导数与数列不等式的综合证明问题

时间:2019-05-14 15:49:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《导数与数列不等式的综合证明问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《导数与数列不等式的综合证明问题》。

第一篇:导数与数列不等式的综合证明问题

导数与数列不等式的综合证明问题

典例:(2017全国卷3,21)已知函数fxx1alnx。(1)若fx0,求a的值;

(2)设m为整数,且对于任意正整数n1111 11m,求m的最小值。2n222分析:(1)由原函数与导函数的关系可得x=a是fx在x0,+的唯一最小值点,列方程解得a1 ;

(2)利用题意结合(1)的结论对不等式进行放缩,求得111111e,结合2n2221111112可知实数m 的最小值为3

23222(1)fx的定义域为0,+.①若a0,因为f=-②若a0,由f'x121+aln20,所以不满足题意; 2axa知,当x0,a时,f'x0;当xa,+时,xx1所以fx在0,a单调递减,在a,故x=a是fx在0,f'x0,+单调递增,+的唯一最小值点.由于f10,所以当且仅当a=1时,fx0.故a=1.练习1:已知函数f(x)ln(x)ax(1)求实数a的值;

1(a为常数),在x1时取得极值.x(2)设g(x)f(x)2x,求g(x)的最小值;

(3)若数列{an}满足anaan1n11(nN且n2),a11,数列{an}的前n和 21nSn,求证:2anesnan(nN,e是自然对数的底数).整理:在证明中要对证明的式子

2n1anesnan进行简单的处理为nln2lnanSn nn,否则直接另x很唐突.n1n11lnx.x练习2:已知函数f(x)(1)若函数在区间t,t1(其中t0)上存在极值,求实数t的取值范围; 2a恒成立,求实数a的取值范围,并且判断代数式x1(2)如果当x1时,不等式f(x)(n1)!2与(n1)en2(nN*)的大小.分析:解:(Ⅰ)因为f(x)1lnxlnx,x0,则f(x)2,xx当0x1时,f(x)0;当x1时,f(x)0.所以f(x)在(0,1)上单调递增;在(1,)上单调递减,所以函数f(x)在x1处取得极大值.1因为函数f(x)在区间t,t(其中t0)上存在极值,2

t1,1所以1 解得t1.2t1,2a(x1)(1lnx)(x1)(1lnx)(Ⅱ)不等式f(x)≥,,即为≥a, 记g(x)x1xx[(x1)(1lnx)]x(x1)(1lnx)xlnx所以g(x).x2x2令h(x)xlnx,则h(x)1

1,∵x≥1,∴h(x)≥0,x∴h(x)在[1,)上单调递增,∴[h(x)m]inh(1)1,从而0g(x)0,故g(x)在[1,)上也单调递增,所以[g(x)]ming(1)2, 所以a≤2;由上述知f(x)≥即lnx≥2恒成立,x1x12211,(此处采用了放缩法,是处理问题的关键)x1x1x2令xn(n1),则ln[n(n1)]1,n(n1)∴ ln(12)1222,ln(23)1,ln(34)1,…,1223342ln[n(n1)]1,n(n1)

111叠加得ln[12232n2(n1)]n2 1223n(n1)1222n2n21n2.则123n(n1)e,n1所以[(n1)!]2(n1)en2(nN).

第二篇:导数压轴题 导数与数列不等式的证明

导数与数列不等式的证明

例1.已知函数f(x)alnxax3aR(1)讨论函数f(x)的单调性;(2)证明:112131nln(n1)(nN*)(3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5lnn1n122324252n22nn2,nN*(5)证明:ln24ln34ln44ln54lnn4(n1)224344454n44nn2,nN* ln22ln32(6)求证:lnn2n12n12232...n22n1n2,nN(7)求证:122114211182...1122nenN

例2.已知函数f(x)lnxx1。(1)求f(x)的最大值;nnn(2)证明不等式:12nennne1nN*

例3.已知函数fxx2lnx1

(1)当x0时,求证:fxx3;

(2)当nN时,求证:nf1111151 k1k2333...n342nn1

例4.设函数f(x)x2mln(x1)m0

(1)若m12,求f(x)的单调区间;(2)如果函数f(x)在定义域内既有极大值又有极小值,求实数m的取值范围;(3)求证:对任意的nN*,不等式lnn1nn1n3恒成立。

例5.已知函数f(x)ln(x1)k(x1)1(kR),(1)求函数f(x)的单调区间;(2)若f(x)0恒成立,试确定实数k的取值范围;(3)证明:ln23ln34lnnn1n(n1)4nN,n1.导数与数列不等式的证明 收集整理:张亚争 联系电话:*** 1 / 2 例6.已知函数f(x)axbc(a0)的图像在点(1,f(1))处的切线方程为yx1。 x(1)用a表示出b,c;

(2)若f(x)lnx在[1,)上恒成立,求a的取值范围;(3)证明:1

例7.已知函数f(x)2alnxx21。

(1)当a1时,求函数f(x)的单调区间及f(x)的最大值;(2)令g(x)f(x)x,若g(x)在定义域上是单调函数,求a的取值范围;111nln(n1)(n1).23n2(n1)3n2n222222(3)对于任意的n2,nN,试比较与的ln2ln3ln4ln5lnnn(n1)*大小并证明你的结论。

1ln(x1)(x0)x(1)函数f(x)在区间(0,)上是增函数还是减函数?证明你的结论。

k(2)当x0时,f(x)恒成立,求整数k的最大值;x1(3)试证明:(112)(123)(134)(1n(n1))e2n3(nN*).例8.已知函数f(x)

例9.已知函数fxxalnxa0(1)若a1,求fx的单调区间及fx的最小值;(2)若a0,求fx的单调区间;ln22ln32lnn2n12n1(3)试比较22...2与n2,nN的大小,并证明。 23n2n1

例10.已知函数fxlnx,gxxaaR, x(1)若x1时,fxgx恒成立,求实数a的取值范围。(2)求证:

例11.已知函数fxlnxxax

2ln2ln3lnn1n2,nN 34n1n(1)若函数fx在其定义域上为增函数,求a的取值范围;(2)设an1

例12.设各项为正的数列an满足a11,an1lnanan2,nN.求证:an2n1.122Lanlnn12n nN,求证:3a1a2...ana12a2n导数与数列不等式的证明 收集整理:张亚争 联系电话:*** 2 / 2

第三篇:导数证明不等式

导数证明不等式

一、当x>1时,证明不等式x>ln(x+1)

f(x)=x-ln(x+1)

f'(x)=1-1/(x+1)=x/(x+1)

x>1,所以f'(x)>0,增函数

所以x>1,f(x)>f(1)=1-ln2>0

f(x)>0

所以x>0时,x>ln(x+1)

二、导数是近些年来高中课程加入的新内容,是一元微分学的核心部分。本文就谈谈导数在一元不等式中的应用。

例1.已知x∈(0,),求证:sinx

第四篇:数列与不等式证明专题

数列与不等式证明专题

复习建议:

1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果2.归纳——猜想——证明体现由具体到抽象,由特殊到一般,由有限到无限的辩证思想.学习这部分知识,对培养学生的逻辑思维能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有重大意义.

3.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.

4.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解. 证明方法:(1)先放缩后求和;(2)先求和后放缩(3)灵活运用 例1.数列a

2nn满足a11,a22,an2(1cos2)asin2n

n2,n1,2,3,.(Ⅰ)求a3,a4,并求数列an的通项公式;(Ⅱ)设ba2n

1n

a,Snb1b2bn.证明:当n6S21n2n

n.分析:本题给出数列相邻两项的递推关系,且要对n分奇偶性。

解:(Ⅰ)因为acos

2

11,a22,所以a3(12)a1sin2

a112,a4(1cos2)a2sin22a24.一般地,当n2k1(kN*)时,a2

k1)2k1[1cos

(22]asin22k1

2k12

 =a2k11,即a2k1a2k11.所以数列a2k1是首项为

1、公差为1的等差数列,因此a2k1k.当n2k(kN*)时,a2k2k2(1cos

22)a2k

2ksin2

22a2k.所以数列a2k是首项为

2、公比为2的等比数列,因此a2k2k.故数列an1n的通项公式为an

2,n2k1(kN*),n22,n2k(kN*).(Ⅱ)由(Ⅰ)知,ba2n1nan

123n2,Sn23n,①2n22222

12S1223n

n222242

n1② 1①-②得,1[1(1)2]2S1111nn222232n2n1n1n12n112n2n1.2所以S1nn2

n22n12n22

n.要证明当n6时,S1n(n2)

n2n成立,只需证明当n6时,2n

1成立.证法一

(1)当n = 6时,6(62)264864

341成立.(2)假设当nk(k6)时不等式成立,即k(k2)

k

1.则当n=k+1时,(k1)(k3)k(k2)(k1)(k2k12k3)2k(k2)(k1)(k3)

(k2)2k

1.由(1)、(2)所述,当n≥6时,n(n1)2

21.即当n≥6时,Sn2

1n

.证法二令cn(n2)n

22(n6),则c(n1)(n3)n(n2)3n2

n1cn2n1222

n10.所以当n6时,c68n1cn.因此当n6时,cnc664

341.于是当n6时,n(n2)221.综上所述,当n6时,Sn

21

n

.点评:本题奇偶分类要仔细,第(2)问证明时可采用分析法。

例题2.已知为锐角,且tan

21,函数f(x)x2tan2xsin(2

4),数列{an}的首项a1

2,an1f(an).(1)求函数f(x)的表达式;⑵ 求证:an1an;

⑶ 求证:

111a112(n2,nN*)11a21an

分析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。

解:⑴tan2

2tan2(1)2

又∵为锐角 ∴2 ∴sin(2)1∴f(x)xx1

441tan21(21)2

∴a2,a3,an都大于0∴an0∴an1an2

则S

1111121212111()(S)S a22a2a3ana2an13an13a22an1

an1anan∵a1

点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。

1an1

1111

2

ananan(1an)an1an111

1ananan1

例题4.已知函数f(x)xln1x,数列an满足0a11,∴

111111111111

2

an1fan;数列bn满足b1,bn1(n1)bn, nN*.求证:

1a11a21ana1a2a2a3anan1a1an1an1

∵a(12)21234, a(34)23

234

1 ,又∵n2an1an∴an1a31

∴1

2

1a2∴1

1n1a11

2

1

11a21an

点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式的证明更具有一般性。

例题3.已知数列aa

n满足a11,n12an1nN

(Ⅰ)求数列an的通项公式;(Ⅱ)若数列b1n满足4b114b24

b31

4bn1(an1)bn,证明:bn是等差数列;

(Ⅲ)证明:

11a12nNa 23an13

分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩 解:(1)an12an1,an112(an1)

故数列{an1}是首项为2,公比为2的等比数列。ann12n,an21

(2)4

b114

b214

b31

4bn1(an1)bn,4

(b1b2bnn)

2nbn

2(b1b2bn)2nnbn①2(b1b2bnbn1)2(n1)(n1)bn1②

②—①得2bn1

2(n1)bn1nbn,即nbn2(n1)bn1③(n1)bn12nbn2④ ④—③得2nbn1

nbnnbn1,即2bn1bnbn1所以数列{bn}是等差数列

(3)

1a1111

2n112n12

设S

1n2ana11,2a3an1

(Ⅰ)0a(Ⅱ)aa2nn1an1;n12;

(Ⅲ)若a12

则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。解:(Ⅰ)先用数学归纳法证明0an1,nN*.(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时,因为0

1x1xx1

0,所以f(x)在(0,1)上是增函数.又f(x)在0,1上连续,所以f(0)

1, 得an1ananln1ananln(1an)0,从而an1an.综上可知0an1

an1.(Ⅱ)构造函数g(x)=

x2

x2x2

-f(x)=

ln(1x)x, 0g(0)=0.因为0aa2nn1,所以gan0,即2faa2

nn>0,从而an12

.(Ⅲ)因为

b12b1b

n11,n12(n1)bn,所以bn0,n1bn,所以bba2nbn1bnn

b2b1

1nn!————①由(Ⅱ)an1,知:an1an,n1bn2b122an2

所以

anaa3naa1a2n1 ,因为aa=

a2aa1, n≥2, 0an1an1.1

1a2n12222

a2a2

所以

a1a2an1aan

1<

n

2221<2

n12n

=

2n

————②由①② 两式可知:

bnann!.点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

例题5.已知函数f(x)=52x

168x,设正项数列an满足a1=l,an1fan.

(1)试比较a

5n与

4的大小,并说明理由;

(2)设数列b5n

nn满足bn=4-an,记Sn=bi.证明:当n≥2时,Sn<(2-1).

i

14分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

解:(1)a2ann1

5168a,因为a所以a7

311,2,a34

.(2)因为an0,an10,所以168an0,0an2.n8a552a48(a55

n5nn1)3an554168a432(2a,因为2an0,所以an1与a同号,nn)22an

4n

4因为a514140,a5555

240,a340,„,an40,即an4

.(3)当n2时,b531n4an22a(5a31

31n1)bn1bn12bn1,n1422an1225

所以bn

2bn122bn22n1b312n,13n

(12n)

所以Snb1b2bn

4121

2

121

(2n1)

点评:本题是函数、不等式的综合题,是高考的难点热点。

例题6.已知数列a*

n中,a11,nan12(a1a2...an)nN

(1)求a2,a3,a4;(2)求数列an的通项an;(3)设数列{b1n}满足b1

2,b12

n1abnbn,求证:bn1(nk)k

分析:条件中有类似于前n项和的形式出现,提示我们应该考虑an=Sn-Sn-1(n≥2)

解:(1)a22,a33,a44(2)nan12(a1a2...an)①

(n1)an2(a1a2...an1)②①—②得nan1(n1)an2an

即:nan1

(n1)a1n1aa3ann,ana所以aa223n

n1a...1...1

n(n2)

nna12an112n所以a*n

n(nN)

(3)由(2)得:b1

12,b12

n1k

bnbnbnbn1...b10,所以{bn}是单调递增数列,故要证:bn1(nk)只需证bk1

若k

1,则b121显然成立;若k2,则b1211

n1kbnbnk

bnbn1bn 所以

1b11,因此:1(11)...(11)1k12

k1

n1bnkbkbkbk1b2b1b1kk所以bk

k

k1

1,所以bn1(nk)点评:与数列相关的不等式证明通常需要“放缩”,而放缩的“度”尤为关键,本题中

1b(11)...(11)1,这种拆分方法是数学中较高要求的变形.kbkbk1b2b1b1

例题7.已知不等式

12131n1

[log2n],其中n为不大于2的整数,[log2n]表示不超过log2n的最大整数。设数列a1

n的各项为正且满足a1b(b0),anann

na(n2,3,4),证明:

n1

an

2b

2b[log,n3,4,5

2n]

分析:由条件an111111n

nana得:

n1

a1

nan1n

an(n2)

nan1

11a

1n1

an2

n1

„„

a11以上各式两边分别相加得: 2a121a111111111

11[log2n](n3)na1nn12anbnn12

b2

=

2b[log2n]2b a2b

n2b[logn]

(n3)

2本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例题8.已知数列{an}的前n项和Sn满足:Sn2an(1)n,n1(1)写出数列{an}的前三项a1,a2,a5;(2)求数列{an}的通项公式;

(3)证明:对任意的整数m4,有1117

a

4a5am8

分析:⑴由递推公式易求:a1=1,a2=0,a3=2; ⑵由已知得:an

SnSn12an(1)n2an1(1)n1(n>1)

化简得:an1anan1anan1n

2an12(1)

(1)n2(1)n12,(1)n232[(1)

n1

2

3] 故数列{

an2(1)n3}是以a123为首项, 公比为2的等比数列.故an21

(1)

n

3(3)(2)n1∴a23[2n2(1)n]∴数列{a2

n

n}的通项公式为:an3

[2n2(1)n].⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=

1a1a13[111

2212312m2(1)

m],如果我们把上式中的分母中的1去掉,就可利45am2用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

11111

22112311221

23,2312412324,因此,可将

1

保留,再将后面的项两两组合后放缩,即可求和。这里需要对m进行分类讨论,(1)当m为偶数(m4)时,1a11a1(11)(11)13(11134m2)4a5ma4a5a6am1am

22222

1311224(1137

m4)288(2)当m是奇数(m4)时,m1为偶数,1a1111a1117 4a5ama45a6amam18

所以对任意整数m4,有

aa

7。本题的关键是并项后进行适当的放缩。45am8

例题9.定义数列如下:a2

12,an1anan1,nN

证明:(1)对于nN

恒有a

n1an成立。(2)当n2且nN,有an1anan1a2a11成立。(3)1

112a12006

a1

1。12a2006

分析:(1)用数学归纳法易证。

(2)由a2

n1anan1得:an11an(an1)

an1an1(an11)„„a21a1(a11)

以上各式两边分别相乘得:an11anan1a2a1(a11),又a12

an1anan1a2a11

(3)要证不等式1

11122006

a11,可先设法求和:11,1a2a2006a1a2a2006

再进行适当的放缩。a111n11an(an1)

aaa11

a n11

n1nanan1n11

1111a(1)(11)(11)1a2a2006a11a21a21a31a20061a20071

1a1a1

1120071

aa 12a2006又aa2006

1a2a20061

220061

1a11

2006原不等式得证。

1a2a20062

点评:本题的关键是根据题设条件裂项求和。

第五篇:数列不等式推理与证明

2012年数学一轮复习精品试题第六、七模块 数列、不等式、推

理与证明

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.

1.在等比数列{aa

2n}中,若a3a5a7a9a11=243,则a的值为()1

1A.9B.1

C.2D.

32.在等比数列{aaa

n}中,an>an7·a11=6,a4+a14=5,则+1,且a等于()16

A.23B.32

C16D.-563.在数列{aa-n}中,a1=1,当n≥2时,an=1+aa

n-1n=()

A.1

nB.n

C.1nD.n2

4.已知0

B.成等比数列

C.各项倒数成等差数列

D.各项倒数成等比数列

5.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()

n-

1A.an=2n-1B.an1

nn

C.an=n2D.an=n)

n2-6n

6.已知正项数列{an}的前n项的乘积等于Tn=的前n项和Sn中的最大值是()

A.S6

B.S

51

4

(n∈N*),bn=log2an,则数列{bn}

7.已知a,b∈R,且a>b,则下列不等式中恒成立的是()

11

A.a>bB.<

22

ab

C.lg(a-b)>0

aD.b

8.设a>0,b>0,则以下不等式中不恒成立的是()11

A.(a+b)ab≥

4B.a3+b3≥2ab2 D.|a-b|ab

C.a2+b2+2≥2a+2b

9.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()

A.(-∞,-1]∪[1,+∞)B.[-1,1]

C.(-∞,-1)∪(1,+∞)D.(-1,1)

lg|x|(x<0)10.设函数f(x)=x,若f(x0)>0,则x0的取值范围是()

2-1(x≥0)

A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,+∞)

C.(-1,0)∪(0,1)D.(-1,0)∪(0,+∞)

a2+b

211.已知a>b>0,ab=1,则的最小值是()

a-bA.2C.2D.1

12.下面四个结论中,正确的是()

A.式子1+k+k2+…+kn(n=1,2,…)当n=1时,恒为1 B.式子1+k+k2+…+kn1(n=1,2…)当n=1时,恒为1+k

1111111

C.式子++…+n=1,2,…)当n=1时,恒为

1231232n+1

111111

D.设f(n)=n∈N*),则f(k+1)=f(k)+n+1n+23n+13k+23k+33k+4

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 13.已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题:(1)d<0;(2)S11>0;(3)S12<0;(4)数列{Sn}中的最大项为S11,其中正确命题的序号是________.

14.在数列{an}中,如果对任意n∈N*都有数列,k称为公差比.现给出下列命题:

(1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列;

(3)若an=-3n+2,则数列{an}是等差比数列;(4)若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为________. =q,(4)正确. 15.不等式

ax的解集为{x|x<1或x>2},那么a的值为________. x-

1an+2-an+1

k(k为常数),则称{an}为等差比

an+1-an

x≥0

16.已知点P(x,y)满足条件y≤x

2x+y+k≤0k=________.(k为常数),若z=x+3y的最大值为8,则

三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2011·天津市质检)已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(1)设Sk=2550,求a和k的值;

S(2)设bn,求b3+b7+b11+…+b4n-1的值.

n

18.(12分)已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且2,an,Sn成等差数列.

(1)求数列{an}的通项公式;

b(2)若bn=log2an,cn=,求数列{cn}的前n项和Tn.an

2bx

19.(12分)已知函数f(x)(x∈R)满足f(x),a≠0,f(1)=1,且使f(x)=2x成立的实

ax-1数x只有一个.

(1)求函数f(x)的表达式;

21(2)若数列{an}满足a1=an+1=f(an),bn=1,n∈N*,证明数列{bn}是等比数列,3an

并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

2x

20.(12分)已知集合A=xx-21,集合B={x|x2-(2m+1)x+m2+m<0}

(1)求集合A,B;

(2)若B⊆A,求m的取值范围.

2a2

21.(12分)解关于x的不等式:x|x-a|≤(a>0).

922.(12分)某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所得产值如表所示:

160千度,消耗煤不得超过150吨,怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大,最大产值是多少.

下载导数与数列不等式的综合证明问题word格式文档
下载导数与数列不等式的综合证明问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    应用导数证明不等式

    应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等......

    利用导数证明不等式

    利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0, 要证不等式变为:x>0时,f(x)>f(0), 这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x......

    利用导数证明不等式

    利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......

    数列不等式的证明

    数列和式不等式的证明策略 罗红波洪湖二中高三(九)班周二第三节(11月13日) 数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其......

    导数与不等式证明(绝对精华)(合集5篇)

    二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数......

    谈利用导数证明不等式.

    谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维......

    导数证明不等式的几个方法

    导数证明不等式的几个方法 1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有 11ln(x1)x x1 如果f(a)是函数f(x)在区间上的最大(小)值......

    2014-2-30导数证明不等式答案

    1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造辅助函数,把不等式的证明转化......