丰田汽车模具制造技术

时间:2019-05-14 16:36:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《丰田汽车模具制造技术》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《丰田汽车模具制造技术》。

第一篇:丰田汽车模具制造技术

丰田汽车模具制造技术

一. 丰田模具设计与制造部门概况

丰田汽车公司中与冲压模具设计制造有关的部门主要有两个,其中负责模具设计的是第八生产技术部,负责模具制造的是st部(st

为冲模的英文缩写)。它们都直属于总公司,生产技术1-8部属于生产准备部门,冲模部(st部)属于工机制造部门。

1.第8生产技术部

其主要职责是模具设计和冲压设备准备,加上它所属的计划、生产准备、部属等科室共有将近350人。

其中与模具设计有关的技术室有三个,它们是由从事的产品件类型来划分的:

部门

职责

人员

一室

车身周边件模具设计

(车门、机盖、后行李厢盖)

约70人

二室

主车身件模具设计

(侧围、翼子板、顶盖等)

约75人

三室

底板、梁架件模具设计

(地板、发动机舱等)

约30人

每个室又分为冲压工艺与模具结构设计两个组。

专业化分工是丰田模具设计部门工作的特点

a. 模具设计内容细分

丰田把模具设计分成三个工序:工序设计、模面设计和结构设计,分工明确,分别由专门人员负责。工序设计主要完成工序草图、dl图设计、作详细的模具设计任务书、模面构想等,人员专业化分工细微各个室只负责一类产品件,每个人在一定时间内负责同一

个件,甚至是同一类模具。由于丰田每年开发的新车可达十种,这就是说,可能有的人在一年内画十套非常相似的前车门外板拉延

模,其专业化程度可想而知。

b.模具的社会大分工

日本的模具制造专业性分工很强,丰田虽然自己的模具制造能力很强,但它并不是什么模都干。比如,整车所有件的冲压工艺和模

具的整车协调,他自己都负责,但模具设计和制造他只干车身内外覆盖件,地板和梁架件全部到定点厂家外协。不但丰田如此,国

外的大汽车公司所属模具厂无不如此,比如日本大发公司模具厂,甚至只做侧围、翼子板、顶盖等有限的几种外覆盖件。这可以看

作是一种发展趋势,在韩国、台湾甚至是专业模具厂家也是向只做几种件的更专业方向发展。

2.模具制造部(st部)

丰田st部负责模具制造和新车整车模具的协调,并一直到大批量生产之前的冲压生产准备。

st部构成:

科室

责任

人员

技术室

生产技术开发、生产计划、89人

生产准备、设备计划

nc课

nc编程、检查

175人

实型课

验具、实型制造

142人

机械课

机械加工

173人

钳工课

钳工、装配

237人

调试课

试模、调试

204人

总共 1020人

主要数控加工设备:

构造面加工数控铣床 39 台

型面加工高速、五轴五面铣 15 台

新型一体化加工设备 6 台

其他小件加工设备 31 台

总计 92 台

从人员和生产能力上看,st 部都算得上是世界上最大的汽车模具厂之一。

3.丰田的模具设计和制造能力

模具设计与制造能力: 每年大约可开发10个轿车整车模具;

模具产量(标准套)约2000套/年

内制率60%(外协40%)

主要产品中: 模具占80% 验具占7% 其他占13%

全年完成模具制造成本预算近200亿日元

人均模具产量 2 标准套/人。年 模具制造成本(不含设计)约600万日元/套

工时成本(平均)约1万日元/小时

整车模具设计制造周期 12个月

(由车身设计完成至新车批量生产)

其中包括整车全部模具设计周期 5个月

制造周期 5个月

调试周期 6个月

由此可见,丰田一年的轿车生产能力大约500万辆(日本国内部分约占50%),是中国大陆轿车产量的十倍,而模具设计制造能力也

超过我们全国汽车模具生产能力的数倍。丰田的整车模具制造周期,远远短于我们的一般单套模具制造周期,它的标准单套模具制

造周期为三至四个月,在我们看来还是一个梦想。我们的模具质量水平与丰田相比相差更远。

4.丰田一般模具制造周期

丰田把模具的制造计划标准化,根据模具的复杂程度可分为短周期、标准周期和长周期三种。

现以单套模具的设计制造周期(拉延模,标准周期)为例:

冲压工艺

20天 模具设计

20天 模面设计

8天 nc编程

15天 实型制作

7天 铸造

12天 机加工

9天 钳工装配

7天

单套拉延模总周期 62天 其中制造周期 52天

以上周期包括模具的设计、制造直至模具初次试模完成为止。如果再考虑产品件各序模具的总周期,单个制件各序模具的总周期,要在拉延模的基础上再加22天(包括模具调试,但不包括整车调试),总共84天。

以上天数均为工作日(节假日除外),换算为日历日大约为20天等于一个月,也就是单套模具制造周期三至四个月。

丰田的模具制造也是按照准时化生产方式进行的,全部倒排计划,计划到每一个工作日,不提前投产,避免增加在产模具。我们的

倒排计划往往是为赶工期,人为的压缩工期。而丰田的倒排计划,是为了在必要的时候生产出必要的产品,避免提前投产造成生产

过剩的浪费。

二. 丰田模具制造技术

近十年来本人曾在日本多家模具制造厂进行过较为深入的学习和考察,先后累计时间达6个多月。对比以后发现,丰田的模具技术在

日本的模具厂家中也是十分突出的,无论是能力、效率及技术都不愧为世界一流水平。通过对丰田的了解我们可以看到,世界汽车

模具制造技术正在向这些方向发展:计算机前的操作逐步代替现场操作,以高精度加工代替人的手工劳动,模具的设计、制造高度

标准化,单件生产方式向流水线式生产方式发展等等。结合我们国内的模具制造情况,丰田在以下一些地方与我们有很大的不同,值得我们很好的借鉴。

1. 冲压工艺设计

a. 精细模面设计

我们常说的模具设计实际上分为三个部分:冲压工艺设计、模面设计和结构设计。这三种设计的内容和侧重点是完全不同的,丰田 的工作流程为先有冲压工艺设计然后指导模面设计和模具结构设计,分别由不同的人来做,专业分工很明确。传统的冲压工艺设计

采用工序图或是dl图,它的模面设计是非常粗略的,以这样的图纸指导下的工艺造型,必须在后序靠人工修整、制造工艺祢补,造

成模具制造的人工钳修量很大、周期延长。丰田在设计阶段通过计算机的曲面造型,完成模面的精细设计。比如:针对进料量不同

设计各种拉延筋,同一套模不同部位的拉延筋截面不同,防回弹、过拉延处理,最小压料面设计,凸凹模不等间隙设计等等。精细

模面设计的结果,可以极大的减少型面加工,减少钳修,减少试模工时,它的作用非同小可。

对比之下,国内的模具设计还停留在结构设计阶段,模面设计没有受到很好的重视,模面实际上是靠后天完成,模具设计的落后造

成了制造的落后,也就毫不奇怪了。

b.板料成型分析技术应用情况

丰田公司从5-6年前,开始应用有限元法做计算机模拟板料成型分析,主要应用的解算软件为美国的dyna3d,他们经过了近三年的努

力才达到实用水平。目前,丰田建立了一个整车身各种典型件的分析结果库。对一个新车型的件,如果成型性没有太大的变化,只

是参考原工艺不做分析,只有特殊的新造型才做板料成型分析。丰田的新车要做样车,对造型特殊的件除了做板料成型分析外一般

还要做简易模进行验证。因此,丰田人认为目前板料成型分析还不是一件必需的、简单的事,无论是周期还是成本都有很大代价。

本人认为,丰田的车型开发量很大,车型之间变化不大、类似件很多,又积累了丰富的人的经验,板料成型分析确实用武之地不多,建立一个分析结果库是一个好方法(日本富士模具公司也是这么做的)。反观国内现状,一方面模具厂专业分工很低,各种件都

会遇到,难有现成经验,似乎更需要板料成型技术。另一方面,技术水平低支持环境差(如:板料参数、摩擦系数等难掌握),模

具厂应用起来,要达到实用(不讲效果、不计代价的研究不算)也是非常困难的。即使是成立专业分析公司,考虑用户数量、周期、价格等因素,恐怕也曲高和寡。目前,这项技术在国内的实际应用效果还难有定论。

c. 模面设计经验积累机制

丰田的设计部门除手工勾画草图以外,设计已全部计算机化,一般设计人员除一台工作站外还有一台笔记本电脑。但,真正创造性 的设计还是靠人脑,特别是靠人的经验积累。丰田特别强调经验积累机制:只有集体的经验不能有只属于个人的经验,比如:资料 的统一管理,草图设计的小组讨论,图纸的多部门集体审核,设计标准、规范的经常性增改等等。经验积累机制是丰田能够不断提

高模面精细设计的主要手段。比如:模具加工完成之后,一般模具型面不用研合,刃口不必对间隙,钳工只负责安装,在初次试模

时也不能随便修调模具,调试模具有模面设计人员在场,初次试模缺陷需要记录下来。最后的休整结果,象拉延筋、拉延圆角变动、对称件的不对称现象等,还要进行现场测量。这些资料的积累、整理、分析、存档,都是模面设计的经验积累,并随时加入到下

一次的设计中去。

丰田的模具设计和调试过程,真正做到了是一个闭环制造系统,借助于这种自我完善的经验积累机制,模具的设计越来越精细,越

来越准确。

d. 间隙图设计

在丰田,模面设计实际上是由曲面造型和nc编程两部分共同完成的,为了传达和描述模面设计思想,就产生了除dl图、模具图之外 的第三种图---间隙图也叫质量保证图。

间隙图本人在以前还没有见识过,这可能是丰田的一种创造。模具的设计不是单纯为了设计出一种机器,能够完成它一定的动作就

完了(这只能叫作结构设计),模具设计的最终目的是为了保证它所压出的产品件是合格的高质量的,间隙图就是这样一种专为保

证产品件质量的图。质量保证图中,主要包括这样几项内容:模具实际符型面区域、各个符型区域的间隙值、工艺要求的模面变化

情况、拉延圆角的变化、各种模面的挖空等等。凡是无法通过曲面造型实现的模面设计,都通过间隙图的传达,依靠nc编程的设计

来实现,在这里nc编程也不再是单纯的实现模具结构的加工,它实际上也参与到模面设计中来了。因此,间隙图的应用也是精细模

面设计的一种必然。

e. 大规模生产对模具的影响

丰田的生产规模是世界一流的,它在模具设计如何适应大规模生产的要求方面具有丰富的经验。

提高材料利用率:对于大批量汽车生产来说,提高板料的利用率是模具设计的第一大事。只要把材料利用率提高几个百分点,模具 的成本就可乎略不计了。如果一套模具40万人民币,只相当于100吨钢板的价格,以寿命50万件计算,平均每件节约0。2kg钢板,就

足可节约出这套模具费用了。

减少冲压工序:模具设计的趋势是,零件的合并,左右对称件合模,前后顺序件合模等等,原来几个件合成一个件,不同的件合在

一套模,模具越来越大,单件工序大大减少,整车模具数量越来越少,这对降低冲压的成本起关键作用。例如:丰田把整车制件的

模具系数,由过去的3点几降到2左右。

冲压自动化:为适应冲压线完全自动化,模具必须考虑机械手上下料,废料的自动排出,气动、自动和传感装置普遍采用等等。

模具的快速装换:冲压线的换模时间,也成为一个模具设计必须考虑的问题。如:拉延模完全以单动代替双动,模具自动卡紧,换

模不换气顶杆等等。

2. 模具结构的设计和加工

设计有两种目的:一个是面向设计本身,一个是面向制造。设计者在画图过程中逐步完善自己的设计思路,图画完了,自己也清楚

了,因此图纸首先要设计者自己看得方便,并使设计的工作效率高。另一方面,设计要面向制造,以提高生产效率为最终目的。

我们应当认识到不同的生产工艺流程决定了图纸的表达形式。传统的模具总装图加零件图的形式,适应的是非框架结构的模具生产

。采用大型数控铣加工以后,模具总成图成为更好的形式。在全面应用cad设计之后,如果生产方式没变,那么二维设计和总图设计

也不会变,只是把图板换成了屏幕和键盘。我公司在97年曾一度改二维设计为三维实体设计,然而效果并不好,设计效率降低、生

产上也没有得多少实惠。

丰田在cad三维实体设计与制造紧密相配合方面为我们提供了比较成功的经验。

3.a. 实体设计

丰田的模具设计已全部采用三维实体设计,应用的软件为enginner。

模面设计与结构设计的分开:丰田把模具结构设计与模面设计完全分开的,前者是实体设计,后者仍然是曲面设计。在结构设计中

模面部分只是示意性的,可用于实型加工,不能用于模具加工。这种分工大大简化了模具实体设计,这种简化对三维实体设计的成

败很重要。

取消二维图纸:尺寸标注大约占绘图工作量的40%,丰田不绘制传统意义上的二维图纸,也就完全省去了这一部分的工作量。取而代

之的是根据各工序需要,给出必须的三维立体简图,和标注必要尺寸的平面简图。如果从三维设计出发,最终得二维图的结果,那

把一个三维实体转变成符合人看图习惯的二维图,将是非常费时、费事的,设计出的实体变得毫无价值,这显然违背了实体设计的

初衷,丰田的成功之处就是没有这么做。

搭积木和编辑式设计:三维实体设计采用搭积木式设计,依靠三维标准件和典型结构库,使模具结构极大的标准化,变二维绘图构

思为三维立体布置。同时大量借用已有的相似模具结构,经过简单编辑、修改,完成新模设计。这对设计者来说,是观念上的一场

革命,如果还墨守成规,先画平面图再生成立体型,那三维设计的优势就成了负担,效率太低了。

干涉检查:在二维设计中,往往设计者并没有真正的建立起三维的模具形象,对复杂的空间问题只能靠断面图,一旦经验不足,考

虑不周,空间干涉就再所难免。三维实体设计最直接的好处,就是非常直观方便的干涉检查,甚至可以作运动干涉分析。以往二维

图设计时的一个老大难问题,在实体设计面前迎刃而解。

实体设计中的删繁就简:实体设计直接面向制造,它所设计的繁简因加工需要而定,完全不必考虑人的看图习惯。比如:铸件的倒

角,在加工中凹角靠刀具完成,凸角靠人工修整,所以,设计中就不必做了;又如:标准件,完全是采购件,在设计中也可以变成

示意性的简单几何体等等。还有许多设计工作,实际上是靠后序的工艺规范完成的,如螺钉孔位置,镶块形状等。因加工需要而设

计是最经济的设计。

半自动设计:丰田在实体设计的基础上,对拉延模等一些结构典型而标准化比较高的模具,已经开发出具有一定功能的辅助程序,做到半自动设计。比如:拉延模结构设计一般都交给,新手、女职员来完成,设计一套模全部工作也用不了一周时间。

b.实型数控加工

实体设计的第一个用途,就是铸件泡沫实型完全采用数控加工。丰田的实型模是用一整块矩形泡沫数控加工出来的。实型的数控化

加工生产,就是通过对实体模型的工艺编辑(如:加工面贴加工余量,模型分层编辑等),再经过数控编程,泡沫毛坯下料,数控 加工,人工粘接和修整等几道工序完成的。在丰田,实型的生产员工,已完全从手工制作转变到大量的数控编程上来了,现场的简

单人工粘接和修整工作,由临时工所充当。实型的数控化生产直接得利于实体设计,而又提高了铸件的精度,为后序的精细加工带

来极大的优势。

c.构造面数控加工

模具构造面就是模具型面以外的机加工面,如:导向面、镶块安装面、螺钉孔、其他需加工面等等。这些在丰田也都是靠编程,数

控加工出来的。实体设计为模具的构造面数控编程加工带来了可能。构造面加工编程化,可以大大提高机加工效率,减少现场的人

为操作失误,提高加工的自动化程度。当然要做到这一点,除实体设计之外,还要作许多工作,如:自动对刀、刀具管理、加工参

数、编程经验等等,这方面我们与丰田的差距就更大,没有这些基础,构造面的编程加工是不可能的。

丰田通过实体设计真正做到在模具结构上的cad/cam一体化,也只有一体化,取消绘制二维图的束缚,实体设计才显示出的它的价值,两者应该同步发展相宜得彰,这就是丰田为我们提供的经验。

d. 高精度加工

模面的加工是模具加工的重点,丰田在近年来大力发展高精度模面加工技术,取得了让人耳目一新的成果。

4.型面的高精度加工

型面高精度加工主要体现在这样几个方面:提高模面加工精度、提高加工到位程度、实现模面的精细设计。高精度加工除机床精度

和刀具的管理外,主要是靠编程技术的改进来实现的。

加工方法包括等高线加工、最大长度顺向走刀加工,精加工走刀移行密度达到0。3mm,同时改垂直刀为30度角的高速加工等等方法,以提高加工精度。

同时在凹角清根、凸圆角加工到位、控制模具配合的不等距间隙、最大可能的缩小符型面方面都要加工到位,以实现模面的精细加 工。

5.二维刃口的高精度加工

丰田的二维刃口镶块加工,采用在专用的镶块加工流水线上,单块加工成活,加工精度可以达到按销定位装配,合模无须对间隙的

程度。当二维刃口整体加工时,也采用在线测量的方法来保证凸凹模的合模间隙,二维刃口的高精度最大的好处是能保证制件的修

边毛刺得到很好的控制。

6.高精度加工的效果

丰田通过高精度加工,使模具精度达到了模面的少钳工、无钳工化的目标。丰田的标准计划中,由机加工完成之后到第一次试模之

间,只有七个钳工工作日,它基本是钳工装配时间,而没有钳工修磨工时。在丰田,模具一经加工完成,基本上不用修圆角、不用

开间隙、不用修清根,不对刃口,不研合,甚至拉延模的型面都不用去刀痕、不推磨,唯一的钳修就是用油石推磨拉延凸圆角和压

料拉延面。而且第一次试模,无须修模的试压制件合格率都达到80%以上。如果不是亲眼所见难以让人置信,这就是精细模面设计和

高精度加工的威力。

4. 其他技术

a. 模具材料

丰田的拉延模材料主要采用球墨铸铁而不是目前国内流行的合金铸铁。球墨铸铁焊接性能、可加工性能好、耐磨性能和表面淬火硬

度都比较理想,而成本比合金铸铁要低得多了。修边刃口材料,选用型材镶块而不是符型的铸钢,主要是因为铸钢成本要高得多。

最值得注意的是,丰田现已经大量采用基体与刃口一体化的特殊铸铁材料作修边模,使模具的机加工成本大为降低。请注意这里的

刃口既不堆焊,也不是钢材,铸铁整体刃口只经表面火焰淬火,直接用于几十万次寿命的薄板料修边模。而且这种铸件的成本还不

高。b. 表面处理

丰田的拉延模型面的表面处理,要求较高的采用电镀,其它模,翻边、修边刃口镶块基本上采用火焰淬火。日本目前没有采用离子

渗氮技术,据丰田人讲,也有试用的考虑。对厚板料长寿命的刃口材料,丰田采用具有自己专利的特殊钢材,也是火焰淬火。而先

加工成型,后整体淬火的方法,由于淬火带来的变形只能靠人工修整,在丰田没有见到使用。

c. 模具生产中的检验

模具是单件生产,保证质量是一件非常困难的事,国内的模具厂大都配备大量的专职工序质检人员,这严重影响生产效率,但质量

把关效果还不佳。丰田是怎么做的呢?

工序检验:丰田人认为产品的质量在源头,设计、工艺、编程、机床、刀具才是质量真正的保证,质量是生产出来的而不是检查出

来的,因此,模具各序之间没有专职检验,只有自检和互检,质量的把关靠得是每一个生产者。

型面检测:模具的型面也基本没有测量检验。大量的型面检测,如测拉延圆角,拉延筋的修正量,曲面的光顺度等主要是为了模面

设计积累经验,而不是为了检验模具质量是否合格。

制件检测:丰田的产品件检查,主要靠三维测量机进行自动数值检测,但他们也做验具,验具只起产品件定位支撑的作用。因此验

具结构简单,没有强制卡紧装置,他们的产品件检测几乎是处于自由状态下的检测,这对产品件的符型性是一个非常严格的要求。

三. 技术发展动向

前几年我们看到发达国家的汽车模具行业似乎在萎缩。因为,当时认为模具生产离不开人的手工劳动,发达国家具有工资成本高、没有人愿意干这一行等因素,模具行业大有向第三世界转移的趋势。通过丰田的发展,我们有了一些新的认识,模具生产越来越依

赖高科技,完全可以把人工劳动降到很低,汽车对模具生产的需求最重要的是高质量和短周期,在大规模汽车生产中,模具本身的

成本远远不如模具的使用成本更重要。从这一点上看,目前我们的模具生产不具什么优势,这种工业转移也不会成潮流,这十多年

来,我们通过硬件的技术引进得到的技术进步,并没有祢补上因人家更加努力的追求技术进步而带来的新的差距。换个角度说,如

果汽车模具行业真的向第三世界转移的话,那一定是个夕阳产业,目前汽车模具在车身材料没有突破性变化的情况下,还是有一定 的发展空间和需求的。

1. 重点发展计算机技术

丰田模具制造技术发展的重点,在于突出计算机的应用,越来越多的人从生产现场转移到计算机前。实体设计加上数控编程,取代

了人工实型制作和机床操作。精细模面设计和精细数控编程大大减少了钳修,高精度加工取消了模具的研合、修配。现在数控编程

人员已超过了现场操作工人,数控编程的工时费用,超过了机床的加工工时费50%,编程的周期超过了机加工周期。计算机技术应用 的发展,目前没有降低模具成本,但模具生产已从依赖人的技巧转向数控化的自动、半自动化生产,这种高精度和无人化加工,使

模具和产品件的质量有了极大的提高,生产周期大大缩短,计算机技术使模具制造技术又达到了一个新的高度。相比较就可以看出,国内目前的计算机应用还比较初级,并不是我们的机床和软件不行,而是在应用的基础技术上有很大的差距,即使是把丰田的技

术全搬来,真正做到那种效果,也不是一件容易的事。

2. 消灭钳工

原来我们认为,模具这种单件生产、型面复杂的产品,离开手工是不可能的,而丰田提出要消灭钳工。消灭钳工是一种目标,主要

是指极大减少或完全避免修磨和调整钳工(装配钳工还是要的)。正如我们在前面所介绍的,目前丰田的这一目标已基本实现,除

修磨拉延面和拉延凸圆角外,推磨、修模和调配钳修,已大部分属于异常或祢补设计、制造的缺陷,不再是一件必要的和正常的工

作。

我们举个例子,拉延模型面的光洁度历来是我们强调的质量标准,过去为达到这一点主要是靠钳工推磨。为减少或不推磨,就要减 少铣削刀痕余量,有人主张采用垂直型面加工的五轴铣床,也有采用数控型面磨。这些丰田也都采用过,但实践证明,五轴机床成

本高、效率低,编程十分困难,效果也十分不理想。最后,丰田采用高速、小移行的三轴铣削加工方式,得到高精度型面,把圆角

人工推磨,而其他型面干脆不修磨,模面带刀痕拉延。结果证明,虽然模面谈不上光洁度(还带刀痕呢),但即使是表面质量要求

很高的轿车外板件,除制件内表面有一些拉痕外,对有用的制件外表面没有任何不良影响,就是需要电镀的那些模面,也同样是带

刀痕电镀。据说德国和美国有些汽车模具厂也早已废除了型面推磨。这对那些追求模具表面光洁度的人来说,真是命运开了一个大

玩笑。同样,对型面凹角采用清亏,立面加工采用30度头防让刀,用不等间隙控制制件成型压力等等各种方法,现在凸凹模的配合

精度,使研合和钳修失去意义。

因此,某种意义上的消灭钳工,不再是一个梦。当然,在国内,目前一个模具厂怎样说服用户接受这种带刀痕的模具还是一个大课

题。

3. 一体化加工

丰田的机加工车间现场,有三种数控加工线:第一种是由几台床身可互换的数控机床组成的加工线,一条线里包括底面加工、卧铣、粗铣、精铣各种机床,配套分工明确,工件换机床时不必重新装卡找正,这条流水线大约是80年代的产品。第二种是带立体仓库 的无人职守的揉性加工机群,这是90年代初的产物。第三种是近年才投入使用的粗精加工一体化、高速、高精度、五面加工中心。

第一种加工线,它的单机就是我们目前使用的数控机床,但机床为多工作台式,它的不重新装卡找正方面效率很高,而我们还基本

上停留在单机作业的水平上,很值得我们借鉴。对于揉性加工机群,虽然很先进,但操作起来很困难,准备工作和时间很长,如果

没有很大量的精加工任务,使用起来并不实用,就是在丰田也是如此,看来这不是一个成功的方向。一体化加工中心是目前正在发 展的最新技术,它的优点是,集各种机床优点之大成,除底面加工之外,一次装卡,粗、精、卧,高功率、高精度、高速面面俱到,十八班武艺样样精通,加工效率很高。缺点是机床成本很高,需要环境要求也很高,用它来粗活、重活一起干时是不是很经济呢

?还不得而知。但,无疑这是一个很理想主义的技术,代表着数控加工技术的发展,应引起我们的注意。

小结:丰田的技术告诉我们:好的模具应该是设计出来的;模具也可以流水线生产;高新技术应用是模具制造技术发展的动力;国

内汽车模具业与世界先进水平相比还有较大差距,如果我们不努力,这种差距不是缩小,而是会拉大。

通过上文,我们只是把在丰田公司所看到的一些印象深刻的、与国内对比性比较强的东西简单罗列在一起,并不全面也不细致,希

望这些材料能给同行以思考。

我们感到我们与世界先进水平的差距是一种很大的压力,面对世界经济一体化的潮流,你如果不是世界上最好的,你可能在国内也

站不住脚。国内的汽车模具厂家不是很多,但却吃不饱,我们高质量模具的市场被周边国家和地区的模具厂占领了,我们不向世界

上最先进的模具技术学习,还能生存么?

第二篇:丰田汽车制造公司案例分析

丰田汽车制造公司案例分析

1、座椅问题的背景:

案例讲述了20世纪80年代,丰田汽车公司在美国创建了丰田汽车制造公司(美国)(TMM)。TMM采用了丰田生产系统(TPS),坚持准时生产(JIT)和自动化缺陷控制两项原则,实现了高效率和高质量的汽车生产装配。但到了1992年,佳美出了新款车型,座椅样式由原来的5种样式增加到10种,出口到日本和中东的款式更是增加了18种不同的座椅样式。座椅样式的剧增,导致了座椅组和汽车不相匹配等各种座椅的问题,使产出率降低到不足85%,10个百分点的下降意味着每个班次少生产45辆汽车。装配部负责人弗里森需要尽快了解并解决座椅问题,并且完善座椅问题修复的系统,使产出率重新提高。

2、座椅问题的归纳:

从案例中,我们可以归纳出座椅问题主要有以下几个:

(1)KFS有时会送来错误的座椅配件,这些座椅配件与任何一辆待返工的汽车都不匹配。(严重问题,影响产量)

(2)从某个侧面角度上螺栓时,偶尔会出现串线问题,但团队领导应当可以使用螺纹工具在30秒内在线解决该问题。(容易解决)

(3)有人偶尔因使用手工工具损坏座椅外罩,但他们回忆不起来最近发生的同样情况。(很少出现)

(4)后座垫子的后面有个突出的钩子,钩子有时会绷断。但钩子的损坏频率已从每班次7次降低到每班次1次。(频率较低)

3、根据以上问题,弗里森需要建立问题恢复系统:

当前TMM对座椅问题的处理有标准化的响应措施:

(1)团队成员在安装有缺陷的座椅前,拉一下安灯线将问题报告给团队领导。

(2)团队领导再拉一下安灯线表示收到信息,给相应汽车加上标签以提醒QC检查人员注意座椅问题。

(3)装配有缺陷的座椅的汽车在下线时被送到1号诊断区,检查出现的问题可否在那里得到解决。如果要更换座椅,那么汽车将转移到溢出停车区,在那里将订购替换座椅,等待KFS的特殊交付。有缺陷的座椅将被退回至KFS。

该措施能够解决每一台有缺陷座椅的汽车,且无需关闭整条生产线,因此该流程并没有问题。但措施仅是头痛医头的做法,不能根本性降低座椅的缺陷率,导致产量下降和过多的汽车进入溢出停车区进行离线操作。

因此,建议继续保留上述响应流程的同时,增加以下几项措施:

首先,要解决的问题是,KFS的配送准确率。与KFS磋商,建立奖惩措施。有效防止KFS配送不匹配的座椅配件(如一个月出现一次配送问题,KFS应赔偿5万美元影响产量费,如三个月内未出现一次配送问题,可奖励KFS公司1万美元)。根据双方认同的奖惩措施,大幅提高配送的准确率。

接着,是提高再订购的响应频率。目前KFS对于再订购是以一天两次的特别更换交付作为响应,建TMM应要求KFS更加灵活,根据当天的再订购数量来确定特别更换交付的频次,如果再订购数量较多,则以一天三次或者四次的频率来响应,以提高座椅问题维修效率和产量。

然后,需要解决后座钩子问题。因为改变制造钩子的相关工具将让KFS花费5万美元左右,虽然钩子损坏频率已降低到每班次1次,但是为了提高工作效率和产量,建议由TMM提供费用给KFS改进钩子工艺,从而大幅降低钩子的损坏率。

最后,是减少座椅装配过程中的失误率,提高团队协助效率。建立惩罚措施,如发现在装配过程中,损坏座椅的,进行相应惩罚,以降低失误率。对于串线问题,小组领导和团队成员应共同监督团队领导迅速在装配线上解决问题,避免问题的堆积。

通过以上措施,我们相信能够有效地解决座椅问题,同时也是遵循了JIT原则,避免了浪费,保证产量的可持续性。没有采用自动化缺陷控制原则,因为停止生产将产生很大损失。我们认为在装配线上处理有缺陷座椅是不合适的,除非是串线等小问题可以在线上解决,其他问题是可以采用以上措施进入溢出停车区解决。我们认为这个程序是TPS的一个合理的例外,因为座椅问题无法完全杜绝,只能最大限度降低错误率。

第三篇:再制造技术

再制造技术

再制造是一种对废旧产品实施高技术修复和改造的产业,它针对的是损坏或将报废的零部件,在性能失效分析、寿命评估等分析的基础上,进行再制造工程设计,采用一系列相关的先进制造技术,使再制造产品质量达到或超过新品。就是通过一系列工业过程,将废旧产品中不能使用的零部件通过再制造技术修复,主要以先进的表面工程技术为修复手段(即在损伤的零件表面制备一薄层耐磨、耐蚀、抗疲劳的表面涂层),使得修复处理后的零部件的性能与寿命期望值达到或高于原零部件的性能与寿命。

再制造的内容有在产品设计阶段,要考虑产品的再制造性设计。在产品的服役至报废阶段,要考虑产品的全寿命周期信息跟踪。在产品的报废阶段,要考虑产品的非破坏性拆解、低排放式物理清洗。要进行零部件的失效分析及剩余寿命演变规律的探索;要完成零部件失效部位的具有高结合强度和良好摩擦学性能的表面涂层的设计、制备与加工,以及对表面涂层和零部件尺寸超差部位的机械平整加工及质量控制等。再制造的研究内容非常广泛,贯穿产品的全寿命周期,体现着深刻的基础性和科学性。主要以先进的表面工程技术为修复手段。表面工程技术又包括: 喷涂修复技术,电刷镀修复技术,激光修复技术,纳米表面工程技术。主要用于轴类及一些贵重零件修复技术。

需要独立解决的科学和技术问题:

1、加工对象更苛刻主要有:锻焊、热处理、铣磨件尺寸差、残余应力、内部裂纹、表面变形等缺陷;

2、前期处理更繁琐再制造的毛坯必须去除油污、水垢、锈蚀层及硬化层;

3、质量控制更困难再制造毛坯寿命预测和质量控制,因毛坯损伤的复杂性和特殊性而使其非常困难;

4、工艺标准更严格再制造过程中废旧零件的尺寸变形和表面损伤程度各不相同,必须采用更高技术标准的加工工艺。

表面工程技术:表面工程是一项系统工程:因为表面工程是以表面科学为理论基础,以表面和界面行为为研究对象,首先把互相依存、相互分工的零件基体与零件表面构成一个系统,同时又综合了失效分析、表面技术、涂覆层材料、预处理和后加工、表面检测技术、表面质量控制、使用寿命评估、表面施工管理、技术经济分析、三废处理和重大工程实践等多项内容。表面工程在不同领域的功能:机械类产品:提高零件表面的耐磨、耐蚀、耐热、抗疲劳等性能。电子电器元件:提高元器件表面的电、磁、声、光等特殊物理性能。生物医学材料:提高人造骨骼等人体植入物的耐磨性、耐蚀性及生物兼容性。工艺品:提高耐蚀性和美观性。

表面工程技术分为:表面改性,表面处理,表面涂覆,复合表面技术,纳米表面工程。

(一)、表面改性:表面改性是指通过改变基质表面的化学成份以达到改善表面结构和性能的目的。例如:化学热处理、离子注入、渗氮、渗碳处理等。表面改性技术有:

1、扩散渗入:非金属元素表面渗扩,金属元素表面渗扩,复合元素表面渗扩;

2、离子注入:非金属离子注入,金属离子注入,复合离子注入;

3、转化膜技术:电化学转换膜,化学转换膜,金属着色技术。

(二)、表面处理:

1、表面淬火处理:感应加热表面淬火,激光加热表面淬火,电子束加热表面淬火;

2、表面变形处理:喷丸,辊压,孔挤;

3、表面纳米加工技术。

(三)、表面涂覆,在基质材料表面制备涂覆层,即表面涂覆是在基质表面上形成一种膜层。涂覆层的化学成分、组织结构可以和基质材料完全不同,它以满足表面性能、涂覆层与基质材料的结合强度能满足工况、经济、环境好为准则。如化学气相沉积(CVD)、物理气相沉积(PVD)热喷涂、堆焊等、电镀、化学镀等。

(四)、复合表面工程技术,复合表面工程技术是对上述三类表面工程技术的综合运用。复合表面工程技术是在一种基质材料表面上采用了两种或多种表面工程技术,用以克服单一表面工程技术的局限性,发挥多种表面工程技术间的协同效应,从而使基质材料的表面性能、质量、经济性达到优化。

(五)、纳米表面工程技术,纳米表面工程技术是充分利用纳米材料、纳米结构的优异性能,将纳米材料、纳米技术与表面工程技术交叉、复合、综合,在基质材料表面制备出含纳米颗粒的复合涂层或具有纳米结构的表层。纳米表面工程技术能赋予表面新的服役性能,使零件设计时的选材发生重要变化,并为表面工程技术的复合开辟了新的途径。

在进行再制造时要对机械进行评估:

1、机械零件的检测和寿命评估技术:无损检测手段包括超声波检测、相控阵超声波检测、涡流检测、X射线检测、磁粉检测等。综合分析影响检测结果的各项技术参数,系统优化无损检测技术组合,保障零部件表面及内部的缺陷检出率和检测速度。

2、选择合适的理论和技术,建立寿命评估分析模型,评估零部件的剩余寿命。

常用的再制造技术有:激光修复技术,电刷镀修复技术,喷涂修复技术。

激光修复技术:

激光是由受激辐射引起的并通过谐振“放大”了的光。实用激光器有红宝石激光器、钕玻璃激光器、二氧化碳气体激光器。

产生原理:在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的「连锁反应」,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。

激光表面处理:采用激光表面处理可以解决某些其他表面处理方法难以实现的技术目标。例如细长钢管内壁表面硬化,成型精密刀具刃部超高硬化,模具合缝线强化,缸体和缸套内壁表面硬化等等。采用激光热处理的经济效益显著优于传统热处理,例如汽车转向器壳体激光淬火(相变硬化)和锯齿激光淬火等。激光表面处理技术在汽车行业应用极为广泛,在许多汽车关键件上,如:缸体、缸套、曲轴、凸轮轴、派启发、阀座、摇臂、铝活塞环槽等几乎都可以采用激光热处理。• 例如:美国通用汽车公司用十几台千瓦级CO2激光器,对换向器壳内壁局部硬化,日产3万套,提高工效四倍。• 我国采用大功率CO2激光器对汽车发动机进行缸孔强化处理,可延长发动机大修里程到15万公里以上,一台汽缸等于三台不经处理的汽缸。

激光修复技术分为:激光相变硬化(淬火)和退火,激光熔凝,激光熔覆和合金化,激光冲击硬化等。激光淬火/覆照相变硬化-原理:激光覆照相变硬化也叫激光表面淬火。它以高能密度的激光束快速照射材料表面,使其需要硬化的部位瞬间吸收光能并立即转化为热能,使激光作用区的温度急剧上升到相变温度以上,形成奥氏体。此时工件基体仍处于冷态并与加热区之间的温度梯度极高。因此,一旦停止激光照射,加热区因急冷而实现工件的自冷淬火。从而提高材料表面的硬度和耐磨性。表面淬火的优点自冷淬火,不需水或油等淬火介质,避免了环境污染。加工柔性高,对工件的许多特殊部位,例如槽壁、槽底、小孔、盲孔、深孔以及腔筒内壁等,只要能将激光照射到位,均可实现激光淬火。工艺过程容易实现生产自动化。激光表面合金化是在高能束激光的作用下,将一种或多种合金元素快速熔入基体表面,使母材与合金材料同时熔化,形成表面合金层,从而使基体表层具有特定 的合金成分的技术。换句话讲,它是一种利用激光改变金属或合金表面化学成分的技术。优点,可以节约大量具有战略价值贵重元素、形成具有特殊性能的非平衡相或非晶态、晶粒细化、提高合金元素的固熔度和改善铸造零件的成分偏析。激光熔覆- 原理:激光熔覆与激光合金化的原理一致,它是利用激光在基体表面覆盖一层具有特定性能的涂覆材料。这类涂覆材料可以是金属和合金,也可以是非金属,还可以是化合物及其混合物。在涂覆过程中,涂覆层与基体表面通过熔合结合在一起,激光熔覆的方式与激光合金化相似。获得的涂层可以提高材料表面的耐蚀、耐磨、耐热、减磨以及其他特性。激光冲击强化- 原理:工件表面涂上一层不透光材料(涂层),再覆盖一层透光材料(约束层),高功率密度短脉冲(纳秒级)强激光透过约束层照射金属材料表面。涂层在极短时间内产汽化电离成高温高压的等离子体;由于约束层存在,等离子体的膨胀受限,产生向金属内部传播的强冲击波,使金属材料表层发生塑性变形,形成激光冲击强化区;从而改善金属材料的机械性能。

电刷镀修复技术。

电镀修复技术是利用电解方法使电解液中的金属离子在零件表面上还原成金属原子并沉积在零件表面上形成具有一定结合力和厚度镀层的一种方法。电刷镀溶液制备是电刷镀的关键技术之一目前商品化的电刷镀液达130余种: 合金电刷镀液:

二元合金 Ni-P Ni-W Ni-Co Co-Mo Co-W 三元合金 Ni-W-Co Ni-W-P Ni-Fe-W Ni-Fe-Co 非晶态电刷镀液:

主要集中于Ni基含P、W、Co的镀层,其中的硬质性颗 粒具有弥散增强作用。

电刷镀原理:采用专用的直流电源设备,电源的正极接镀笔,负极接工件,镀笔通常采用高纯石墨块作阳极材料,外包棉花或涤棉套,基本变化过程金属离子在液相中传质,到达阴极表面边界层金属离子穿过阴极表面边界层完成表面转化与阴极的电子交换,金属原子被还原成吸附态金属原子后续表面转化,金属原子结晶。

电刷镀镀液的分类:预处理液:去除被镀金属表面油污、锈蚀、氧化层和各种杂质包括电净液、活化液。电沉积金属镀液:单金属镀液,合金镀液,退镀镀液从工件表面腐蚀去除金属或多余镀层的溶液。钝化和阳极化镀液:在工件表面生成致密氧化膜。特殊用途的镀液: 在工件表面获得各种特殊功能的表面层,如抛光、染色发黑、防变色等。

喷涂修复技术。

热喷涂及其分类:1)电弧喷涂、2)火焰喷涂、3)等离子喷涂和 4)特种喷涂。热喷涂: 利用热源将喷涂材料加热至熔融状态,并通过气流吹动使其雾化后高速喷射到零件表面,形成特定的涂层,以提高工件的性能的表面技术。热源:气体、液体燃料,电弧、等离子、激光等。材料:金属、合金、金属陶瓷、氧化物、碳化物、塑料等。性能:耐磨、耐热、耐蚀、抗氧化、隔热、导电、绝缘、密封等。涂层厚度:5 mm — 5 mm.。

热喷涂的一般原理实际上就是用一种热源,如电弧、离子弧或燃气燃烧的火焰等将粉状或丝状的固体材料加热熔融或软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的熔滴以一定的速度喷向经过预处理干净的工件表面。热喷涂过程中,喷涂材料大致经过以下过程:

1、表面净化。

2、表面预加工。

3、表面粗化。

4、预热。

5、喷涂底层。

6、喷涂工作层。

7、喷后处理。

电弧喷涂:以电弧为热源,将金属丝熔化并用高速气流雾化,使熔融粒子高速喷到工件表面形成涂层。电源:V = 40V,I = 100-400A的伏安特性。电弧喷涂枪,送丝装置,气体压缩机。电弧喷涂丝材主要有Al, Zn, Cu, Ni, Mo等及其合金,以及碳钢、不锈钢等。

火焰喷涂:以气体燃烧热为热源,将金属丝或粉末熔化并雾化而进行的喷涂。1.线材火焰喷涂。2.粉末火焰喷涂。

在理论基础方面,完善了涂层残余应力的计算方法,探索并初步建立了寿命预测评估模型。研究并初步提出了再制造零部件涂层中残余应力的计算方法;以废旧柴油机曲轴为对象,研究了非线性动力学分析模型,探讨了废旧零部件疲劳试验数据与模型分析数据的映射关系,初步建立了剩余寿命预测模型。

第四篇:先进制造技术

先进制造技术(AMT):是指在制造过程和制造系统中融合电子、信息和管理技术,以及新工艺、新材料等现代科学技术,使材料转换成产品的过程更有效、成本更低、更及时满足市场需求的先进的工程技术的总称。

广义制造:不仅包括具体的工艺过程,还包括市场分析、产品设计、质量控制、生产过程管理、营销、售 后服务直至产品报废处理等在内的整个产品寿命周期的全过程。

狭义制造:是指生产车间内与物流有关的加工和装配过程。

制造系统:是指由制造过程及其设计的硬件、软件和人员组成的一个具有特定功能的有机整体。制造业:是指以制造技术为主导技术进行产品制造的行业。

制造业的核心要素是质量、成本和生产率。

制造技术是制造业所使用的一切生产技术的总称,是将原材料和其他生产要素经济合理地转化为可直接使用的具有较高附加值的成品/半成品和技术服务的技术群。

制造技术的五个发展时期:工场式生产时期、工业化规模生产时期、刚性自动化发展时期、柔性自动化发展时期、综合自动化发展时期。

先进制造技术的发展趋势:数字化是发展的核心、精密化是关键、极端化是焦点、自动化是条件、集成化是方法、网络化是道路、智能化是前景、绿色化是必然

先进制造技术:是在传统制造技术基础上不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变市场的适应能力和竞争力的制造技术的总称。先进制造技术的三个层次:基础技术、新型单元技术、集成技术

先进制造技术的五个特征:系统性、广泛性、集成性、动态性、实用性

电火花成型加工原理:是基于电火花腐蚀原理,即在工具电极与零件互相靠近时,极间电压将在正负极间使电介质电介液电离而形成火花放电,并在火花通道中瞬时产生大量热能,足以使金属局部熔化甚至气化,而将金属腐蚀掉,从而形成所要求的形状。达到成型加工目的。电火花技工的5种放电状态:开路(空载脉冲)、火花放电(工作脉冲)、过度电弧放电(不稳定电弧放电)、电弧放电(稳定电弧放电)、短路(短路放电)。

电火花加工特点:

1、加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,制造容易。

2、便于加工用普通机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不漏热处理影响,与工件的机械性能关系不大。

3、适于加工脆性材料或薄壁弱刚性的零件,以及普通切削刀具易发生干涉而难以进行加工的精密微细异型孔、深小孔、狭长缝隙、弯曲轴线的孔、型腔等。

4、脉冲放电持续时间极端,放电产生的热量传导扩散范围小,放电侵没在工作液中进行,因此对整个工件而言,在加工过程中几乎不受热的影响。

5、可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。

电火花加工的条件:

1、工具电极和工件之间必须维持合理的间隙。

2、两电极之间必须充入一定性能的工作介质。

3、输送到两电极间的脉冲能量密度应足够大。

4、放电必须是瞬时的脉冲放电。

5、脉冲放电需重复多次进行,并且多次脉冲放电在时间上和空间上是分散的。

6、脉冲放电后的电蚀产物能及时排放至放电间隙之外。

影响电火花加工的因素:

1、极性效应

2、覆盖效应

3、二次放电

4、加工速度

5、电火花放电通道

6、工具电极损耗

7、放电间隙

8、放电产物排出

极性效应:电火花加工时,即使加工相同材料,两电极的被腐蚀量也是不同的,其中一个电极比另一个电极的蚀出量大,这种现象叫极性效应。把工件与脉冲电源正极相接的加工叫正极性加工,反之为负极性加工。当采用短脉冲精加工是,应选用正极性加工,长脉冲粗加工是应选用负极性加工。精加工放电间隙一般只有0.01mm左右,粗加工时可达0.3-0.5mm。

电火花线切割:使用现状电极(钼丝或铜丝)靠火花放电对工件进行切割,故称为电火花线

电火花线切割机床通常分为两大类:一类是快走丝电火花线切割机床。这类机床的电极丝做高速往复运动,一般走丝速度为8-10m/s。是我国生产和主要使用的机种,也是独有的加工模式,另一种是慢走丝电火花切割机床,这类机床的电极丝低速单向运动,一般走丝速度低于0.2m/s。国外生产和主要使用。

线切割的特点:

1、缩短了生产准备时间,加工周期短

2、脉冲电源加工电流较小,脉冲宽度较窄,属中、精加工范畴,所以只采用正极性加工。

3、采用水或水基工作也,不会引燃起火,容易实现安全无人运转。

4、电极丝比较细,切缝较窄,可以加工微细异型孔、窄缝和复杂形状的工件,实际金属去除量很少,材料的利用率很高。

5、工具电极是运动的长金属丝,故可加工很小的窄缝或人工缺陷,电极丝的损耗对加工精度无影响,但自身尺寸精度对快慢走丝加工精度均有直接的影响。

电火花线切割加工设备主要由机床本体、脉冲电源、控制系统、工作液循环系统和机床附件等及部分组成。线切割加工的主要工艺指标有切割速度、加工精度及加工表面质量等。

线切割常见的装夹方式1悬臂式支撑 2两端式支撑 3桥式支撑 4板式支撑 5复式支撑

微机械:是指可以批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,甚至外围接口、通信电路和电源等于一体的微型器件或系统,也称微型机电系统(MEMS)或微型系统。

微机械主要特点:1体积小,精度高,质量轻

2、性能稳定,可靠性高

3、能耗低,灵敏度和工作效率高

4、多功能和智能化

5、适用于大批量生产,制造成本低。

6、集约高技术成果,附加价值高。

光刻加工:使用照相复印的方法将光刻掩模上的图形印刷在涂有光致抗蚀剂的薄膜或基材表面,然后进行选择性腐蚀,刻蚀出规定的图形。光掩膜制造技术、曝光技术和刻蚀技术是组成光刻技术的关键技术。刻蚀技术是一类可以独立于光刻的微型机械关键的成型技术,刻蚀分为湿法刻蚀和干法刻蚀。

LIGA是一种使用X射线的深度光刻与电铸相结合,实现深宽比大的微细构造的成型方法。LIGA是德文的平版印刷术、电铸成型和注塑的缩写。

封接技术的目的是将分开制作的微机械部件在使用粘结剂的情况下连接在一起,封在壳中使其满足使用要求。他影响到整个微机械的功能和尺寸,是关键技术。

分子装配技术:利用其探针的尖端可以俘获和操纵分子和原子,并可以按照需要拼成一定的结构,进行分子和原子的装配制作微机械,这是一种纳米级微加工技术,是一种从物质的微观角度来构造、制作微机械的工艺方法。

超精密加工方法主要有超精密切削、超精密磨削、超精密研磨和超精密细加工。

超精密切削对刀具的要求:

1、极高的硬度、耐磨度和弹性模量,以保证刀具有很高的刀具耐用度。

2、刃口能磨得及其锋锐,刃口半径极小,能实现超薄的切削厚度

3、刃口应无缺陷

4、与工件材料的抗粘结性好,化学亲和性笑、摩擦因数低,能得到极好的加工表面完整性。

超精密磨削加工是指利用细粒度的磨粒或微粉磨料进行砂轮磨削、砂带磨削,以及研磨、珩磨和抛光等进行超精密加工的总称,是加工精度达到或高于0.1um,表面粗糙度小于Ra0.025um的一种亚微米级加工方法。

高速加工技术是指采用超硬材料的刀具和磨具,能可靠地实现高速运动的自动化制造设备,极大地提高材料切除率,并保证加工精度和加工质量的现代化制造加工技术。

高速与超高速切削的特点:

1、可减少工序,提高生产效率

2、切削力小、热变形小

3、加工精度高

4、加工能耗低、节省制造资源。

高速切削加工的关键技术包括高速主轴、快速进给系统、高性能CNC控制系统、先进的机床结构、高速加工刀具。高速主轴在结构上几乎全部采用主轴电机与主轴合二为一的结构形式,简称电主轴。

高速切削通常使用的刀具材料:硬质合金涂层刀具、陶瓷刀具、聚晶金刚石刀具、立方氮化硼刀具。

在实际应用中,磨削速度在100M/S以上即被称为高速磨削。高速磨削是提高磨削效率和降低工件表面粗糙度的有效措施。

逆向工程(RE)是相对于传统正向工程而言的,又称反求工程或反求设计,其实想最初是来自从油泥模型到产品实物的设计过程。逆向工程系统的组成:

1、产品实物几何外形数字化

2、CAD模型重建(1、CAD模型的校验与修正

2、CAD模型的分析与改进

3、CAD模型的校验与修正)

3、产品或模具制造

模型重建软件包括:

1、用于正向设计的CAD/CAM/CAE软件(Solidworks)

2、集成有逆向功能模块的正向CAD/CAM/CAE软件(Pro/E、UG)

3、专用的逆向工程软件(Imageware)逆向工程的关键技术:

1、数据采集与处理(数字化技术)

2、曲面构造(建模技术)数字化方法主要分为接触式测量和非接触式测量

快速原型制造技术(RPM):综合机械、电子、光学、材料等学科,能够自动、直接、快速、精确地将设计思想转化为具有一定功能的原型或直接制造零件/模具。原理:彻底摆脱传统的“去除”加工法,而基于“材料逐层堆积”的制造理念,将复杂的三维加工分解为简单的材料二维的组合,它能在CAD模型的直接驱动下,快速制造任意复杂形状的三维实体。

典型的RPM工艺方法:

1、光敏液相固化法SLA

2、叠层实体制造法LOM

3、选择性激光烧结法SLS

4、熔融沉积制造法FDM

激光加工技术:利用光能经过透镜聚焦后达到的很高的能量密度,依靠光热效应来加工各种材料。特性:

1、亮度强度高

2、单色性好

3、相干性好

4、方向性好 加工原理:激光加工是工件在光热效应下产生的高温熔融和冲击波的综合作用过程。特点:

1、非接触加工,加工速度快,热影响区小,无明显机械力,可加工易变形的薄板和弹性零件。

2、功率密度高,几乎能加工所有的材料,3、激光光点直径小,能进行非常微细的加工。

4、不需要加工工具无工具损耗,适宜自动化生产。

5、通用性好

6、影响因素多,加工时精度和表粗度需反复试验,寻找合理的加工参数达到要求。应用:

1、激光打孔

2、激光切割

3、激光焊接

4、激光表面处理

超声波加工原理:是利用工具端面作超生频振动,通过磨料悬浮液加工,使工件成型的一种方法。

水射流切割:是以水作为携带能量的载体,用告诉水射流对各类材料进行切割的一种工艺方法,是一种冷切割工艺。

计算机辅助设计CAD:是指工程技术人员以计算机为工具,用各自的专业知识,对产品进行设计、绘图、分析和编写技术文档等设计活动的总称。完整的CAD系统具有图形处理、几何建模、工程分析,仿真模拟以及工程数据库的管理与共享等功能。CAD系统的软件分为系统软件,支撑软件和应用软件三个层次。

计算机辅助工艺过程设计CAPP:工艺设计是机械制造生产过程的技术准备工作的一个重要内容,是产品设计与车间的实际生产的纽带,是经验性很强且随环境变化而多变的决策过程。CAPP是应用计算机快速处理信息功能和具有各种决策功能的软件来自动深沉工艺文件的过程。目前常用的CAPP系统可分为派生式、创成式和综合式三大类。

计算机辅助制造CAM:按计算机与物流系统是否有硬件接口联系可将CAM功能分为直接应用功能和简介应用功能。计算机数控系统:是指用数字化信号对设备运行及其加工过程进行控制的一种自动化技术,也是典型的机械、电子、自动控制、计算机和检测技术密切结合的机电一体化高新技术。

CNC机床数控系统由数控装置、可编程控制器(PLC)、进给伺服驱动装置、主轴伺服驱动装置、输入输出接口,以及机床控制面板和人机界面等部分组成。其中数控装置为机床数控系统的核心,其主要功能有运动轴控制和多轴联动控制功能。

数控加工编程的一般步骤:

1、工艺处理

2、数值计算

3、编制零件加工程序单

4、输入零件加工程序单

5、程序校验 CAD/CAM计算机辅助设计与计算机辅助制造,是一门基于计算机技术而发展起来的、与机械设计和制造技术相互渗透相互结合的、多学科综合性的技术。

CAM是指应用电子计算机来进行产品制造的统称。广义CAM是利用计算机进行零件的工艺规划、数控程序编制、加工过程仿真等。在CAM过程中主要包括计算机辅助工艺设计软件(CAPP)和数控变成软件(NCP)狭义CAM理解为数控加工,包括刀具路径规划,刀位文件生成,刀具轨迹仿真及M代码生成等。更为广义的CAM是指应用计算机辅助完成从原材料到产品的全部制造过程,包括直接制造过程和简介制造过程。CAD/CAM系统由硬件系统和软件系统组成。硬件系统包括计算机和外部设备,软件系统由系统软件、应用软件和专业软件组成。

制造自动化:狭义的含义是生产车间内产品的机械加工和装配检验过程的自动化,包括切削加工自动化、工件装卸自动化、工件储运自动化、零件与产品清洁及检验自动化、断屑与排屑自动化、装配自动化、机器故障诊断自动化。广义包含了产品设计自动化、企业管理自动化、加工过程自动化和质量控制自动化等产品制造全过程以及各个环节综合集成自动化,以使产品制造过程实现高效、优质、低耗、及时、洁净的目标。制造自动化发展历程分为刚性自动化、柔性自动化和综合自动化三个发展阶段。制造自动化的发展趋势可用敏捷化、网络化、虚拟化、智能化、全球化、绿色化六个方面来概括。工业机器人:工业机器人是一种可重复编程的多自由度的自动控制操作机,是涉及机械学、控制技术、传感技术、人工智能、计算机科学等多学科技术为一体的现代制造业的基础设备。

工业机器人一般由执行机构、控制系统、驱动系统以及位置检测机构等几个部分构成。

工业机器人的分类:按系统功能分:专用机器人、通用机器人、示教再现式机器人、智能机器人。按结构形式分直角坐标机器人、球坐标机器人、圆柱坐标机器人、关节机器人。按驱动方式分气动、液动、电气 机器人选用和设计应考虑的几个指标:

1、自由度是衡量机器人技术水平的主要指标。通用机器人有3-6个自由度。

2、工作空间是指机器人应用手抓进行工作的空间范围。

3、提取重力。

4、运动速度。通用机器人的最大直线运动速度大多在1000mm/s以下,最大回转速度一般不超过120°/s。

5、位置精度。典型的工业机器人定位精度一般在±0.02-±5范围。

工业机器人的控制系统分类:

1、按控制系统回路的不同,可分为开环系统和闭环系统。

2、按控制系统的硬件分,有机械控制、液压控制、射流控制、顺序控制和计算机控制。

3、按自动化控制程度分顺序控制系统、程序控制系统、自适应控制系统、人工智能系统

4、按编程方式分屋里设置编程控制系统、示教编程控制系统、高线编程控制系统。

5、按机器人末端运动控制轨迹分点位控制和连续轮廓控制。工业机器人的性能特征:通用性、柔性、灵活性、智能性

柔性制造系统(FMS):概念:是集数控技术、计算机技术、机器人技术以及现代管理技术为一体的现代制造技术。广义:柔性制造系统是由若干台数控加工设备、物料运储装置和计算机控制系统组成。更为直观的定义:柔性制造系统至少由两台机床、一套具有高度自动化的物料运储系统和一套计算机控制系统所组成的制造系统,通过简单改变软件程序便能制造出多种零件的任何一种零件。

FMS组成:

1、加工系统包括由两台以上的CNC机床、加工中心或柔性制造单元(FMC)以及其他的加工设备组成2、工件运储系统由工件装卸站、自动化仓库、自动化运输小车、机器人、托盘缓冲站、托盘交换装置等组成能对工件和原材料进行自动装卸、运输和存储。

3、刀具运储系统包括中央刀库、机床刀库、刀具预调站、刀具装卸站、刀具输送小车或机器人、换刀机械手等。

4、一套计算机控制系统能够实现对FMS进行计划调度、运行控制、物料管理、系统监控和网络通信等。除此之外还包含集中冷却润滑系统、切屑运输系统、自动化清洗装置、自动去毛刺设备等附属系统。FMS特点:

1、柔性高,适应多种中小批量生产

2、系统内的机床在工艺能力上是相互补充或互相代替的3、可混流加工不同的零件

4、系统局部调整或维修不中断整个系统的运作

5、递阶结构的计算机控制,可以与上层计算机联网通信

6、可进行三班无人值守生产

FMS关键技术:计算机辅助设计,模糊控制技术,人工智能、专家系统及智能传感器技术,人工神经网络技术。

虚拟制造技术VM:是指物质世界的数字化,也就是对真实世界的动态模拟和再现,即虚拟现实。虚拟制造是以信息技术、仿真技术、虚拟现实技术为支持..CIMS计算机集成制造系统:从系统的功能角度考虑,一般认为CIMS是在两个支撑分系统(网络系统和数据库系统)的基础上由4个分系统组成:经营管理信息系统、工程设计自动化系统化、制造自动化系统和质量保证信息系统。

CIMS三大特征为数据驱动、集成、柔性 五个层次 :工厂级、车间级、单元级、工作站级和设备级。

LP:精益生产 精益生产方式的资源配置原则,是以彻底消除无效劳动和消费为目标。

NC:数控技术 CNC:计算机数控 FMC柔性制造单元 FMS柔性制造系统 CAD/CAM计算机辅助设计与制造 CAPP计算机辅助工艺规划 CAE计算机辅助工程 CAT计算机辅助检测 ROBOT工业机器人 CIMS计算机集成制造系统 CE并行工程 LP精益生产 AM:敏捷制造 CM:绿色制造

第五篇:先进制造技术

先进制造技术论文

随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。先进制造技术是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、加工装配、检验测试、经营管理、售后服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。

先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。可基本归纳为以下四个方面:

a、现代设计技术 b、先进制造工艺技术 c、制造自动化技术 d、现代生产管理技术

一、现代设计技术

现代设计技术包括CAD、CAE、CAPP、CAT、优化设计、可靠性设计、价值工程创新设计、反求工程、并行工程等。它的特点是:

(1)系统性(2)动态性(3)创造性

(4)计算机化(5)并行化、最优化、虚拟化和自动化

在老师布置的课题中,我们小组做的是玩具手枪的外模,在这个过程中我们就是通过计算机UG做出来,正好体现了计算机化。

二、先进制造工艺技术

先进制造工艺技术主要包括了超精密加工技术、高速加工技术、快速成型制造技术、现代特种加工技术。

1、超精密加工技术已成为全球市场竞争取胜的关键技术,它包括了所有能使用的零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。超精密加工所涉及的技术邻域包含以下几方面

(1)超精密加工机制 它包括超精密切削、超精密磨削和超精密特种加工等。

(2)超精密加工的刀具、磨具及其制备技术 包括金刚石刀具的制备和刃磨、超硬砂轮的整修等是超精密加工的重要关键技术。

(3)超精密机床设备 超精密加工对机床设备有高精度、高刚度、高的抗振性、高稳定性和高自动化的要求,具有微量进给机构

(4)精密测量及补偿技术 超精密加工必须有相应级别的测量技术和装置,具有在线测量和误差补偿。

(5)严格的工作环境 超精密加工必须在超稳定的工作环境中进行,加工环境的极微小的变化都可能影响加工精度。因此,超精密加工必须具备各种物理效应恒定的工作环境,如有恒温室、净化间、防振和隔振地基等。

2、高速加工技术是指采用超硬材料的刀具和磨具,能可靠地实现高速运动的自动化制造设备,极大地提高材料切除率,并保证加工精度和加工质量的现代制造加工技术。高速加工的特征:

(1)切削力低(2)热变形小

(3)材料切除率高(4)高精度

(5)减少工序

关键技术:

(1)高速主轴(2)快速进给系统

(3)高性能的CNC控制系统(4)先进的机床结构

(5)高速切削的刀具系统

3、快速成型制造技术是集CAD技术、数控技术、材料科学、机械工程、电子技术和激光技术等技术于一体的综合技术,是实现从零件设计到三维实体原型制造的一体化系统技术。典型的快速成型制造工艺的方法:

(1)光敏液相固化法(2)选区片层粘结法

(3)选区激光烧结法(4)熔丝沉积成形法

特点:

(1)高度柔性,可以制造任意复杂形状的三维实体

(2)CAD模型直接驱动,设计制造高度一体化

(3)原型过程无需专用夹具或工具

(4)无需人员干预或较少干预,是一种自动化的原型过程

(5)原型全过程的快速性,适合现代激烈的产品市场

4、现代特种加工技术是用非常规的切削加工手段,利用电、磁、声、光、热等物理及化学能量直接施加于被加工工件部位,达到去除、变形以及改变性嫩等目的的加工技术,包括是激光加工、超声波加工、水射流切割加工等。

(1)激光加工是利用光能经过透镜聚焦后达到很高的能量密度,依靠光热效应来加工材料。它经常被用于打孔、切割、焊接、表面处理等加工工艺。

(2)超声波加工时利用工具端面作超声频振动,通过磨料悬浮液加工脆性材料的一种成形加工方法。它经常用于型腔抛磨加工、超声清洗、超声波复合加工。在金属切削加工中引入超声振动可以大大降低切削力,改善加工表面粗糙度,延长刀具寿命,提高加工效率。

(3)水射流切割加工技术室以水作为携带能量的载体,用高速水射流对各类材料进行切割的一种工艺方法。水射流切割具有切口平整、无边毛、无火花、加工清洁等特点。

三、制造自动化技术

狭义:是生产车间内产品的机械加工和装配检验过程的自动化,包括切削加工自动化、工件装卸自动化、工件储运自动化、零件与产品清洁及检验自动化、断屑与排屑自动化、装配自动化、机器故障诊断自动化等。

广义:包含了产品设计自动化、企业管理自动化、加工过程自动化、质量控制自动化等产品制造全过程以及各个环节综合集成自动化,以使产品制造过程实现高效、优质、低耗、及时、洁净的目标。

发展趋势:

(1)制造敏捷化(2)制造网络化(3)制造虚拟化

(4)制造智能化(5)制造全球化(6)制造绿色化 计算机控制自动化技术

1、机床数控技术

数控技术是指用数字化信号对设备运行极其加工过程进行控制的一种 自动化技术,也是典型的机械、电子、自动控制、计算机和检测技术密切相结合的机电一体化高新技术。数控技术是实现制造过程自动化的基础,是自动化柔性系统的核心,是现代集成制造系统的重要组成部分。它把机械装备的功能、效率、可靠性和产品质量提高到一个新水平,使传统的制造业发生了深刻的变化。数控加工的主要特点是:加工的零件精度高;生产效率高;特别适合加工形状复杂的轮廓表面;有利于实现计算机辅助制造;对操作者(不含编程人员)技术水平的要求相对较低;初始投资大、加工成本高。此外,数控机床是技术密集型的机电一体化产品,数控加工技术的复杂性和综合性加大了维修工作的难度,需要配备素质较高的维修人员和维修设备。

2、工业机器人

工业机器人是一种可重复编程的多自由度的自动控制操作机,是涉及机械学、控制技术、传感技术、人工智能、计算机科学等多学科技术为一体的现代制造业的基础设备。工业机器人一般由执行机构、控制系统、驱动系统、位置检测机构等几部分组成。

工业机器人的分类

按系统功能分类: 专用机器人、通用机器人、示教再现式机器人、智能机器人。

按驱动方式分类: 气压传动机器人、液压传动机器人、电气传动机器人、按结构形式分类: 直角坐标机器人、圆柱坐标机器人、球坐标机器人、关节机器人

3柔性制造系统

柔性制造系统是集数控集数、计算机技术、机器人技术、现代管理技术为一体的现代制造技术。它是由若干台数控加工设备、物料运储装置和计算机控制系统组成,并能根据制造任务或生产品种的变化迅速的进行调整,以适应多品种、中小批量生产的自动化制造系统。

加工系统的要求

(1)工序集中(2)控制功能强、扩展性好

(3)高刚度、高精度、高速度(4)自保护和自维护性好

(5)使用经济性好(6)对环境的适应性与保护性好

四、现代生产管理技术

现代生产管理是指产品生产过程中的计划和管理,是机械制造企业中的一个重要的职能领域,主要包含生产计划的合理制定、成本的有效控制、设备的充分利用、库存的管理和控制、产品质量的保证、财务状况的及时分析等管理任务

特点:(1)以技术为中心向以人为中心的转变,充分重视人的作用,将人视为企业一切活动的主体,使技术的发展桁架的符合人类社会发展的需要。

(2)企业的生产组织,从递阶多层管理结构形式向扁平网络式结构转变,强调组织结构简化,减少结构层次,增强生产组织体系的灵敏性。

(3)由传统的顺序工作方向并行作业方式转变。

(4)企业从按功能计划部门的固定组织形式,向动态的,自主管理的群体工作小组形式转变。

(5)企业从单纯竞争走向既有竞争又有结盟之路。

(6)质量是企业尊严和品牌价值的起点,快速响应市场的竞争策略是制胜的法宝。(7)技术创新成为企业竞争的焦点。

总结:在本次的课程中,我们小组做的是玩具手枪的外模,本来是准备做花瓶的,但是想一想一个文艺范的东西用铁做出来有点不美观,于是我们决定做玩具枪。我们小组分工明确,有收集资料、UG制图、PPT制作和演讲,在制作玩具枪的过程中,我们小组用的是UG制图,在这个过程中遇到一些问题,UG不是很会用,最后通过自我摸索和老师的帮助下,基本完成了我们的作品,然后就是PPT制作,在此过程中,我们讨论了好久最后做出了我们想要的PPT。正是在主张的带领下,我们认真的完成了这次的课程,并且通过这次的实践让我收获了很多,学习到了很多,让我更加了解我的专业技能的重要性。

下载丰田汽车模具制造技术word格式文档
下载丰田汽车模具制造技术.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    先进制造技术

    先进制造技术概论 先进制造技术(Advanced Manufacturing Technology,简称为AMT)是指微电子技术、自动化技术、信息技术等先进技术给传统制造技术带来的种种变化与新型系统。具......

    智能制造技术

    现代制造技术 1142813203 吴文乐 摘要:现代制造技术是在传统制造技术的基础上, 不断吸收和发展机械、电子、能源 、材料、信息及现代管理技术的成果, 将其综合应用于产品设......

    先进制造技术

    先进制造技术 定义:先进制造技术是制造业不断吸收信息技术及现代化管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现......

    先进制造技术

    简述先进制造技术及其现代 集成制造系统 概述:综述先进制造技术的概念、内涵、特点、主要内容等,结合现代集成制造系统理解先进制造技术及其发展历程 1先进制造技术概述 2......

    先进制造技术

    一、简述机械制造业的变革及挑战。(10分) 机械制造业的变革: 面对越来越激烈的国际市 场竞争,我国机械制造业面临着严峻的挑战。我们在技术上已经落后,加上资金不足,资源短缺,以及......

    先进制造技术

    先进制造技术 徐从军 (临沂大学 机械工程学院飞1) 内容提要:先进制造技术是制造技术的最新发展阶段,是面向21世纪的技术制造业是社会物质文明的保证,是与人类社会一起动态发展......

    先进制造技术

    姓名:赵胜利 洛阳理工学院 先 进 制 造 技 术 专业:机电一体化技术 班级:Z15025937 简述先进制造工艺的定义与特点 一、引言 先进制造技术AMT(Advanced Manufacturing Tech......

    先进制造技术

    五、问答题 1. 什么是高速加工技术?结合萨洛蒙曲线说出高速切削理论是什么?高速加工的优点有哪些?应用领域?简述高速切削加工所涉及的关键技术?高速切削加工常用的刀具材料有哪些......