第一篇:如何才能学好初中数学
如何才能学好初中数学(尤其是几何题的证明)?
初中数学是小学数学的继续,可以分为代数、几何两大部分,目前,初一上学期我们只学习代数。
在小学里,由于我们年纪还小,学习数学主要靠记忆公式、法则和结论(再加上练习),有时明白它们的道理,有时不明白,不明白也没有多大关系,只要算得对就可以了。现在我们学习初中数学,就不仅要记住公式、法则、性质和结论,还要弄清它们是怎么得来的,它们之间的关系是什么。就是说,不仅要会算,还要弄清为什么可以这样算。
学习数学,要以教科书为根据。要认真预习、认真听课、认真复习、认真做题。我们的代数教科书,在每一小节的开头都有一个长方形的框框,框内的文字叫做“应知应会”,就是说,通过这一小节,你应该知道什么,会什么。你可以根据框内的文字去进行预习。认真预习后再去听课,比不预习要好得多。听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。通过做题,可以对学过的知识加深记忆。
章末都附有一套“自我测验题”,可以用来检查自己学习这一章的情况。书末附有题目的答案。注意:一定要把题目全部做完后再核对答案。
注意画图{画好后解答起来就简单多了},联系实际.理解的记忆那些公理.初中的几何需要的耐心,认真考虑到题目的每一个条件。尤其得注意题目中的中位线,角平分线,垂直平分线,一些特殊的角和定理,几何题目很多难点就在于怎么做辅助线,有时候一件很难解的题目通过辅助线就能找到相映的关系,也使得题目明朗化,这样你就能更好更快的去解决几何题目了追问可是,我总是懂了这道,又不会做那道,怎么办?
回答这是因为你做题太少,我以前和你差不多,脑筋转不过来,不过经过我们老师的强化训练,很多题目看一眼就知道怎样做。
第二篇:如何才能学好初中数学
如何才能学好初中数学?
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,数学高级教师就几个数学学习实践中的具体问题谈一谈如何学好数学。
1.数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击同学学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。认真分析运算出错的具体原因,是提高运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
(1)情绪稳定,算理明确,过程合理,速度均匀,结果准确;
(2)要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
2.数学基础知识
理解和记忆数学基础知识是学好数学的前提。同一个数学概念,在不同人的头脑中存在的形态是不一样的。
(1)理解的标准:“准确”、“简单”和“全面”。
“准确”就是要抓住事物的本质;
“简单”就是深入浅出、言简意赅;
“全面”则是既见树木,又见森林,不重不漏。
对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其包含的数学思想方法和数学思维方法。
(2)记忆是大脑对知识的识记、保持和再现,是知识的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“一元一次方程”六个字,你就会想到:它的定义是什么?最简方程是什么?它的解的概念,及解方程的一般步骤。不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
3.数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必经之路。
(1)如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。
③ 选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④ 每天保证1小时左右的练习时间。
(2)如何保证质量?
① 题不在多,而在于精。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?
② 落实:不仅要落实思维过程,而且要落实解答过程。
③ 复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。(建立一本错题集)
4.数学思想
数学思想与哲学思想的融合是学好数学的高层次要求。比如,数学思想方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如我们变减法为加法,变除法为乘法,变算术为方程,应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高同学数学素养、培养学生数学能力的重要方法。
第三篇:如何学好初中数学
如何学好初中数学
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★ 什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。
很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;
这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;
最祝你学习进步!
第四篇:如何才能学好高中物理
如何才能学好高中物理
在高中理科各科目中,物理是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面我就如何学好高中物理提一些建议:
首先分析一下同学们提出的普遍问题,即为什么上课听得懂,而课下不会做?我作为物理教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物内心活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会做,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。
记忆:在高中物理的学习中,应熟记基本概念、规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理的首要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。
积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一道题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。
综合:物理知识是分章分节的,物理考纲要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。
提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对某一题目,首先要看是什么问题——力学、热学、电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。
综上所述,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新。在物理学习过程中,依照从简单到复杂的认知过程,对照学习的六个层次,逐渐发现自己所在的位置及水平,找出自己的不足,进而确定自己改进和努力的方向。
高中阶段的学习是为大学学习做准备的,对同学们自学能力提出了更高的要求,以上所述的物理学习的基本过程——记忆,积累,综合,提高就是对自己自学能力的培养过程,学会了学习方法,对物理科有了兴趣,掌握了物理这门实验学科与实际结合比较紧密的特点,经过自己艰苦的努力,一定会把高中物理学好。
古语云:授人以鱼,只供一饭。授人以渔,则终身受用无穷。学知识,更要学方法,以帮助学生培养良好的学习习惯为目的,使学生在学习中能够事半功倍。
第五篇:如何学好初中数学论文
如何学好初中数学
作为初中的数学老师经常都会听到家长这样说的:“我小孩小学的时候每次数学考试都不少于90分,并且课本上的知识点基本上都不需要老师将都可以能明白,为什么上到了初中反而从来都没及格过呢?即使一开始还可以及格,但慢慢地就变成不及格了,甚至达到讨厌数学的程度。”这些话相信是每个家长所疑惑的,作为数学老师我们也会粗略的给家长做个简答:首先初中数学和小学的数学在思维方法上是有所不同的,如果在继续延续使用小学那种数学思维来看待初中数学的话肯定是行不通的;然后初一数学跟小学六年级的数学衔接性很强的,如果在初一的时候还是以为很简单还是以那种散漫的态度来对待的话那肯定也是不行的;最后如果一个知识点不明白而又不去弄明白,那么就会日积月累的越积越多,试问这样怎样可以学好数学?这些都是给家长的一个粗略的解答而已,那么要怎样做才能学好初中的数学呢?下面一起来讨论一下。
一、该记的记,该背的背,不要以为理解了就行
数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9*9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,这三个公式我相信大部分的人如果没见到它之前肯定不会想起来。这三个公式虽然是初二的知识点,但是以后只要还学数学都要用到它们,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。在数学上会经常遇到一些新的定义运算,这样学生就不知道怎样下手了。比如新定义a#b=ab,这些新的定义就好比加减乘除法一样,只要你熟练了就能记住的的运算规则。所以熟记并且理解公式是很重要的。
二、几个重要的数学思想
刚开始的时候就说到初中的数学不能再用小学的思维去解决问题,所以下面介绍几个初中的数学学习思维:
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初
二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支为代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即可。这就是运用“对应”的思想和方法来解题。初
二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。
三、自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。经常听到那些数学成绩好的学生家长对我说,“老师,谢谢你把我孩子数学交得那么好”,我说:我是教数学的,学生数学学得好,不是我一个人的功劳,而是孩子们自己的功劳,是他们自己悟出来的。所以,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,没有课后去巩固复习,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在我的学生中我总是说,想学好数学你没准备好大量的草稿纸、不敢在草稿纸上写写画画是永远学不好数学的。在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,条条大路通北京。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。