第一篇:部分课外平面几何定理证明
部分课外平面几何定理证明
一.四点共圆
很有用的定理,下面的定理证明中部分会用到这个,这也是我把它放在第一个的原因。
这个定理根据区域的不同,在中考有的地方能直接用,有的不能,据笔者所知,北京中考是可以直接用的。其余的还是问问老师比较好。起码在选择题是大有用处的。
二.三角形三垂线交于一点
四点共圆的一次运用。很多人都知道三垂线交于一点,在这里给出证明
三.三角形垂心是连接三垂直所得到新三角新的内心
由三角形的三垂线可得多组四点共圆,一般有垂心的题都离不开四点共圆。
估计这个结论在中考是不能直接用的,如果地区允许四点共圆的话稍微证一下就行了。
四.圆幂定理(在这里只是一部分)
·为割线定理、切割线定理于相交弦定理的总称。
这个应该是很多地方都允许用的,如果不能用的话也是稍微证一下就行了。
五.射影定理(欧几里得定理)
什么也不说了,初中几何里应该是比较常用的。目测考试随便用
六.三角形切线长公式
·已知三角形三边长可求内切圆切点到顶点距离
可能是做的题比较少吧,很少见有这样的中考题。推导也是很简单的。
七.广勾股定理
估计中考允许用的地方不多,除非你那允许“引理”这货
八.弦切角定理
很简单,估计每个地方都允许的。就算不把它当定理,自己也能发现这个结论
九.燕尾定理(共边比例定理)
面积法思想,出现中点时可以用来证线段相等(例如下一个,重心),另外用于比例也是挺好使的。
中考的时候,直接用的话估计老师会认为你跳跃度太大,考虑的时候想到这个,证明的时候用面积法就行了。
十.海伦公式
已知三角形三边可求其面积,可用余弦定理和正弦求面积公式推导,但余弦定理是高中知识(在后面会放出
来)所以不用在这里。另外公式里带根号,若三边中有根号的配凑一下应该可以开根。这里是海伦公式的一个探讨,推广至n边形面积。在第五页有海伦公式的各种变形,其中变形⑤的个边带有平方,可以解决边长带根号的问题,缺点是过于冗繁。吧友可以根据自己的情况进行探讨。
中考嘛,一直不是很喜欢,过多的限制,不能发挥自己的能力。这个公式就不推荐考试的时候用了。
十一.重心
三中线交于一点。同垂心
十二.重心定理:重心把中线分为2:1两部分。
总的来说这些定理考试能用否得问老师,不能用的话,作平行线把推导过程代进证明过程就算是侧面使用定理了,肯定不会扣分的。
十三.欧拉线
由重心定理简单得出
估计中考题都不会考共线神马的(起码广东这地方是不会考的)。
十四.托勒密定理
很好用的一个竞赛定理。中考填空就能用这个解,作垂线设方程就得出来了,其他人还向外做了正三角形神马的。所以个人感觉了解多点知识对于考试或对于兴趣都是挺好的
十五.余弦定理
十六.正弦定理
十七.赛瓦定理(ceva定理)
十八.梅涅劳斯定理(简称梅氏定理menelaus定理)
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
十九.调和点列
二十.中线定理
·表述了三角形三边与中线长的关系
三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。即,对任意三角形△ABC,设I是线段BC的中点,AI为中线,则有如下关系: AB^2+AC^2=2BI^2+2AI^2 或作AB^2+AC^2=1/2BC^2+2AI^2
二十一.角平分线定理
·角平分线的比例性质
二十二.九点共园定理(欧拉圆、费尔巴赫圆)
三角形三边的中点,三条高的垂足,垂心与各顶点连线的中点这九点共圆
二十三.张角定理
在△ABC中,D是BC上的一点,连结AD。那么sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD。
逆定理: 如果sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD,那么B,D,C三点共线。
定理的推论:
在定理的条件下,且∠BAD=∠CAD,即AD平分∠BAC,则B D C共线的充要条件是:2cos∠BAD/AD=1/AB+1/AC
二十四.蝴蝶定理
由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
二十五.清宫定理
设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上
二十六.西姆松定理(cave定理)
过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。
二十七.角元塞瓦定理
设P为平面上一点(不在AB、BC、AC三条直线上),且(sinBAP/sinPAC)(sinACP/sinPCB)(sinCBP/sinPBA)=1则AD、BE、CF三线共点或互相平行. 推论若所引的三条线段都在△ABC 内部,则这三条直线共点。
【暂时缺图】
二十八.莫利定理
将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
二十九.斯坦纳定理
如果三角形中两内角平分线相等,则必为等腰三角形
三十.斯台沃特定理(斯氏定理)
任意三角形ABC中,D是底边BC上一点,联结AD,则有:AB^2×CD+AC^2×BD=(AD^2+BD×DC)×BC 也可以有另一种表达形式:设BD=u,DC=v,则有:AD^2=(b^2×u+c^2×v)/a-uv
三十一.笛沙格定理
平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
三十二.牛顿定理
牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
牛顿定理3 圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。.
第二篇:高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)
1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去
这两边中的一边和另一边在这边上的射影乘积的两倍.(2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.
2. 射影定理(欧几里得定理)
3. 中线定理(巴布斯定理)设△ABC的边BC的中点为P,则有AB2AC22(AP2BP2); 中线长:ma2b2ca2222.
4. 垂线定理:ABCDAC2AD2BC2BD2. 高线长:ha2ap(pa)(pb)(pc)bc
asinAcsinBbsinC.
5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.
如△ABC中,AD平分∠BAC,则BD
DCAB
AC;(外角平分线定理). cosA
2角平分线长:ta
6. 正弦定理:a
sinA2bcb
sinB(pa)csinC2bcbc(其中p为周长一半). 2R,(其中R为三角形外接圆半径).
7. 余弦定理:c2a2b22abcosC.
8. 张角定理:sinBAC
AD sinBAD
ACsinDAC
AB.
9. 斯特瓦尔特(Stewart)定理:设已知△ABC及其底边上B、C两点间的一点D,则有AB2·DC+AC2·BD
-AD2·BC=BC·DC·BD.
10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)
11.12.
13. 弦切角定理:弦切角等于夹弧所对的圆周角. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)布拉美古塔(Brahmagupta)定理: 在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向
一边作垂线,其延长线必平分对边.
2214. 点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d-r就是点P对
于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d-r|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.
15. 托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即2
2AC·BD=AB·CD+AD·BC,(逆命题成立).(广义托勒密定理)AB·CD+AD·BC≥AC·BD.
16. 蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.
17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马
点.
18. 拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线
共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.
19. 九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对
边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:
(1)三角形的九点圆的半径是三角形的外接圆半径之半;
(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;
(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕. 20. 欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上. 21. 欧拉(Euler)公式:设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d2=R2-2Rr. 22. 23.
G(锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.
重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;
xAxBxC,yAyByC)
重心性质:(1)设G为△ABC的重心,连结AG并延长交BC于D,则D为BC的中点,则AG:GD2:1;
(2)设G为△ABC的重心,则SABGSBCGSACG
交
DEBC
3SABC;
(3)设G为△ABC的重心,过G作DE∥BC交AB于D,交AC于E,过G作PF∥AC交AB于P,BC
FPCA
于
F,过
KHAB
G作HK∥AB交AC于K,交BC于H,则
2DEFPKH
;2; 3BCCAAB
(4)设G为△ABC的重心,则
①BC23GA2CA23GB2AB23GC2; ②GA2GB
GC
(AB
BC
CA);
③PA2PB2PC2GA2GB2GC23PG2(P为△ABC内任意一点);
④到三角形三顶点距离的平方和最小的点是重心,即GA2GB2GC2最小;
⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G为△ABC的重心).
24.垂
aH(cosA
心
xA
b
:
xB
三
c
角
xC,形
acosA的yA
b
三
yB
条
c
高
yC)
线的交点;
cosBcosC
abc
cosAcosBcosCcosBcosC
abc
cosAcosBcosC
垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;
(2)垂心H关于△ABC的三边的对称点,均在△ABC的外接圆上;
(3)△ABC的垂心为H,则△ABC,△ABH,△BCH,△ACH的外接圆是等圆;(4)设O,H分别为△ABC的外心和垂心,则BAOHAC,CBOABH,BCOHCA.
25.内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;
I(axAbxBcxC
abc,ayAbyBcyC
abc)
内心性质:(1)设I为△ABC的内心,则I到△ABC三边的距离相等,反之亦然;(2)设I为△ABC的内心,则BIC90
2A,AIC90
B,AIB90
C;
(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A平分线交△ABC外接圆于点K,I为线段AK上的点且满足KI=KB,则I为△ABC的内心;(4)设I为△ABC的内心,BCa,ACb,ABc, A平分线交BC于D,交△ABC外接圆于点K,则
AIIDAKKI
IKKD
bca;
(5)设I为△ABC的内心,BCa,ACb,ABc,I在BC,AC,AB上的射影分别为D,E,F,内切圆
半
径
为
r,令
p
(abc),则①
SABCpr
;②
AEAFpa;BDBFpb;CECDpc;③abcrpAIBICI.
26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;
O(sin2AxAsin2BxBsin2CxC
sin2Asin2Bsin2C,sin2Ay
A
sin2ByBsin2CyC
sin2Asin2Bsin2C)
外心性质:(1)外心到三角形各顶点距离相等;
(2)设O为△ABC的外心,则BOC2A或BOC3602A;(3)R
和. 27.
旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC的三边
(abc),分别与BC,AC,AB外侧相切的旁切圆圆心记为
abc4S
;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之
BCa,ACb,ABc,令p
IA,IB,IC,其半径分别记为rA,rB,rC.
旁心性质:(1)BIAC90(2)IAIBIC
A,BIBCBICC
A,(对于顶角B,C也有类似的式子);
(AC);
(3)设AIA的连线交△ABC的外接圆于D,则DI
A
; DBDC(对于BIB,CIC有同样的结论)
(4)△ABC是△IAIBIC的垂足三角形,且△IAIBIC的外接圆半径R'等于△ABC的直径为2R. 28. 三角形面积公式
SABC
12aha
absinC
a4R
c2b
2RsinAsinBsinC
a4(:
b
c
oC)o
o
tt
t
AccBc
pr
p(pa)(pb)(pc),其中ha表示BC边上的高,R为外接圆半径,r为内切圆半径,p
(abc).
29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:
A2
rtan
B2tan
C2
r4Rsinsin
B2
sin
C2
;ra4Rsin
rtan
A2tan
C2
A2
cos
B2
cos
r
C2,rb4Rcos
;1ra
1rb
A2
sin
B2
1r.cos
C2,rc4Rcos
A2
cos
B2
sin
C2
;
r
a
,rb,rc
tan
1rc
A2
tan
B2
30. 梅涅劳斯(Menelaus)定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一
BPPC
CQQA
ARRB
1.(逆定理也成立)
顶点的直线的交点分别为P、Q、R则有
31. 梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB
于R,∠B的平分线交边CA于Q,则P、Q、R三点共线. 32. 33.
梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.
塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直
AZBXCY
·.
ZBXCYA
34. 塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设
BE和CD交于S,则AS一定过边BC的中点M.
线交于一点的充要条件是35.
塞瓦定理的逆定理:(略)
36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点. 37.
塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38. 西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line). 39. 西摩松定理的逆定理:(略)40.
关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.
41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其
余一点的关于该三角形的西摩松线,这些西摩松线交于一点. 42. 史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通
过线段PH的中心. 43.
史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线. 44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共
线.这条直线叫做这个四边形的牛顿线.45. 46.
牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.
笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和
F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2).49. 波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点. 50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取
三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR
为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点. 52.
波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.
53. 卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线. 54.
奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.
55. 清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则
D、E、F三点共线. 56. 他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点
分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)57. 朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直
线上.58.
从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.
59. 一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点. 60. 康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点. 61.
康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线. 62. 康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线
交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.
63. 康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边
形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线. 64. 65.
费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.
莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.
66. 布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线
共点. 67. 帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或
延长线的)交点共线. 68. 阿波罗尼斯(Apollonius)定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆. 69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个
三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆. 70. 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四
个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点. 71. 葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O是三角形的外心,M是三角形中的任意一点,过M向三边
作垂线,三个垂足形成的三角形的面积,其公式: SDEF
SABC
|R
d
|
.
4R
第三篇:李明波四点定理的平面几何证明
李明波四点定理的平面几何证明
郝锡鹏
提要2009年9月19日,李明波导出和角余弦恒等式 cos2cos2cos2()2coscoscos()1 并用此给出他四点定理的一个平面几何证明。1和角余弦恒等式
2009年9月19日,李明波由和角三角函数公式
cos()coscossinsin下推
cos()coscoscos2cos2,(1cos2)(1cos2)[coscoscos()]2,1cos2cos2cos2cos2
cos2cos22coscoscos()cos2(),从上式两面消去cos2cos2再移项便得恒等式
cos2cos2cos2()2coscoscos()12四点定理的证明
在图1中,李明波根据余弦定理得
a2c2b
2cos
12ac
b2c2a2
cos1
2bc
cos()a2b2c2
2ab(1)(2)3-1)3-2)3-3)(((B
B
a
A
c c1
a1
图 1
b1 c1
b1
b
C
A c
D
C
a1
图 2
D
将(3-1)、(3-2)、(3-3)代入(2式)得
a2c2b122b2c2a122a2b2c122()()()
2ac2bc2aba2c2b12b2c2a12a2b2c12
21
2ac2bc2ab
上式两面同乘4a2b2c2去分母得
b2(a2c2b12)2a2(b2c2a12)2c2(a2b2c12)2
(a2c2b12)(b2c2a12)(a2b2c12)4a2b2c2(4)
将(4)展开并进行繁杂的整理便得四点定理:
a2a12(a2a12b2b12c2c12)b2b12(a2a12b2b12c2c12)
c2c12(a2a1b2b12c2c1)
2a2b2c1a2b12c2a12b2c2a12b12c12(5)
在图2中,上述证明过程的(3-3)式可改写为cos[360()]
a2b2c12
cos(),所以(5)式同样也适合于图2。
2ab
第四篇:高中平面几何60大定理
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线的两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有
n×AB2+m×AC2=(m+n)AP2+mnBC17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BPPC×CQQA×ARRB=
124、梅涅劳斯定理的逆定理:(略)
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).不用掌握
37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是
D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三 边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
第五篇:初中平面几何重要定理汇总
初中平面几何重要定理汇总
1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c)
2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC。等积式(4)ABXAC=BCXAD(可用面积来证明))
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线的两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
33、西摩松定理的逆定理:(略)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。