钢铁冶金方面知识

时间:2019-05-14 04:54:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《钢铁冶金方面知识》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《钢铁冶金方面知识》。

第一篇:钢铁冶金方面知识

1冶金的定义。冶金方法包括(火法冶金),(湿法冶金)和 电冶金。钢铁生产的 传统流程和 短流程的特点比较。

(1)冶金:

定义:研究任何经济地从矿石中或其他原料中提取金属或金属化合物,并用各种加工方法制成具有一定性能的金属材料的科学。

①火法冶金:高温条件下通过一系列的物理化学反应使矿石和精矿中的有价金属与脉石成分分离,达到提取、提纯金属目的。整个过程包括原料准备、冶炼和精炼三个工序。

②湿法冶金;在低温下通过溶剂处理,使矿石和精矿中的有价金属与脉石成分分离,达到提取、提纯金属的目的。

包括浸出、分离、富集和提取工序。

③电冶金:利用电能提取和精炼金属的方法。

包括电热冶金和电化学冶金

(1)传统长流程(间接炼钢法)

高炉炼铁——转炉炼钢

特点:工艺成熟,生产率高,但成本高、使用焦炭。

(2)短流程(直接炼钢法)

直接还原——电炉

特点:工序少、避免反复氧化、还原过程、解决焦碳紧缺。但需要使用高品位精矿和高质量的一次能源,电耗高。

高炉本体结构五部分名称。

炉喉 炉身 炉腰 炉腹炉缸

高炉五大附属系统名称及作用。

(1)原料系统;保证及时准确,稳定地将合格原料从储矿槽送上高炉炉顶。

(2)送风系统;保证连续可靠地给高炉冶炼提供所需数量和温度的热风。

(3)渣铁处理系统;处理高炉排放的渣,铁保证高炉生产正常进行。

(4)煤气清洗系统;回收高炉煤气。

(5)喷吹系统。保证喷入高炉所需燃料,以代替部分焦炭,降低焦炭消耗。

4、高炉冶炼指标?

1炉有效容积利用系数2焦比3煤比(油比)(4)冶炼强度(5)休风率6炭负荷7

炉龄(高炉一代寿命)

有效容积利用系数、焦比的 定义。高炉有效容积利用系数(ηv)高炉有效容积(Vu):指大钟落下时其底边平面至出铁口中心线之间的炉内容积。

高炉有效容积利用系数:指在规定的工作时间内,每米3有效容积平均每昼夜(日)生产的合格铁水的吨数。说明了技术操作及管理水平。(单位:吨/米3.日)

焦比:指每吨生铁消耗的干焦(或综合焦炭)的千克数

5、四种天然铁矿石的名称和分子式。

(1)磁铁矿:主要含铁矿物为Fe3O4,(2)赤铁矿:主要含铁矿物为Fe2O3,(3)褐铁矿:主要含铁矿物为含结晶水的氧化铁,mFe2O3·nH2O,(4)菱铁矿:主要含铁矿物化学式为FeCO3,焦炭在高炉冶炼中的 作用。

(1)发热剂(2)还原剂

(3)高炉料柱骨架

7、高炉添加熔剂的 作用。

(1)使高熔点化合物生成低熔点化合物,从而使还原出的液态生铁与矿石中的脉石和焦炭灰分实现良好的分离,并使液态铁具有良好的流动性。

(2)使炉渣碱度为1.0-1.2,炉渣脱硫,保证生铁质量合格。碱性熔剂:石灰石,白云石。普遍使用。

中性熔剂:高铝质熔剂,用于调整炉渣流动性。

很少使用。

碱性熔剂:硅石,很少使用。

人造富矿的 种类名称

(烧结矿和球团矿)。

铁氧化物还原特点(逐级还原),写出以H2/CO还原铁氧化物的 方程式。

遵循逐级还原的原则

T > 570℃ : Fe2O3→Fe3O4→FeO →Fe

T< 570℃Fe2O3→Fe3O4→Fe(FeO →Fe3O4+Fe)

(1)用CO还原铁氧化物

T > 570℃:

Fe2O3+CO→Fe3O4+CO

2Fe3O4 +CO →FeO + CO2FeO +CO →Fe+ CO2

T<570℃:2O3+CO→Fe3O4+CO2Fe3O4 +CO →Fe +CO2

用 H2还原铁氧化物

T > 570℃:

Fe2O3+ H2 →Fe3O4+ H2O

Fe3O4 +H2 →FeO +H2O

FeO +H2→Fe + H2O

T< 570℃:

Fe2O3+ H2 →Fe3O4+ H2O

Fe3O4 + H2 →Fe+H2O

高炉内间接还原和 直接还原的 定义和区别。

(1)还原剂和气体产物不同。

(2)直接还原为强吸热反应,间接还原为弱吸热反应或放热反应。

(3)直接还原发生在高温区,间接还原发生在中、低温区。

(4)直接还原时一个C原子可以夺取氧化物中的一个氧原子,而间接还原需要过量CO+H2。

高炉中炉渣的 作用?

(1)性能良好的炉渣,可以实现金属与氧化物脉石的有效分离。

(2)渣铁间热量及质量的交换是决定金属成品最终成分及温度的关键。

(3)炉渣对炉衬起保护作用。

高炉渣形成的 三各 阶段?

三个阶段:

初渣

中间渣

终渣

炉渣的熔化性温度定义。

为其固相完全转变为均匀液相或液相炉渣冷却时开始析出固相时的温度,亦称液相线温度。

高炉内有利于炉渣脱硫的热力学条件有哪些?

(1)提高温度;

(2)提高炉渣碱度;

(3)降低渣的氧势;

如何降低铁水中硫的含量。

(1)提高温度;

(2)提高炉渣碱度;

(3)降低渣的氧势;

(4)改善动力学条件,提高铁液中硫的活度系数fs及渣铁交界面积。

①铁水滴下穿过渣层时,在渣层中脱硫,此时渣铁接触好,脱硫反应快。

②渣铁界面上,虽接触面积不如前者大,但接触时间长,可保证充

分反应,最终完成脱硫反应。

(5)保证高炉稳定顺行。

强化高炉生产有哪些方法。

(1)高炉大型化、矮胖

(2)精料技术

(3)综合鼓风

① 高风温

② 富氧

③ 喷吹

(4)高压操作

(5)长寿技术

(6)TRT余压发电

(7)高炉机械化和自动 化高炉内按物料变化五个区域的 划分,并简单了解各部分的 变化过程。

块状区 主要特征:焦与炭呈现交替分布状,皆为固体状态。主要反映:矿石间接还原,碳酸盐分解。

软熔区主要特征:矿石呈软熔状,对煤气阻力大。

主要反应:矿石的直接还原,渗碳和焦炭的气化反应。

滴落区 主要特征:焦炭下降,期间夹杂渣铁液滴。

主要反应:非铁元素还原,脱硫,渗碳,焦炭的气化反应。焦炭回旋区 主要特征:焦炭作回旋运动。

主要反应:鼓风中的氧和蒸汽与焦炭及喷入的辅助燃烧发生燃烧反应。

炉缸区 主要特征:渣铁的相对静止,并暂存于此。

主要反应:最终的渣铁反应。

第二篇:钢铁冶金复习资料

钢铁冶金

第一章

1.高炉炼铁生产工艺流程

炉料(铁矿石 溶剂 焦炭)通过上料机装入炉内,空气通过鼓风机和热风炉生成热风鼓入炉内,喷吹燃料罐将燃料装入炉内,它们在高炉内反应生成炉渣 生铁和煤气;炉渣分为水渣(建筑材料)和渣棉(绝热材料);生铁分为铸造生铁 炼钢生铁和特殊生铁;煤气通过除尘产生净煤气加入热风炉或者其他用途。

2.高炉炼铁有哪些技术经济指标

p

(1)有效容积利用系数uVu

(2)焦比;K其中P为生铁日产量,Vu为高炉有效容积 QQ为焦炭日消耗量P

(K焦炭1)燃料比K燃K煤粉K重油)

2)综合焦比K综KK干

(3)冶炼强度IQ

Vu由此得出uIK

(4)焦炭负荷(5)生铁合格率(6)休风率(7)生铁成本(8)炉龄

3.高炉区域划分

从上到下依次是块状带,软熔带,滴落带,燃烧带,渣铁盛聚带。

第二章

1.高炉常用的铁矿石有哪几种?各有何特点?

赤铁矿:红矿,主要成分为三氧化二铁,硫磷含量低,质软,易碎,易还原

磁铁矿:黑色,有磁性,四氧化三铁,硫磷含量高,致密,坚硬,难还原

褐铁矿:含水氧化铁,褐色,磷含量高,质软疏松,易还原

菱铁矿:碳酸铁矿石,灰色 浅黄色,褐色,碳酸亚铁,易破碎,焙烧后易还原

2.评价铁矿石质量的标准有哪些?

A成分:矿石品位 脉石成分 有害杂质和有益元素的含量

B粒度和强度C还原性D化学成分稳定性

3.烧结和球团有哪些区别?

(1)球团矿更始于处理细精矿粉。粒度越细,成球性越好,球团强度越高

(2)成品矿的形状不同。球团矿较烧结矿粒度均匀,微气孔多,还原性好,强度高,且易于贮存,有利于强化高炉生产。

(3)适用于球团法处理的原料来源较宽,产品种类多。

(4)固结成块的机理不同。烧结矿是靠液相固结的,混合料中必须有燃料;而球团矿主要是依靠矿粉颗粒的高温再结晶固结的,混合料中不加燃料

(5)生产工艺不同。烧结料的混合与造球是在混合机内同时进行的,成球不完全,混合料中仍然含有相当数量未成球的小颗粒。而球团矿生产工艺中必须有专门的造球工序和设备,将全部混合料造成10~25mm的球,小于10mm的小球要筛出重新造球。

4.高炉炼铁中硫磷的危害

硫的危害:危害最大的元素,使产生热脆(热加工时,分布于晶界的共晶体先行熔化而导致开裂)磷的危害:使钢具有冷脆性(磷使钢材的室温强度提高而脆性增加)

5.对碱度的描述

R=w(CaO)/w(SiO2)R小于1时,为酸性烧结矿,R等于1至1.4时为自熔性烧结矿,R大于1.4时为熔剂性烧

结矿

6.焦炭的作用

作燃料,还原剂,料柱骨架,生铁渗碳的碳源

第三章

1.为什么用生铁中德硅含量来表示炉温?

因为渣温和硅含量基本呈线性关系

为什么残锰量表示熔池钢液温度?

(因为在碱性转炉炼钢中,温度越高,还原出来的锰量就越大,残锰量也就越高)

2.高炉炼渣是怎样形成的?

初渣:固相反应,矿石软化,初渣生成(熔融,滴落)

中间渣:在风口水平以上,软熔带以下

终渣:排出炉外的渣

3.哪些因素影响炉渣的脱硫能力?(提高能力的措施)

(1)提高炉渣碱度(2)提高炉缸(渣,铁)温度(3)强烈的还原性气氛

第四章

1.哪些因素影响炉料的顺利下降?

焦炭的不断燃烧和消耗,炉料的熔化和渣,铁的排出,直接还原和渗碳引起的溶解损失,炉料下降过程中小块充填于大块之间引起的体积收缩,粉料被吹出引起的炉尘损失,基本的危燃料的燃烧和渣,铁的排放。高炉料柱压差,压差主要取决于气流速度和料层通道的当量直径,实质也就是料柱的透气性增加料柱孔隙率和煤气通道当量直径,可以改善料柱透气性,合理的煤气流分布也是高炉顺行的重要标志之一

2.高温操作线图P99

第七章

1.钢和生铁的区别

(1)含碳量不同。碳含量小于2.11%的称为钢,大于或等于2.11%的称为生铁

(2)性能不同。钢具有很好的物理化学性能和力学性能

(3)其他元素。

2.铁碳相图P15

5第八章

钢液的脱氧方式有哪几种?各有什么特点?

沉淀脱氧法:效率高,操作简单,成本低,对冶炼时间无影响,但是脱氧程度取决于脱氧剂的能力和脱氧产物的排出条件

扩散脱氧法:有利于提高钢液的洁净度,但速度慢,时间长;通过吹氩搅拌和钢渣混冲加速进程;操作前需更换新渣,以防止回磷

真空脱氧法:脱氧比较彻底,脱氧产物为CO气体,不污染钢液,而且在排出CO的同时还具有脱氢 脱氮的作用

第九章

转炉和电炉炼钢用的原材料各有哪些?

转炉:铁水,废钢,铁合金,造渣剂(石灰,萤石,白云石),增碳剂,氧化剂(氧气,铁矿石,氧化铁皮)电炉:废钢,生铁海绵铁,铁合金,造渣剂(石灰,萤石,白云石),增碳剂,氧化剂(氧化铁皮)

第十章

1.顶吹工艺流程

(1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;

(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置);

(3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱);

(4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

(5)倒炉,测温、取样,并确定补吹时间或出钢;

(6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。

2.顶吹,底吹,顶底复吹的特点

顶吹:优点(1)熔炼速度快,生产率高(一炉钢只需20min)

(2)热效率高,冶炼中不需外来热源,且可配用10-30%的废钢

(3)钢的品种多,质量好(高低碳钢都能炼,且硅、硫、磷、氢、氮、氧及夹杂含量低

(4)便于开展综合利用和实现生产过程计算机控制

缺点吹损较高(10%),所炼钢种仍受一定限制(冶炼含大量难熔元素和易氧化元素的高合金钢有一定的困难。)喷溅和返干时有发生,而且吹炼后期熔池的搅拌弱(主要靠脱碳反应搅拌),钢渣间反应未达平衡,渣中的氧化亚铁含量高而吹损高、脱氧剂消耗高。

底吹:优点(1)金属收得率高(2)Fe Mn Al等合金的消耗量降低

(3)脱氧剂和石灰降低(4)氧耗降低(5)烟尘少,喷溅少

(6)脱碳速度快,冶炼周期短,生产率高(7)废钢比增加

(8)搅拌能力大,氮含量低

缺点(1)炉龄较低(2)(ΣFeO)少,化渣比较困难,脱磷不如顶吹

(3)钢中氢元素含量较高

顶底复吹:1)顶底复吹转炉石灰单耗低,2)渣量少,3)铁合金单耗相当于底吹转炉,4)氧耗介于顶吹与底吹之间。5)顶底复吹转炉能形成高碱度氧化性炉渣,提前脱磷,6)直接拉碳,生产低碳钢种,对吹炼中、高磷铁水有很大的适应性。

第十一章

1.现代电炉炼钢工艺操作特点和操作流程,并且与传统工艺的不同

2.废钢预热节能技术有哪几种?

料篮预热法,双壳电炉法,竖窑式电炉法,炉料连续预热法

3.电炉炼钢六个操作过程:补炉、装料、熔化、氧化、还原与出钢

第十二章

1.如何实现铁水同时脱硫,脱磷?

(1)在温度和铁水成分一定时,选择磷容量CP和硫容量CS较大的渣系,实现同时脱磷脱硫。

(2)用脱硫和脱磷能力大的Na2O和石灰系渣进行实验,可找出同时满足脱磷和脱硫所必需的氧位。

(3)用苏打作熔剂,很容易达到同时脱磷脱硫效果。用石灰渣系时将难以达到同时脱磷脱硫的要求。

(4)喷吹法可以在铁水罐内不同部位造成不同的氧势。喷嘴和喷枪附近氧势高,脱磷;罐底、内衬及渣-铁界面附近氧势低,脱硫。老师课件没有化

2.钢水二次精炼的主要方法有哪些?

LF法:电弧加热的钢包吹氩炉

RH法:循环真空脱气精炼法

VD法:真空脱气法

VOD法:真空吹氧脱碳法

AOD法:氩-氧脱碳法

3.铁水预处理方法:脱硫,脱磷,脱硅

4.炉外精炼四个基本手段:搅拌,真空,加热,添加精炼剂

第十三章

1.连铸的主要设备

主要设备由钢包、中间包、结晶器、结晶器振动装置、二次冷却和铸坯导向装置、拉坯矫直装置、切割装置、出坯装置等部分组成。

2.连铸的操作工艺

(1)连铸钢水的温度要求1)钢液温度的控制:主要是通过稳定出钢温度,提高终点温度的命中率;减少钢液传递过程的温降;充分发挥精炼的调节作用

2)钢液成分的控制:包括钢液的成分、流动性(可浇性)、洁净度的控制。

(2)浇注前的准备包括钢包的准备,中间包的准备,结晶器的检查,二冷区的检查,拉坯机剪切装置的检查,堵引锭头

(3)浇钢操作1)钢包浇注@钢包放在回转台,转至浇注位置并锁定@中间包运至浇注位置,与结晶器重新严格对中定位@在中间包底均匀撒放Ca-Si合金粉@调节中间包小车,将侵入式水口伸入结晶器到认定位置,然后多次启闭塞棒,再次检查其开启的灵活性和关闭的严密性。@采用保护浇注时,钢包就位后安装保护套管

2)中间包浇注:当流入中间包的钢液达到1/2的高度,中间包开浇。

3)连铸机的启动:拉矫机构的起步就是连铸机的启动。

4)正常浇注

5)多炉连浇:转入正常浇注后,还需实现多炉连浇操作,包括更换钢包和快速更换中间包等。

6)浇注结束

(4)浇注温度控制控制过热度,保持均匀、稳定的浇注温度。可采用中间包加热技术补偿钢液温降损失。

(5)拉速控制确定钢种和铸坯断面后,拉速随浇注温度进行调节

(6)冷却水控制1)结晶器冷却:结晶器冷却水采用经过处理的软水,用量根据铸坯尺寸而定

2)二次冷却:采用喷水冷却。二冷区的供水量沿连铸机长度方向从上到下逐渐减少。

(7)保护浇注采用全过程的保护浇注严格控制钢的二次污染。

(8)结晶器保护渣

3.如何评价连铸坯的质量,他们各自的缺陷和发生在哪部分?

(1)连铸坯的纯净度,指钢中夹杂物的含量、形态和分布。

(2)连铸坯表面质量。指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。

(3)连铸坯内部质量。指连铸坯是否有正确的凝固结构和裂纹、偏析、疏松等缺陷的程度

(4)连铸坯形状缺陷。形状是否规矩、尺寸误差是否符合规定要求。

第三篇:钢铁冶金论文

炼钢中脱磷的研究

摘要:主要研究近年来脱磷的方法,一些防止回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素,以及钢渣在微波场中还原脱磷的工艺。

关键词:脱磷;回磷;炉渣碱度;还原;预熔脱磷剂;高磷铁水;炼钢工艺

1.前言

一般情况下,磷是钢材中的有害成分,使钢具有冷脆性。磷能溶于a-Fe中(可达1.2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使钢材的室温强度提高而脆性增加,称为冷脆。但含磷铁水的流动性好,充填性好,对制造畸形复杂铸件有利。此外,磷可改善钢的切削性能、易切削钢中磷含量可达0.08%一0.15%。2.转炉的脱磷

2.1转炉脱磷的基本原理

通常认为,磷在钢中是以[Fe3P]或[Fe2P]的形式存在,为方便起见,均用[P]表示。炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为: 2[P]+5(FeO)+4(CaO)==(4CaO·P2O5)+5[Fe] 或 2[P]+5(FeO)+3(CaO)=(3CaO2·P2O5)+5[Fe] 2.2影响脱磷的因素

磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下: 2[P]+5(FeO)=(P2O5)+5[Fe]---Q1(1)

3(FeO)+(P2O5)=(3 FeO·P2O5)---Q(2)

(3 FeO·P2O5)+4(CaO)=(4CaO·P2O5)+ 3(FeO)---Q(3)有式(1),(2),(3)可推导出(4):

2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]---(4)式(4)表明,高碱度、高氧化性渣对脱磷有利,去磷是放热反应,故从热力学讲低温条件有利于去磷反应的进行。

(1)氧化性对炉渣去磷能力影响的理论分析

由上式不难看出(FeO)在脱磷过程中起双重作用,一方面作为磷的氧化剂起氧化磷的作用;另一方面充当把(P2O5)结合成(3 FeO·P2O5)的基础化合物的作用。可以认为渣中存在(FeO)是去磷的必要条件。由于(3 FeO·P2O5)在高于1470℃时不稳定的,因此只有当熔池内石灰熔化后生成稳定的化合物(4CaO·P2O5)才能达到去磷的目的。(2)炉渣碱度对炉渣去磷能力的影响理论分析

CaO具有较强的脱磷能力,(4CaO·P2O5)在炼钢温度下很稳定,因此,提高炉渣碱

度可以提高脱磷的效率。但不能无止尽的提高炉渣的碱度,如果CaO加入过多,炉渣的熔点增大,CaO颗粒不能完全熔入炉渣,则导致炉渣的流动性减弱,黏度增强,从而影响脱磷反应在钢液与炉渣之间的界面进行而降低脱磷效果。另外,炉渣碱度与氧化铁的活度也有关系,过高碱度减少氧化铁的活度,从而降低脱磷效果。(3)温度对炉渣去磷能力影响的理论分析

温度对去磷反应的影响从两个方面来看:一方面,去磷反应是放热反应,高温不利于去磷,然而,熔池温度的提高,将加速石灰的熔化,提高熔渣碱度,从而提高磷在炉渣和钢水中的分配比;另一方面,高温能提高渣的流动性,能加强渣—钢界面反应,提高去磷速度,所以过低的温度不利于去磷。

总之脱磷的条件为:高碱度、高(FeO)含量(氧化性)、良好的流动性熔渣、充分的熔池搅动、适当的温度及大渣量。

2.3回磷现象

所谓的回磷现象,就是磷从熔渣中又返回到钢液中。成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。由于脱氧,炉渣碱度、(FeO)含量降低,钢包内有回磷现象,反应式如下:

2(FeO)+[Si]==(SiO2)+2[Fe]

(FeO)+[Mn]==(MnO)+[Fe]

2(P2O5)+5[Si]==5(SiO2)+4[P]

(P2O5)+5[Mn]==5(MnO)+2[P]

3(P2O5)+10[Al]==5(Al2O3)+6[P] 通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。

2.4 还原脱磷

还原条件下进行脱磷近年来也很受关注,要实现还原脱磷,必须加入比铝更强的脱氧剂,使钢液达到深度还原。通常加入Ca,Ba或CaC2等强还原剂。还原脱磷反应:

3[Ca]+2[P]===3(Ca2+)+2(P3-)3[Ba]+2[P]===3(Ba2+)+2(P3-)3CaC2(s)+2[P]===3(Ca2+)+2(P3-)+6[C] 还原脱磷加入强还原剂的同时,还需加入CaF2,CaO等熔剂造渣。还原脱磷一般是在金属不宜用氧化脱磷的情况下使用,如含铬高的不锈钢,采用氧化脱磷会引起铬的大量氧化。还原脱磷后的渣应立即去除,否则渣中P3-又会被重新氧化成PO43-而造成回磷。【1】 3 钢渣在微波场中还原脱磷

微波技术在加热高电介质耗损原料方面是一种简单而有效的方法, 在冶金还原领域有着广阔的应用

前景。相较于传统加热还原工艺需要较高的温度和损耗, 具有体积性加热、选择性加热、非接触性加热、即时性等加热特性的微波场在较低温度下能够提供更多的热量。因为通过渣料表面点位与微波能的强烈作

用, 物料表面点位选择性被很快加热至很高温度。铁氧化物是一种高微波响应材料, 而且如果Fe3+ /(Fe2++ Fe3+)的比率在一个合适的范围内, 钢渣能得到有效加热, 碳质微粒物质具有良好的微波吸收特性, 有利于迅速加热原料。

3.1结果与讨论

实验表明钢渣为微波的良吸收体, 如图3所示, 当时间达到15~ 20min时, 纯渣料及各配碳量条件下的结构示意图

图3 物料的微波升温曲线 图1 微波冶金试验炉 物料温度均达到1000e 并呈线性稳定增加。还原结果如图表4所示, 温度对还原反应的影响很大, 随着温度的上升, 脱磷率稳定增加。1400e 时脱磷率可达到87.15%。当温度达到1200e 时, 渣料中出现大量直径小于1mm的金属颗粒, 并且呈均一弥散分布。由此证明微波体无温度梯度的加热方式使其中不同位置的物料获得均一稳定的加热特性。当温度达到1300e 时, 渣料中即出现易从渣相分离出的直径在10~ 20 mm的大颗粒金属球.碳热还原钢渣的反应机理是: Ca3(PO4)2 + 5C= 3CaO+ 1 /2P4 + 5CO 该反应在超过1000e 时能自发进行, 传统工艺中温度达到1400e 才能迅速反应。微波场中当温度达到1200e 脱磷率就已经达到85% 以上。所实验表明, 较传统加热工艺, 微波促进钢渣脱磷, 使得还原脱磷反应在低温下得以实现。

图4 温度对脱磷率的影响

实验表明Ceq对还原反应的影响显著。在微波场中升温到1300e 保温20min检测发现, 随着碳当量的增加, 渣中铁和磷含量降低, 脱磷率增加。如图6,当Ceq= 1时, 即体系中的还原剂刚好够还原钢渣氧化物所用, 由于体系开放, 部分碳质还原剂在空气环境下微波辐射氧化消耗, 使得还原剂的有效参与率降低,从而导致脱磷率较低。随着Ceq增加, 当Ceq= 3时, 碳还原反应剧烈, CO气泡从坩埚界面和料面不断冒出,遇空气燃烧剧烈, 此时的脱磷率达到8619%。实验发现配碳量较高情况下气化脱磷占总脱磷率比重很大。主要由于高还原剂条件下产生大量CO气体, CO上升过程将更多P(g)带出, 促进了磷的气化逸散。此外,微波加热在1300e 下即可较充分的发生还原反应, 此温度尚未产生宏观熔池, 为固固相反应, 料柱松散, 磷蒸汽逸散阻力小, 易被CO气体携带出体系。上述结果表明, 钢渣的还原效果很大程度上还是受还原剂的影响, 碳当量越高, 铁和磷在渣铁间的分配比越小, 金属聚集阻力和磷的气化阻力越小, 即高碳当量有利于磷的还原和迁移。但过高的碳当量在反映出其对

于体系升温有负面影响。所以选择合适的过量碳当量是必要的。本次实表明, 2~ 3倍碳当量既能返祖快速升温启动和促进脱磷反应, 又能避免碳资源的浪费。为研究保温时间对还原效果的影响, 在1300e , 3Ceq条件下, 分别设定保温时间0 min、10 min、20m in、30 min进行对比实验, 结果如图7。实验证明, 保温时间越长, 渣相中出现Fe2C合金球直径越大, 可回收金属量越大, 脱磷率也越高。这说明适当延长保温时间, 能提供更长时间和更多热量促进金属球的聚集长大,利于合金采集和回收。

3.2钢渣微波场中还原脱磷结论

(1)实验结果表明, 转炉钢渣为微波的良吸收体可在20m in被迅速加热至1000e 以上。微波加热能促进钢渣的还原反应, 实现钢渣在1400e 以下的低温还原脱磷。平均脱磷率达85% 以上, 最优可达9115%。

(2)微波碳热还原钢渣反应生成的Fe2C合金球, 最大直径可达18mm, 易从渣中提取。其余呈均一弥散分布于残渣中, 直径大多在3mm以下, 需筛分与渣相分离。

(3)在1100e ~ 1400e 低温范围内, 钢渣脱磷率随温度升高而增大, 1100e 时脱磷率达到80% , 1400e时脱磷率增高至8715%。适当增加保温时间, 更利于还原反应的进行。

(4)钢渣的还原效果很大程度受还原剂影响。金属收得率和脱磷率随着碳当量Ceq的增加而增加,1Ceq时脱磷率67%, 3Ceq钢渣脱磷率上升至86.19%。【2】 4 预熔脱磷剂进行铁水脱磷的实验

4.1w(CaO)/w(Fe2O3)对预熔脱磷剂脱磷效果的影响

根据脱磷的主要反应式(式(1))可知, 脱磷剂中Fe2O3 在铁水中的溶解氧[ O] 能将铁水中的[ P] 氧化为P2O5 , 但P2O5 不稳定, 必须和碱性氧化物(CaO)反应生成稳定的磷酸盐渣(4CaO·P2 O5 或3CaO·P2 O5), 才能使铁水中的磷脱除掉。通过实验欲找到一个能使铁水中磷含量降到最低的w(CaO)/w(Fe2O3)比值, 以达到最佳的脱磷效果。2[ P]+5(FeO)+4(CaO)=4(CaO)+(P2O5)+ 5[ Fe](1)为此, 在1350℃下固定w(CaF2)为10%不变,改变预熔脱磷剂中w(CaO)和w(Fe2 O3)的比值进行脱磷实验, 脱磷剂加入量为铁水量的10%, 处理时间为10 min, 结果如图2 所示。可看出, 在w(CaO)/w(Fe2O3)的值介于0.5~ 1.0 之间时, 随比值增大脱磷率逐渐上升, 当w(CaO)与w(Fe2O3)的比值为1.0 左右时, 脱磷率最大, 为95.22%, 这主要是由于w(CaO)/w(Fe2O3)约为1 时, 使铁水中[ P] 与[ O] 充分结合生成的P2O5 能被CaO 完全固定为4CaO·P2O5 或3CaO·P2 O5 , 实现较好的脱磷效果;而在w(CaO)/ w(Fe2 O3)介于1.00~1.25 之间时, 随比值增大脱磷率逐渐下降。

2w(CaO)/ w(Fe2O3)对脱磷率的影响

4.2 助熔剂含量对预熔脱磷剂脱磷效果的影响

固定w(CaO)/w(Fe2O3)=1.0不变, 改变助熔剂CaF2 的含量在6% ~ 15% 之间变化进行脱磷实验。处理10 min 的结果如图3 所示, 可以看到在CaF2 含量为6% 时, 脱磷率相对较低, 进一步增加CaF2 的含量, 当w(CaF2)为10% 时, 脱磷率最大,为96.24% , 使铁水中的磷由0.21% 降低为0.0079%, 这主要因为CaF2 与CaO 能形成低熔点化合物, 经预熔处理后脱磷剂熔点和粘度得到了降低 ,使脱磷反应的动力学条件得到了明显改善;当w(CaF2)进一步增加为15%时, 脱磷率有一定程度的降低, 为91.43%。由于在脱磷剂加入量一定的情况下, 当助熔剂量多时, 氧化剂和固定剂的相对加入量就会减少, 因此, 脱磷效果反而不好;且预熔脱磷剂中CaF2 大于15% 时将对炉衬产生明显的侵蚀。

图3 预熔脱磷剂中CaF2 含量对脱磷效果的影响

4.3铁水初始磷含量对预熔脱磷剂脱磷效果的影响

为适应铁水中初始磷含量的波动对脱磷反应效果的影响, 对初始磷含量不同的铁水用相同配比关系的预熔脱磷剂进行了实验研究。在1 300℃, 加入量为10%的条件下, 分别选用初始磷的质量分数为0.21%、0.168%、0.119% 的生铁进行实验, 结果如图4 所示。可以看出随初始磷含量的增大脱磷率略有增大, 当铁水中的初始磷的质量分数为0.21%时, 经过10 min 的脱磷处理后可使磷的质量分数降低到0.007 9%, 脱磷率为96.24%;当初始磷的质量分数为0.168% 时, 可将铁水中的磷的质量分数降低到0.015% 的较低水平;初始磷的质量分数进一步降低为0.119% 时, 铁水中的磷的质量分数也能降低到0.012% 的水平, 脱磷率可达到89.92%。结果表明铁水中初始磷含量对用预熔脱磷剂进行铁水预处理脱磷的脱磷效果影响不大。

图4 初始铁水中磷含量对脱磷率的影响

4.4 处理温度对预熔脱磷剂脱磷效果的影响

由热力学分析可知, 脱磷反应是强放热反应(ΔH =O 反应大量进行, 保证脱磷在低温下进行。快速提高渣中FeO 含量, 保证炉渣熔化速度和具有较好的氧化性。此时, 控制温度在1 400 ℃以下, 控制ΣFeO 质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 同时加强炉内搅拌, 促进渣-金反应的快速进行。脱碳升温期的主要任务是脱碳升温防止回磷。此时, 脱磷任务已基本完成, 随着脱碳的进行带来的高温会使脱磷反应逆向进行, 使渣中的磷又回到钢中。因此改善炉渣热力学条件来进一步强化脱磷,的目的。控制终点ΣFeO质量百分数在15%左右炉渣碱度在315 ~410。各厂的生产条件的差异应做适当的调整, 以满足生产的稳定。但需要指出的是, 化渣脱磷期可采用高枪位软吹或降低供氧强度, 即可以控制炉内温度, 在促进化渣的同时也可适当延长化渣脱磷期, 使脱磷反应充分进行。脱碳升温期, 尽量提高供氧强度, 快速脱碳升温来降低回磷。在条件准许的情况下, 可以采用留钢操作是获得高质量钢的有效手段。

6.2复吹转炉成渣对脱磷结论

1)成渣过程决定脱磷的效率, 冶炼的不同时期应合理控制炉渣碱度、氧化性和温度, 铁水磷含量的不同应选择不同的成渣方式。

2)化渣脱磷期铁水中磷含磷较高脱磷的驱动力较大, 主要通过改善动力学条件来加快脱磷, 采用铁质成渣。控制温度在1 400 ℃以下, 控制ΣFeO质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 促进渣-金反应的快速进行。

3)脱碳升温期铁水温度较高是脱磷的不利条件, 因此改善热力学条件来进一步强化脱磷。控制终点ΣFeO 质量百分数在15% ~20% , 炉渣碱度在315~410。【5】 7 结语

我国作为钢材生产和消费大国, 炼钢工序作为钢铁生产不可缺少的环节, 钢渣的产生不可避免。近年来, 我国钢渣和铁渣的堆置达3亿多吨, 钢渣占钢铁工业固体废物的12109%。在冶金工业生产中, 排放的主要固体废弃物是高炉渣和转炉渣。其中高炉渣是利用技术最成熟的工业废渣, 而转炉渣的回收利用相对差很多, 对钢渣利用比较好的国家主要有美国、德国和日本, 利用率均达到95%以上。而我国在2002年调查中钢渣利用率仅为36% , 与国外先进国家相比, 在钢铁渣综合利用方面还有较大差距。因而我们要多开发新技术如脱磷,做到如何在低成本下实现最大化的脱磷同时又不影响环境,从而做出高产出。新的技术还有待开发。

参考文献

【1】朱苗勇。《现代冶金学》(钢铁冶金卷)冶金工业出版社.2008 【2】吕 岩, 张 猛, 陈 津, 艾立群, 周朝刚。《钢渣在微波场中还原脱磷的工艺》。《河北理工大学学报》(自然科学版)2010年8月,第32卷 第3期

【3】魏颖娟,袁守谦,张西锋,王伟,梁德安,张启业。《预熔脱磷剂进行铁水脱磷的实验研究》。《钢铁》2008年10月第43卷第10 期

【4】金焱,毕学工《高磷铁水脱磷效率影响因素的研究》。《武汉科技大学学报》2010年2月第33卷第1 期 【5】王学斌 , 张珊珊, 张炯。《复吹转炉成渣过程对脱磷的影响》。《莱钢科技》2010年6月

第四篇:钢铁冶金论文

专科论 文

题 目: 科 生 姓 名: 学 科、专 业: :

业论文

钢铁中对脱磷反应的

蔡月亮

冶金工程(高起专函授)

内蒙古科技大学成人教育学院

毕专学院(系、所)

内蒙古科技大学成人教育学院

毕业设计(论文)任务书

专业 冶金工程(高起专函授)班级09级冶金班

学号 姓名蔡月亮

毕业设计(论文)题目:钢铁中对脱磷反应的研究

设计期限:自2009年 9 月 1 日 至2011年 5 月 20 日

指导老师:庞峰淼

系 主 任:

2011年 4 月 27日

摘要

主要研究近年来脱磷的方法,一些防止冷脆和回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素等。

关键词:脱磷;炉渣碱度;速率;预熔脱磷剂;高磷铁水

Abstract Research in recent years dephosphorization method, some of the phosphorus to prevent cold crisp and return measures, blowing converter process for dephosphorization slag into the impact of high phosphorus hot metal dephosphorization efficiency influencing factors.Keywords: dephosphorization;slag basicity;rate;pre-melting dephosphorization agent;high phosphorus hot metal

前言

脱除钢液中有害杂质磷的物理化学过程。在高炉炼铁时,原料中的磷几乎全部还原到生铁中,随着铁矿石磷含量的不同,生铁中的磷可达0.1%~1.0%,特殊的可高达2.0%以上。铁合金中同理也含有相当多磷。磷使钢材在低温下变脆,即产生“冷脆”现象。实验研究证明,磷在钢凝固过程中偏析聚集在晶界处,很少量的磷,例如0.01%(100ppm)即可使钢呈现低温脆性。冶炼普通钢要求将磷降到0.030%~0.040%,而低温用钢如寒冷地带钻井平台用钢、液化气体储存和输送用钢等要求含磷低到0.002%~0.003%(即20~30ppm)。因此,脱磷是炼钢过程的主要任务之一。

2.转炉的脱磷

2.1转炉脱磷的基本原理

通常认为,磷在钢中是以[Fe3P]或[Fe2P]的形式存在,为方便起见,均用[P]表示。炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为:

2[P]+5(FeO)+4(CaO)==(4CaO·P2O5)+5[Fe] 或 2[P]+5(FeO)+3(CaO)=(3CaO2·P2O5)+5[Fe] 2.2影响脱磷的因素

磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下: 2[P]+5(FeO)=(P2O5)+5[Fe]---Q1(1)

3(FeO)+(P2O5)=(3 FeO·P2O5)---Q(2)

(3 FeO·P2O5)+4(CaO)=(4CaO·P2O5)+ 3(FeO)---Q(3)有式(1),(2),(3)可推导出(4): 2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]---(4)式(4)表明,高碱度、高氧化性渣对脱磷有利,去磷是放热反应,故从热力学讲低温条件有利于去磷反应的进行。

(1)氧化性对炉渣去磷能力影响的理论分析

由上式不难看出(FeO)在脱磷过程中起双重作用,一方面作为磷的氧化剂起氧化磷的作用;另一方面充当把(P2O5)结合成(3 FeO·P2O5)的基础化合物的作用。可以认为渣中存在(FeO)是去磷的必要条件。由于(3 FeO·P2O5)在高于1470℃时不稳定的,因此只有当熔池内石灰熔化后生成稳定的化合物(4CaO·P2O5)才能达到去磷的目的。(2)炉渣碱度对炉渣去磷能力的影响理论分析

CaO具有较强的脱磷能力,(4CaO·P2O5)在炼钢温度下很稳定,因此,提高炉渣碱

度可以提高脱磷的效率。但不能无止尽的提高炉渣的碱度,如果CaO加入过多,炉渣的熔点增大,CaO颗粒不能完全熔入炉渣,则导致炉渣的流动性减弱,黏度增强,从而影响脱磷反应在钢液与炉渣之间的界面进行而降低脱磷效果。另外,炉渣碱度与氧化铁的活度也有关系,过高碱度减少氧化铁的活度,从而降低脱磷效果。

(3)温度对炉渣去磷能力影响的理论分析

温度对去磷反应的影响从两个方面来看:一方面,去磷反应是放热反应,高温不利于去磷,然而,熔池温度的提高,将加速石灰的熔化,提高熔渣碱度,从而提高磷在炉渣和钢水中的分配比;另一方面,高温能提高渣的流动性,能加强渣—钢界面反应,提高去磷速度,所以过低的温度不利于去磷。

总之脱磷的条件为:高碱度、高(FeO)含量(氧化性)、良好的流动性熔渣、充分的熔池搅动、适当的温度及大渣量。

2.3冷脆现象

磷是钢中有害杂质之一。含磷较多的钢,在室温或更低的温度下使用时,容易脆裂,称为“冷脆”。钢中含碳越高,磷引起的脆性越严重。一般普通钢中规定含磷量不超过 0.045%,优质钢要求含磷更少。生铁中的磷,主要来自铁矿石中的磷酸盐。氧化磷和氧化铁的热力学稳定性相近。在高炉的还原条件下,炉料中的磷几乎全部被还原并溶入铁水。如选矿不能除去磷的化合物,脱磷就只能在(高)炉外或碱性炼钢炉中进行。

2.4回磷现象

所谓的回磷现象,就是磷从熔渣中又返回到钢液中。成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。由于脱氧,炉渣碱度、(FeO)含量降低,钢包内有回磷现象,反应式如下:

2(FeO)+[Si]==(SiO2)+2[Fe]

(FeO)+[Mn]==(MnO)+[Fe]

2(P2O5)+5[Si]==5(SiO2)+4[P]

(P2O5)+5[Mn]==5(MnO)+2[P]

3(P2O5)+10[Al]==5(Al2O3)+6[P] 通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。2.5 还原脱磷

还原条件下进行脱磷近年来也很受关注,要实现还原脱磷,必须加入比铝更强的脱氧剂,使钢液达到深度还原。通常加入Ca,Ba或CaC2等强还原剂。还原脱磷反应:

3[Ca]+2[P]===3(Ca2+)+2(P3-)3[Ba]+2[P]===3(Ba2+)+2(P3-)3CaC2(s)+2[P]===3(Ca2+)+2(P3-)+6[C] 还原脱磷加入强还原剂的同时,还需加入CaF2,CaO等熔剂造渣。还原脱磷一般是在金属不宜用氧化脱磷的情况下使用,如含铬高的不锈钢,采用氧化脱磷会引起铬的大量氧化。还原脱磷后的渣应立即去除,否则渣中P3-又会被重新氧化成PO43-而造成回磷。【1】

2.6脱磷反应的速率

脱磷是渣一钢界面反应,反应的进行包括3个环节:(1)钢液中磷和氧向渣钢界面传质;(2)在渣钢界面进行化学反应;(3)生成物在渣相内的传质。高温下脱磷的化学反应是极快的,传质是脱磷速率的限制环节。对于渣相和金属相中的传质快慢比较,不同研究者所得结果各异。这可能因两相中的传质速率差别不大,所以测定有分歧。然而无论是哪个相中,增大传质速率的因素都是加强搅拌,增大界面流动速度,增大渣钢界面面积等。顶吹转炉中有大量金属液滴弥散于渣中,造成良好的脱磷动力学条件,许多人捕集液滴进行化学分析,发现液滴中磷含量比同一时刻的熔池含磷量低得多。可以认为,顶吹转炉的脱磷都是在液滴表面进行的。氧气底吹转炉,如果随同氧气喷入石灰粉,则石灰粉粒与生成的氧化铁可以形成低熔点的铁酸钙渣滴,造成良好的脱磷热力学条件和动力学条件,使脱磷能提前到脱碳时进行,大约有50%~70%的磷靠渣滴来脱除。所以说,加强冶炼过程的搅拌造成液滴乳化,是提高脱磷速率的根本性措施。预熔脱磷剂进行铁水脱磷的实验

3.1 w(CaO)/w(Fe2O3)对预熔脱磷剂脱磷效果的影响

根据脱磷的主要反应式(式(1))可知, 脱磷剂中Fe2O3 在铁水中的溶解氧[ O] 能将铁水中的[ P] 氧化为P2O5 , 但P2O5 不稳定, 必须和碱性氧化物(CaO)反应生成稳定的磷酸盐渣(4CaO·P2 O5 或3CaO·P2 O5), 才能使铁水中的磷脱除掉。通过实验欲找到一个能使铁水中磷含量降到最低的w(CaO)/w(Fe2O3)比值, 以达到最佳的脱磷效果。2[ P]+5(FeO)+4(CaO)=4(CaO)+(P2O5)+ 5[ Fe](1)为此, 在1350℃下固定w(CaF2)为10%不变,改变预熔脱磷剂中w(CaO)和w(Fe2 O3)的比值进行脱磷实验, 脱磷剂加入量为铁水量的10%, 处理时间为10 min, 结果如图2 所示。可看出, 在w(CaO)/w(Fe2O3)的值介于0.5~ 1.0 之间时, 随比值增大脱磷率逐渐上升, 当w(CaO)与w(Fe2O3)的比值为1.0 左右时, 脱磷率最大, 为95.22%, 这主要是由于w(CaO)/w(Fe2O3)约为1 时, 使铁水中[ P] 与[ O] 充分结合生成的P2O5 能被CaO 完全固定为4CaO·P2O5 或3CaO·P2 O5 , 实现较好的脱磷效果;而在w(CaO)/ w(Fe2 O3)介于1.00~1.25 之间时, 随比值增大脱磷率逐渐下降。

2w(CaO)/ w(Fe2O3)对脱磷率的影响

3.2 助熔剂含量对预熔脱磷剂脱磷效果的影响

固定w(CaO)/w(Fe2O3)=1.0不变, 改变助熔剂CaF2 的含量在6% ~ 15% 之间变化进行脱磷实验。处理10 min 的结果如图3 所示, 可以看到在CaF2 含量为6% 时, 脱磷率相对较低, 进一步增加CaF2 的含量, 当w(CaF2)为10% 时, 脱磷率最大,为96.24% , 使铁水中的磷由0.21% 降低为0.0079%, 这主要因为CaF2 与CaO 能形成低熔点化合物, 经预熔处理后脱磷剂熔点和粘度得到了降低 ,使脱磷反应的动力学条件得到了明显改善;当w(CaF2)进一步增加为15%时, 脱磷率有一定程度的降低, 为91.43%。由于在脱磷剂加入量一定的情况下, 当助熔剂量多时, 氧化剂和固定剂的相对加入量就会减少, 因此, 脱磷效果反而不好;且预熔脱磷剂中CaF2 大于15% 时将对炉衬产生明显的侵蚀。

图3 预熔脱磷剂中CaF2 含量对脱磷效果的影响

3.3 铁水初始磷含量对预熔脱磷剂脱磷效果的影响

为适应铁水中初始磷含量的波动对脱磷反应效果的影响, 对初始磷含量不同的铁水用相同配比关系的预熔脱磷剂进行了实验研究。在1 300℃, 加入量为10%的条件下, 分别选用初始磷的质量分数为0.21%、0.168%、0.119% 的生铁进行实验, 结果如图4 所示。可以看出随初始磷含量的增大脱磷率略有增大, 当铁水中的初始磷的质量分数为0.21%时, 经过10 min 的脱磷处理后可使磷的质量分数降低到0.007 9%, 脱磷率为96.24%;当初始磷的质量分数为0.168% 时, 可将铁水中的磷的质量分数降低到0.015% 的较低水平;初始磷的质量分数进一步降低为0.119% 时, 铁水中的磷的质量分数也能降低到0.012% 的水平, 脱磷率可达到89.92%。结果表明铁水中初始磷含量对用预熔脱磷剂进行铁水预处理脱磷的脱磷效果影响不大。

图4 初始铁水中磷含量对脱磷率的影响

3.4 处理温度对预熔脱磷剂脱磷效果的影响

由热力学分析可知, 脱磷反应是强放热反应(ΔH =O 反应大量进行, 保证脱磷在低温下进行。快速提高渣中FeO 含量, 保证炉渣熔化速度和具有较好的氧化性。此时, 控制温度在1 400 ℃以下, 控制ΣFeO 质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 同时加强炉内搅拌, 促进渣-金反应的快速进行。脱碳升温期的主要任务是脱碳升温防止回磷。此时, 脱磷任务已基本完成, 随着脱碳的进行带来的高温会使脱磷反应逆向进行, 使渣中的磷又回到钢中。因此改善炉渣热力学条件来进一步强化脱磷,的目的。控制终点ΣFeO质量百分数在15%左右炉渣碱度在315 ~410。各厂的生产条件的差异应做适当的调整, 以满足生产的稳定。但需要指出的是, 化渣脱磷期可采用高枪位软吹或降低供氧强度, 即可以控制炉内温度, 在促进化渣的同时也可适当延长化渣脱磷期, 使脱磷反应充分进行。脱碳升温期, 尽量提高供氧强度, 快速脱碳升温来降低回磷。在条件准许的情况下, 可以采用留钢操作是获得高质量钢的有效手段。

5.2复吹转炉成渣对脱磷结论

1)成渣过程决定脱磷的效率, 冶炼的不同时期应合理控制炉渣碱度、氧化性和温度, 铁水磷含量的不同应选择不同的成渣方式。

2)化渣脱磷期铁水中磷含磷较高脱磷的驱动力较大, 主要通过改善动力学条件来加快脱磷, 采用铁质成渣。控制温度在1 400 ℃以下, 控制ΣFeO质量百分数在35% ~40% , 使炉渣具有较高的氧化性, 炉渣碱度在210左右, 这样在保证炉渣有良好的氧化性前提下有很好的流动性, 促进渣-金反应的快速进行。

3)脱碳升温期铁水温度较高是脱磷的不利条件, 因此改善热力学条件来进一步强化脱磷。控制终点ΣFeO 质量百分数在15% ~20% , 炉渣碱度在315~410。【5】 结语

我国作为钢材生产和消费大国, 炼钢工序作为钢铁生产不可缺少的环节, 钢渣的产生不可避免。近年来, 我国钢渣和铁渣的堆置达3亿多吨, 钢渣占钢铁工业固体废物的12109%。在冶金工业生产中, 排放的主要固体废弃物是高炉渣和转炉渣。其中高炉渣是利用技术最成熟的工业废渣, 而转炉渣的回收利用相对差很多, 对钢渣利用比较好的国家主要有美国、德国和日本, 利用率均达到95%以上。而我国在2002年调查中钢渣利用率仅为36% , 与国外先进国家相比, 在钢铁渣综合利用方面还有较大差距。因而我们要多开发新技术如脱磷,做到如何在低成本下实现最大化的脱磷同时又不影响环境,从而做出高产出。新的技术还有待开发。

参考文献

【1】朱苗勇。《现代冶金学》(钢铁冶金卷)冶金工业出版社.2008 【2】吕 岩, 张 猛, 陈 津, 艾立群, 周朝刚。《钢渣在微波场中还原脱磷的工艺》。《河北理工大学学报》(自然科学版)2010年8月,第32卷 第3期

【3】魏颖娟,袁守谦,张西锋,王伟,梁德安,张启业。《预熔脱磷剂进行铁水脱磷的实验研究》。《钢铁》2008年10月第43卷第10 期

【4】金焱,毕学工《高磷铁水脱磷效率影响因素的研究》。《武汉科技大学学报》2010年2月第33卷第1 期 【5】王学斌 , 张珊珊, 张炯。《复吹转炉成渣过程对脱磷的影响》。《莱钢科技》2010年6月

第五篇:钢铁冶金小论文

论中国钢铁冶金技术发展史

姓名:杨帅班级:10级建筑工程技术一班 系部:材料与工程系

我虽然不是钢铁冶金专业的学生,但是通过选修本课程,不仅使我自己加深了对钢铁冶金技术的了解,在一定程度上弥补了我对钢铁冶金认识的空白,同时,使我对中国钢铁冶金技术发展史有了更具体的了解与认识。

冶金是研究如何经济地从矿石或其他原料中提取金属或金属化合物,并采用各种加工方法制成具有一定性能的金属材料的科学。冶金工业的发展是伴随人类活动而一步步发展起来的,可归结为:石器→青铜器→铁器→工业化(钢铁)→信息社会(多种新材料)中国作为世界文明古国,钢铁的发展要远早于其他国家。

中国古代炼钢方法可分为两类。一是以块炼铁为原料,采用渗碳技术使其成钢。二是以生铁为原料,采取脱碳技术使其成钢。

早期出现的大量钢制品主要是用第一种方法炼成,就是把块炼铁直接放在炽热的木炭上加热,渗碳(在高温下活性碳原子渗入铁的表面 ,使含碳量增加),再经反复锻打而成。反复加热煅打的次数越多,钢件越硬,由十次,三十次,五十次增至近百次从而得到所谓的“百炼钢”。这就是百炼成钢工艺的起源。

多次反复锻打可排除钢中夹杂物(铁矿石中的脉石成分),减少残留夹杂物的尺寸,从而使其成分趋于均匀,组织趋于致密,细化晶粒,改善钢的性能。古代人们虽然不知道为什么打的次数越多,钢件越硬,但是这种锤炼技术却一直延续下来了。

在掌握冶炼块炼铁后不久,又学会了生铁冶铸,是把炼炉加高,强化地鼓风,使竖炉里的氧化还原反应更充分,炼炉的温度也有相应的提高。当炉温达到摄氏一千二百度(1200℃)左右,被还原的固态铁会熔化为铁水,铁水则直接从炉口流出来用于浇铸。用这种高温液态还原法生产生铁,与低温固体还原法生产块炼铁相比,不仅可以连续生产,提高生产率,并能铸造出器形较复杂的铁器。中国在春秋时期创造的高温液态法冶铸生铁,是世界冶金史上一个划时代的进步。欧洲一些国家虽然早在公元前1000年前后已能生产块炼铁,但是直到公元十四世纪才掌握生铁的冶铸。

现代钢铁冶炼工艺流程大体分为以下三类:(1)高炉—转炉流程2)直接还原炉—电炉流程(3)熔融还原炉—转炉流程

目前,已出现了有效容积>5000m3的巨型高炉。高炉大型化已经成为钢铁冶炼的一个发展趋势。除此之外,高炉的精料技术、强化冶炼技术、改进高炉设备改善人工劳动条件、为使高炉冶炼合理化和自动化创造必要条件也已经成为炼铁 技术的发展趋势。

发展氧气底吹转炉法和顶底复合吹炼法;采用真空冶炼和钢水炉外精炼技术,改善钢的质量,扩大钢的品种;发展连续铸钢(连铸)技术,采用计算机控制,使炼钢工艺连续化和自动化;采用超大容量的转炉和超高功率的电炉,提高生产率,降低生产成本成为炼钢技术的发展趋势

自古以来,钢铁工业的发展状况能准确地反映一个国家的经济发达程度和发展水平。纵观当今世界各国,所有发达国家国家无一不具有相当发达的钢铁工业。

目前,没有任何材料能替代钢铁材料在国民经济中的现有地位。尽管蓬勃发展的各种新型材料将会在很多领域逐渐取代传统材料,但由于其高性价比和高循环使用率,钢铁材料不仅是迄今人类文明发展的“钢筋铁骨”,在未来人类社会的材料使用中还必将长期占据重要的地位。当然,其原料和能源结构以及生产形式也必然会发生根本的变化。

未来钢铁工业的原料与能源结构—高效低排放的新型生产方式。消耗天然资源,大量排放炉渣、废热和废气的传统的钢铁材料生产方式必将逐步被取代。原材料和能源充分循环利用、高效率、低排放甚至零排放的新型生产方式应得到发展和推广。这种生产方式的细节尚不十分清晰,但从循环经济的要求和技术积累的层面分析,应该包含以废钢循环为主的原料结构和以氢能源为主体的能源结构,包含对排气、废水和废渣的回收和综合利用, 以此从根本上保证可持续发展的需要。

虽然中国钢铁工业技术装备已跻身世界先进水平,但是,其在资源消耗,环境污染上与发达国家相比,要严重得多,再加上我国资源方面的匮乏,使我国钢铁业面临着严峻的考验。

进入新世纪后人类社会发展发展呈现知识型经济和循环型经济两大趋势。知识型经济要求加强经济过程中智力资源对物质资源的替代,实现经济活动的知识化转向;循环型经济要求以环境友好的方式利用自然资源和环境容量,实现经济活动的生态化转向。这就给我国技术转型提供了一个良好的外部环境,相信在不久的未来,中国钢铁冶金业的发展必将会实现知识型经济和循环 型经济的转变。

下载钢铁冶金方面知识word格式文档
下载钢铁冶金方面知识.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    钢铁冶金概论论文格式(★)

    论文名称(黑体,小二字体,居中) ××专业×班 姓名×× 学号××(居中,小四宋体) 摘要(小四宋体加黑):概括论文的主要内容(100字左右) 关键词(小四宋体加黑):高炉;设备;操作;维修;工艺(用以表示全......

    钢铁冶金论文(DOC)

    炼钢中脱磷的研究 1. 前言 一般情况下, 磷是钢材中的有害成分,使钢具有冷脆性。磷能溶于a-Fe中(可达1. 2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使......

    钢铁冶金联合企业的生产

    钢铁冶金联合企业的生产摘要 随着国家的发展,工业也跟着发展特别是在这个快速发展的社会钢铁工业占着重要的地位,中国冶金工业科技水平正在走强,“大而弱”的声音已经降调。中......

    钢铁冶金企业信息化建设分析

    钢铁冶金企业信息化建设分析摘要:2001年,共有7家大型钢铁厂的信息化工程被列入了经贸委国家重点技术改造项目,共获得银行贷款17亿多元,总投资超过27亿元。可以说,企业的信息化已......

    钢铁冶金联合企业的生产

    钢铁冶金联合企业的生产摘要随着国家的发展,工业也跟着发展特别是在这个快速发展的社会钢铁工业占着重要的地位,中国冶金工业科技水平正在走强,“大而弱”的声音已经降调。中国......

    钢铁冶金与成型论文(钢铁冶金与成型认识)

    钢铁冶金与成型的认识人类社会与冶金的关系密切且历史久远,伴随着社会的发展,每个历史时期的人们从事生产活动和生活中都离不开金属材料,从远古时代,就开始利用自然状态下存在的......

    钢铁冶金联合企业主要生产环节

    1钢铁冶金联合企业主要生产环节 1.1 铁矿石的开采 1.1.1 铁矿石的开采 铁矿石的开采方式主要有露天开采、地下开采和液体开采。 1.1.2铁矿石的富选 铁矿石的富选过程包括破......

    关于钢铁冶金成型的认识

    关于钢铁冶金及成型的认识109124232文法学院行政管理102班 孙漫丽我国是钢铁冶金起源最早的国家之一,自春秋战国时代就有钢铁冶炼,开始利用自然状态下存在的丰富的铁矿石,有色......