(x)内只有一个驻点,没有不可导点,又函数f(x)在驻点x1和2

111p1)p1,f(0)f(1),区间端点(x0和x1)的函数值为f())p(1所以2222

1f(x)在0,1的最小值为p1,最大值为1,从而对于0,1中的任意x有2

11f(x)1xp(1x)p1。,既有p1p122

4.利用函数的泰勒展式证明不等式

若函数f(x)在含有x0的某区间有定义,并且有直到(n1)阶的各阶导数,又在x0处有n阶导数f(n)(x0),则有展式: f'(x0)f''(x0)fn(x0)2(xx0)(xx0)(xx0)nRn(x)f(x)f(x0)1!2!n!

在泰勒公式中,取x0=0,变为麦克劳林公式

f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x)Rn(x)1!2!n!

在上述公式中若Rn(x)0(或0)则可得

f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x),1!2!n!

f'(0)f''(0)2fn(0)n(x)(x)(x)。或f(x)f(0)1!2!n!

带有拉格朗日余项的泰勒公式的实质是拉格朗日微分中值定理的深化,他是一个定量估计式,该公式在不等式证明和微分不等式证明及较为复杂的极限计算中有广泛的应用。

用此公式证明不等式就是要把所证不等式化简,其中函数用此公式,在把公式右边放大或缩小得到所证不等式。

例4.1若函数f(x)满足:(1)在区间a,b上有二阶导函数f''(x),(2)

f'(a)f'(b)0,则在区间a,b内至少存在一点c,使

f''(c)4f(b)f(a)。2(ba)

证明:由f(x)在xa和xb处的泰勒公式,并利用f'(a)f'(b)0,得f(x)f(a)f''()(xa)2

2!f''()f(x)f(b)(xb)2,于是2!

abf''()(ba)2abf()f(a)(a),22!42

abf''()(ba)2abf()f(b)(a),22!42

f''()f''()(ba)2

相减,得f(b)-f(a)=,24

4f(b)f(a)1(ba)2

即f''()f(),(ba)224

当f''()f''()时,记c否则记c=,那么

f''(c)4f(b)f(a)(abc)(ba)2

参 考 文 献

《数学分析》上册,高等教育出版社,1990.1郑英元,毛羽辉,宋国栋编,2赵焕光,林长胜编《数学分析》上册,四川大学出版社,2006。3欧阳光中,姚允龙,周渊编《数学分析》上册,复旦大学出版社,2004.4华东师范大学数学系编《数学分析》上册,第三版,高等教育出版社2001.

第五篇:利用导数证明不等式

利用导数证明不等式

例1.已知x>0,求证:x>ln(1+x)分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0),这只要证明:

f(x)在区间[0,)是增函数。

证明:令:f(x)=x-lnx,容易看出,f(x)在区间[0,)上可导。

且limf(x)0f(0)x0 由f'(x)11x 可得:当x(0,)时,f'(x)f(0)0 x1x1 即x-lnx>0,所以:x>0时,x>lnx 评注:要证明一个一元函数组成的不等式成立,首先根据题意构造出一个

函数(可以移项,使右边为零,将移项后的左式设为函数),并利 用导数判断所设函数的单调性,再根据函数单调性的定义,证明要 证的不等式。

例2:当x0,时,证明不等式sinxx成立。证明:设f(x)sinxx,则f'(x)cosx1.∵x(0,),∴f'(x)0.∴f(x)sinxx在x(0,)内单调递减,而f(0)0.∴f(x)sinxxf(0)0, 故当x(0,)时,sinxx成立。

点评:一般地,证明f(x)g(x),x(a,b),可以构造函数F(x)f(x)g(x),如果F'(x)0,,则F(x)在(a,b)上是减函数,同时若F(a)0,由减函数的定义可知,x(a,b)时,有F(x)0,即证明了f(x)g(x)。

x练习:1.当x0时,证明不等式e1x12x成立。2证明:设fxe1xx12x,则f'xex1x.2xxx令g(x)e1x,则g'(x)e1.当x0时,g'xe10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,f(x)在即f'(x)0在0,恒成立。0,上单调递增,又f(0)0,ex1x1x20,即x0时,ex222.证明:当x1时,有ln(x1)lnxln(x2).1x12x成立。2分析 只要把要证的不等式变形为

ln(x1)ln(x2),然后把x相对固定看作常数,并选取辅助函

lnxln(x1)数f(x)ln(x1).则只要证明f(x)在(0,)是单调减函数即可.lnx证明: 作辅助函数f(x)ln(x1)(x1)lnxlnxln(x1)xlnx(x1)ln(x1)于是有f(x)x12x

lnxx(x1)ln2x因为 1xx1, 故0lnxln(x1)所以 xlnx(x1)ln(x1)

(1,)因而在内恒有f'(x)0,所以f(x)在区间(1,)内严格递减.又因为1x1x,可知f(x)f(x1)即 ln(x1)ln(x2)lnxln(x1)所以 ln2(x1)lnxln(x2).利用导数知识证明不等式是导数应用的一个重要方面,也成为高考的一个新热点,其关键是构造适当的函数,判断区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式。

x2例3.证明不等式xln(1x)x,其中x0.2x2分析 因为例6中不等式的不等号两边形式不一样,对它作差ln(1x)(x),则发现作差以后

21x)求导得不容易化简.如果对ln(1,这样就能对它进行比较.1xx2证明: 先证 xln(1x)

2x2设 f(x)ln(1x)(x)(x0)

21x210)00 f(x)则 f(0)ln(1x1x1x' x0 即 1x0 x20

x2 f(x)0 ,即在(0,)上f(x)单调递增

1xx2 f(x)f(0)0  ln(1x)x

21x)x;令 g(x)ln(1x)x 再证 ln(则 g(0)0 g(x)11 1x1ln(1x)x  x0  1  g(x)0 1xx2 xln(1x)x 练习:3(2001年全国卷理20)已知i,m,n是正整数,且1imn

证明:(1m)n(1n)m

分析:要证(1m)n(1n)m成立,只要证

ln(1m)nln(1n)m

即要证11ln(1m)ln(1n)成立。因为m

11ln(1m)ln(1n); mn从而:(1m)n(1n)m。

评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题。难点在于找这个一元函数式,这就是“构造函数法”,通过这类数学方法的练习,对培养分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的。

下载用导数证明不等式举例[优秀范文五篇]word格式文档
下载用导数证明不等式举例[优秀范文五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    利用导数证明不等式

    利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......

    谈利用导数证明不等式.

    谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维......

    导数证明不等式的几个方法

    导数证明不等式的几个方法 1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有 11ln(x1)x x1 如果f(a)是函数f(x)在区间上的最大(小)值......

    2014-2-30导数证明不等式答案

    1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造辅助函数,把不等式的证明转化......

    利用导数证明不等式(全文5篇)

    克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(......

    3 用导数证明函数不等式的四种常用方法

    用导数证明函数不等式的四种常用方法 本文将介绍用导数证明函数不等式的四种常用方法. ()x0). 例1证明不等式:xln(x1证明 设f(x)xln(x1)(x0),可得欲证结论即f(x)f(0)(x0),所以只......

    导数在研究不等式中的应用举例

    导数在研究不等式中的应用举例陕西张磊导数问题和不等式问题相互交织构成了高考试题中的一道亮丽的风景线,常见的题型有四种.基本方法:构造函数,利用导数研究函数的单调性来......

    构造函数,结合导数证明不等式

    构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘......