第一篇:导数证明不等式构造函数法类别(教师版)
导数证明不等式构造函数法类别
1、移项法构造函数
1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1 从其导数入手即可证明。
【解】f(x)1x1 x1x1∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数
当x0时,f(x)0,即f(x)在x(0,)上为减函数 故函数f(x)的单调递增区间为(1,0),单调递减区间(0,)
于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0 ∴ln(x1)x(右面得证),现证左面,令g(x)ln(x1)111x1,则g(x) 22x1x1(x1)(x1)当x(1,0)时,g(x)0;当x(0,)时,g(x)0,即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数g(x)在(1,)上的最小值为g(x)ming(0)0,110 x1111ln(x1)x ∴ln(x1)1,综上可知,当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1)
2、作差法构造函数证明 【例2】已知函数f(x) 图象的下方;
分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,即只需证明在区间(1,)上,恒有122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的 23122xlnxx3,23122xlnxx3成立,设F(x)g(x)f(x),x(1,),考虑到23F(1)10 6要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。【解】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F(x)2xx= 当x1时,F(x)=
xxx从而F(x)在(1,)上为增函数,∴F(x)F(1)∴当x1时 g(x)f(x)0,即f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)
3、换元法构造函数证明
10 623x的图象的下方。31111)23 都成立.nnn1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒
n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。233213x3(x1)2【解】令h(x)xxln(x1),则h(x)3x2x在x(0,)上恒正,x1x1322 所以函数h(x)在(0,)上单调递增,∴x(0,)时,恒有h(x)h(0)0,即xxln(x1)0,∴ln(x1)xx
对任意正整数n,取x32231111(0,),则有ln(1)23 nnnn【警示启迪】当F(x)在[a,b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.
4、从条件特征入手构造函数证明
【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证: af(a)>bf(b)
【解】由已知 xf(x)+f(x)>0 ∴构造函数 F(x)xf(x),' 则F(x) xf(x)+f(x)>0,从而F(x)在R上为增函数。
ab ∴F(a)F(b)即 af(a)>bf(b)【警示启迪】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明。若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结。
5、主元法构造函数
例.(全国)已知函数f(x)ln(1x)x,g(x)xlnx(1)求函数f(x)的最大值;
ab)(ba)ln2.2ab)中以b为主变元构造函数, 证明:对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(2(2)设0ab,证明 :0g(a)g(b)2g(设F(x)g(a)g(x)2g(ax'axax.)]lnxln),则F'(x)g'(x)2[g(222' 当0xa时,F(x)0,因此F(x)在(0,a)内为减函数.' 当xa时,F(x)0,因此F(x)在(a,)上为增函数.从而当xa时, F(x)有极小值F(a).因为F(a)0,ba,所以F(b)0,即g(a)g(b)2g(又设G(x)F(x)(xa)ln2.则G'(x)lnxlnab)0.2axln2lnxln(ax).2' 当x0时,G(x)0.因此G(x)在(0,)上为减函数.因为G(a)0,ba,所以G(b)0,即g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x x解:(1)f′(x)= ae-x,∵f(x)在R上为增函数,∴f′(x)≥0对x∈R恒成立,-x-x-x-x-x 即a≥xe对x∈R恒成立 记g(x)=xe,则g′(x)=e-xe=(1-x)e,当x>1时,g′(x)<0,当x<1时,g′(x)>0.
知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a≥1/e, 即a的取值范围是[1/e, + ∞)(2)记F(X)=f(x)-(1+x)=exx12x1x(x0)2x
x 则F′(x)=e-1-x, 令h(x)= F′(x)=e-1-x,则h′(x)=e-1 当x>0时, h′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0 即F′(x)>0 ,∴F(x)在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x.
7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)11xe1x2
8.构造形似函数
例:证明当bae,证明ab ba
例:已知m、n都是正整数,且1mn,证明:(1m)(1n)
nm4
【思维挑战】
1、设a0,f(x)x1ln2x2alnx 求证:当x1时,恒有xlnx2alnx1
2、已知定义在正实数集上的函数
f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22求证:f(x)g(x)
3、已知函数f(x)ln(1x)xb,求证:对任意的正数a、b,恒有lnalnb1.1xa4、f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有()
(A)af(b)≤bf(a)(C)af(a)≤f(b)
【答案咨询】
1、提示:f(x)1 ∴
(B)bf(a)≤af(b)(D)bf(b)≤f(a)2lnx2a2lnx1,当x1,a0时,不难证明xxxf(x)0,即f(x)在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xlnx2alnx1
123a222、提示:设F(x)g(x)f(x)x2ax3alnxb则F(x)x2a
2x(xa)(x3a)=(x0)a0,∴ 当xa时,F(x)0,x 故F(x)在(0,a)上为减函数,在(a,)上为增函数,于是函数F(x)在(0,)上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x)
3、提示:函数f(x)的定义域为(1,),f(x)11x 1x(1x)2(1x)2∴当1x0时,f(x)0,即f(x)在x(1,0)上为减函数
当x0时,f(x)0,即f(x)在x(0,)上为增函数
因此在x0时,f(x)取得极小值f(0)0,而且是最小值
x1,即ln(1x)1 1x1xa1bab1 于是ln1 令1x0,则1bx1abab因此lnalnb1
a于是f(x)f(0)0,从而ln(1x) f(x)f(x)xf'(x)f(x)F(x)
4、提示:F(x),F(x),故在(0,+∞)上是减函数,由ab 02xxx有f(a)f(b) af(b)≤bf(a)故选(A)ab
第二篇:导数证明不等式构造函数法类别(学生版)
导数证明不等式构造函数法类别
1、移项法构造函数
1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1 从其导数入手即可证明。
2、作差法构造函数证明 【例2】已知函数f(x) 图象的下方;
分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,即只需证明在区间(1,)上,恒有122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的 23122xlnxx3,23122xlnxx3成立,设F(x)g(x)f(x),x(1,),考虑到23F(1)10 6要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。
3、换元法构造函数证明
1111)23 都成立.nnn1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒
n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。
2332
4、从条件特征入手构造函数证明
【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证: af(a)>bf(b)
5、主元法构造函数
1x)x,g(x)xlnx 例.(全国)已知函数f(x)ln((1)求函数f(x)的最大值;
(2)设0ab,证明 :0g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x
7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)11xe1x2 8.构造形似函数
例:证明当bae,证明abba
例:已知m、n都是正整数,且1mn,证明:(1m)n(1n)m
【思维挑战】
1、设a0,f(x)x1ln2x2alnx 求证:当x1时,恒有xlnx2alnx1
2、已知定义在正实数集上的函数
f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22求证:f(x)g(x)
3、已知函数f(x)ln(1x)
xb,求证:对任意的正数a、b,恒有lnalnb1.1xa4、f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有()
(A)af(b)≤bf(a)(C)af(a)≤f(b)
(B)bf(a)≤af(b)(D)bf(b)≤f(a)
第三篇:构造函数,结合导数证明不等式
构造函数,结合导数证明不等式
摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐含,联想构造等方法进行证明.关键词:构造函数;求导;证明;不等式
利用导数证明不等式是四川高考压轴题的热点题型之一,此类问题的特点是:问题以不等式形式呈现,“主角”是导数,而不等式的证明不仅技巧性强,而且方法灵活多变,因此构造函数成为证明不等式的良好“载体”,如何有效合理地构造函数是证明不等式的关键所在,下面以实例谈谈如何构造函数的若干解题策略.注:此题也可用数学归纳法证明.解后感悟:函数隐藏越深,难度就越大,如何去寻找证明不等式的“母函数”是解决问题的关键,通过合理变形,展开思维联想的翅膀,发现不等式背后的隐藏函数,便会柳暗花明.结束语:导数为证明不等式问题开辟了新方法,使过去不等式的证明方法,从特殊技巧变为通性通法,合理构造函数,能使解题更具备指向性,剑之所指,所向披靡.
第四篇:构造函数,利用导数证明不等式
构造函数,利用导数证明不等式
湖北省天门中学薛德斌2010年10月
例
1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).
例
2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.
求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).
例
3、已知m、nN,且mn,求证:(1m)(1n).
nm
例
4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例
5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x1、x2,且
2x1x2,证明:fx2
12In2.4a0,b0,例
6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x
11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例
7、(1)已知x0,求证:
第五篇:构造法证明函数不等式
构造法证明函数不等式
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.
一、移项法构造函数
【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x. x
1二、作差法构造函数证明
【例2】已知函数f(x)的图象的下方.
2312xlnx,求证:在区间(1 ,)上,函数f(x)的图象在函数g(x)x
32三、换元法构造函数证明
【例3】(2007年山东卷)证明:对任意的正整数n,不等式ln(1111)23都成立. nnn
四、从条件特征入手构造函数证明
【例4】若函数yf(x)在R上可导,且满足不等式xf'(x)f(x)恒成立,常数a、b满足ab,求证:af(a)bf(b).
五、主元法构造函数
1x)x,g(x)xlnx. 【例5】已知函数f(x)ln((1)求函数f(x)的最大值;
(2)设0ab,证明:0g(a)g(b)2g(ab)(ba)ln2.
2六、构造二阶导函数证明函数的单调性(二次求导)
【例6】已知函数f(x)aex12x. 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a1,求证:当x0时,f(x)1x.
七、对数法构造函数(选用于幂指数函数不等式)
【例7】证明:当x0时,(1x)1xe12.
1、(2007年,安徽卷)设a0,f(x)x1ln2x2alnx.
求证:当x1时,恒有xln2x2alnx1.
2、(2007年,安徽卷)已知定义在正实数集上的函数f(x)1x12x2ax,g(x)3a2lnxb,其中2a0,且b 52a3a2lna,求证:f(x)g(x).
23、已知函数f(x)ln(1x) xb,求证:对任意的正数a、b,恒有lnalnb1. 1xa4、(2007年,陕西卷)f(x)是定义在(0 , )上的非负可导函数,且满足xf'(x)f(x)0,对任意正数a、b,若ab,则必有()
A.af(b)bf(a)
B.bf(a)af(b)
C.af(a)f(b)
D.bf(b)f(a)例1【分析】 本题是双边不等式,其右边直接从已知函数证明,左边构造函数11,从其导数入手即可证明. x11x1【解析】由题意得:f(x),∴当1x0时,f(x)0,即f(x)在x1x1g(x)ln(x1)x(1 , 0)上为增函数;当x0时,f(x)0,即f(x)在x(0 , )上为减函数;故函数f(x)的单调递增区间为(1 , 0),单调递减区间(0 , );于是函数f(x)在(1 , )上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0,∴ln(x1)x(右面得证).现证左面,令g(x)ln(x1)11x11,则g(x)22,x1(x1)(x1)x1当x(1 , 0)时,g'(x)0;当x(0 , )时,g'(x)0,即g(x)在x(1 , 0)上为减函数,在x(0 , )上为增函数,故函数g(x)在(1 , )上的最小值为g(x)ming(0)0,110,x1111ln(x1)x. ∴ln(x1)1.综上可知:当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1)【点评】如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a)(或f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证.
例2.【分析】函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)在(1 ,)上恒成12212xlnxx3,只需证明在区间(1,)上,恒有x2lnxx3成立,23231设F(x)g(x)f(x),x(1 , ),考虑到F(1)0,要证不等式转化变为:
6立问题,即当x1时,F(x)F(1),这只要证明:g(x)在区间(1 ,)是增函数即可. 【解析】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F'(x)2xx;当x1时,F'(x)0,从xxx而F(x)在(1,)上为增函数,∴F(x)F(1)
10,∴当x1时,g(x)f(x)0,即6f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)23x的图象的下方. 3【点评】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式.读者也可以设F(x)f(x)g(x)做一做,深刻体会其中的思想方法. 例3.【分析】本题是山东卷的第(2)问,从所证结构出发,只需令
1x,则问题转化为:当x0n时,恒有ln(x1)x2x3成立,现构造函数h(x)x3x2ln(x1),求导即可达到证明.
13x3(x1)2 【解析】 令h(x)xxln(x1),则h(x)3x2xx1x1322在x(0 , )上恒正,∴函数h(x)在(0 , )上单调递增,∴x(0 , )时,恒有h(x)h(0)0,即x3x2ln(x1)0,∴ln(x1)x2x3,对任意正整数n,取x1111(0 , ),则有ln(1)23. nnnn【点评】我们知道,当F(x)在[a , b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.
例4.【解析】由已知:xf'(x)f(x)0,∴构造函数F(x)xf(x),则F'(x)xf'(x)f(x)0,从而F(x)在R上为增函数,∵ab,∴F(a)F(b),即af(a)bf(b).
【点评】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明.若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结.
例5.【分析】 对于第(2)小问,绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.(2)对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(数,设F(x)g(a)g(x)2g(ab)中以b为主变元构造函2axaxax),则F'(x)g'(x)2[g()]'lnxln. 222当0xa时,F'(x)0,因此F(x)在(0 , a)内为减函数;当xa时,F'(x)0,因此F(x)在(a , )上为增函数.从而当xa时,F(x)有极小值F(a),∵F(a)0,ba,∴F(b)0,即g(a)g(b)2g(ab)0.又设G(x)F(x)(xa)ln2,则2G'(x)lnxlnaxG'(x)0.ln2lnxln(ax);当x0时,因此G(x)在(0 , )2ab)(ba)ln2. 2上为减函数,∵G(a)0,ba,∴G(b)0,即g(a)g(b)2g(例6.【解析】(1)f'(x)aexx,∵f(x)在R上为增函数,∴f'(x)0对xR恒成立,即axex对xR恒成立;记g(x)xex,则g'(x)exxex(1x)ex;
当x1时,g'(x)0;当x1时,g'(x)0.知g(x)在( , 1)上为增函数,在(1 , )上为减函数,∴g(x)在x1时,取得最大值,即g(x)maxg(1)(2)记F(x)f(x)(1x)ex111,∴a,即a的取值范围是[ , ).
eee12xx1(x0),则F'(x)exx1,2令h(x)F'(x)exx1,则h'(x)ex1;当x0时,h'(x)0,∴h(x)在(0 , )上为增函数,又h(x)在x0处连续,∴h(x)h(0)0,即F'(x)0,∴F(x)在(0 , )上为增函数,又F(x)在x0处连续,∴F(x)F(0)0,即f(x)1x.【点评】当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为mf(x)(或mf(x))恒成立,于是m大于f(x)的最大值(或m小于f(x)的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最 值是解决不等式恒成立问题的一种重要方法.
例7.【解析】 对不等式两边取对数得(1)ln(1x)11xx,化简为2(1x)ln(1x)2xx2,2(l1x),设辅助函数f(x)2xx22(1x)ln(,f'(x)2x2n1x)(x0)又f''(x)2x0(x0),易知f'(x)在(0 , )上严格单调增加,从而f'(x)f'(0)01x(x0),又由f(x)在[0 , )上连续,且f'(x)0,得f(x)在[0 , )上严格单调增加,∴f(x)f(0)0(x0),即2xx22(1x)ln(1x)0,2xx22(1x)ln(1x),故(1x)11xe1x2(x0).
1、【解析】f(x)12lnx2a2lnx1,∴f(x)0,即f(x),当x1,a0时,不难证明xxx 在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xln2x2alnx1.
2、【解析】设F(x)g(x)f(x)12x2ax3a2lnxb,则23a2(xa)(x3a)(x0),∵a0,∴当xa时,F'(x)0,F'(x)x2axx故F(x)在(0 , a)上为减函数,在(a , )上为增函数,于是函数F(x)在(0 , )上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x).
3、【解析】函数f(x)的定义域为(1 , ),f'(x)11x,∴当1x01x(1x)2(1x)2时,f'(x)0,即f(x)在x(1 , 0)上为减函数;当x0时,f'(x)0,即f(x)在x(0 , )上为增函数;因此在x0时,f(x)取得极小值f(0)0,而且是最小值,于是f(x)f(0)0,从而ln(1x)1xa1b1,于是,即ln(1x)1,令1x0,则11x1xbx1aabbf(x)xf'(x)f(x)ln1,因此lnalnb1.
4、0,故【解析】F(x),F'(x)baaxx2f(x)f(a)f(b)af(b)bf(a),故选A. F(x)在(0 , )上是减函数,由ab有xab8