第一篇:初中数学教学教案
如何提高学生的审美素养 发布时间:2011-2-22 审美能力,是人对美的欣赏、品味、创造的能力。审美素养是人的审美能力的重要体现,是一个人综合素质的集中体现。人的素质的提高是社会进步的象征,而人的素质的提高其中一个标志就是人格的提升,尤其指人的道德修养与审美素养的提升。学校是审美教育的重要场所,它在提高学生的审美素养方面有着至关重要的作用。
一、培养审美情感,提高审美敏感度
审美情感是主体对客观对象的反映,是对象是否符合主体需要的一种心理反应,是主体与客观对象间的共鸣。审美情感是审美活动的基础,如果没有审美情感,就不可能进行真正的审美欣赏和审美创造活动。人的美感能力是在劳动实践中形成和发展起来的。审美情感非凭空而来,同样根源于社会实践与现实生活。既与先天性的因素有关,如正常的感官是审美发生的先决条件;又与后天的培养有密切关系,但主要是后天的培养。马克思曾谈到“忧心忡忡的穷人甚至对最美丽的景色都没有感觉;贩卖矿物的商人只看到矿物的商业价值,而看不到矿物的美和特性”。为什么忧心忡忡的穷人对最美丽的景色都不感兴趣呢?因为他们处于饥寒交迫中,最急切的要求是解决温饱,维持生存,哪有心情去欣赏美景呢?商人追求的是利益,他们在矿物上看到的只是矿物所能带来的丰厚利润,也不会注意到矿物的美和特性。这样的心境都抑制了审美情感的产生。
没有审美情感的人,就不会判断真、善、美。没有审美情感,是无法进入欣赏的境界的。就后天情感而论,审美情感的发生机制主要通过两个途径:一是日常生活情感的升华;一是审美主体的审美经验与情感的积淀与展开。其中前者是审美情感的基础层面,而后者才是审美情感产生的核心机制。学校中的审美教育更多的是围绕后者展开的。但目前美育中存在这样一个倾向,学生不是以自己的视角去发现美,而是接受与认同某种“权威”的解释,在对美的对象的欣赏中不可能产生真正意义的情感共鸣。审美情感是一种不同于他人的独特的生命体验。在教学实践中,只有让学生真正参与到教育教学活动中,使他们不但拥有自己的感受,还能充分表达出自己的感受,鼓励学生与学生间、学生与教师间进行平等的对话与交流,使学生的潜能真正表现出来,从而进行审美情感的培养,以一种无功利、超脱世俗的心态进入对审美对象的欣赏,我们才能够进一步发现美、欣赏美、创造美,具有审美的敏感度。
二、树立健康的审美观,指导审美活动的实践
审美活动作为一种认识活动,以感性认识为基础,同时又包含着理性的内容,是在社会实践中产生,又随着实践的发展而发展。人们在长期的审美实践中形成具有一定程度稳定性的审美观,它决定了人们对对象的审视。同样是对梅花的歌咏,南宋诗人陆游与伟大领袖毛泽东由于审美观的巨大差异,形成不同的审美趣味。毛泽东同志的审美观由于强烈的革命性与进步性,符合历史的发展趋势,他的《卜算子·咏梅》充满高度的革命浪漫主义情怀,颇具伟人气度;而陆游的《卜算子·咏梅》却没有这种气魄与胸怀,读来深觉悲凉与压抑。
社会主义精神文明建设的重要方面,就是社会主义一代新人的心灵的建设。健康的审美思想、审美观念,能够培养健康的审美趣味,提高辨别美丑的能力,有助于我们对各种美的形态——社会美、自然美、艺术美、形式美等的欣赏和创造,促进身心健康,全面发展。首先是刻苦学习马克思主义,特别是学好马克思主义的哲学。不仅要对马克思经典作家提出的原则性的美学观点,如“劳动创造了美”、“美的规律”、“自然的人化”、“社会生活是艺术创作的唯一源泉”等,有透彻的理解,更重要的是认识到马克思主义哲学在方法论上的指导意义,树立正确的世界观。其次,学习相关的美学知识与理论。美学是研究在社会实践基础上历史的变化着的美、美感和艺术的科学。美学中的一些范畴和规律,是随着社会生活和审美活动的发展而发展的。通过美学知识的学习,可以丰富我们的思想,充实我们的观点,促进马克思主义美学的发展,促进健康审美观的建立。再次,要热爱生活,拥抱生活。热爱生活,就是对生命的热爱,对美的追求,自觉地用“美的规律”来塑造自己的生活。热爱生活,就会有积极的生活态度,高尚的生活情趣,崇高的生活理想,良好的生活习惯,这必然会有助于健康审美观的形成。
三、提高审美能力,张扬审美个性
审美情感决定着能否顺利开展审美活动,审美观决定了对审美对象的选择,审美能力影响着对审美对象的理解与感受程度。审美能力,简单而言,就是审美评价与判断能力,是对自然、社会、艺术中的事物、现象进行分析时所需要的一种综合素质与能力,它包括审美欣赏能力、审美判断能力、审美创造能力。面对同一审美对象,不同的人获得的美感是不同的。上文谈到,要通过日常生活情感的升华和审美经验与情感的积淀与展开培养审美情感,但自然、社会、生活中美的形态是丰富多样、千姿百态的,有的人善于发现,有的人却不善于把握。毛泽东同志曾经说过“真的、善的、美的东西总是在同假的、恶的、丑的东西相比较而存在,相斗争而发展”。西方文艺复兴时期的达·芬奇也讲过“美和丑因互相对照而显著”。这说明美与丑往往混杂在一起,不容易区分。对于广大学生来说,他们正处在人生观、世界观的发展形成阶段,没有足够的审美经验,再加上当下世俗化、平面化的社会文化风尚的影响,容易在审美判断中出现一些偏差。怎样提高审美能力?最重要的就是在健康审美观的指导下,在审美实践中锻炼提高。美是由人类所创造,同时也是由人类所欣赏。当你在欣赏美的实践中,你就创造了新的意象,获得了美感。这种美感应用于新的欣赏实践活动中时,对美的理解和感受就会得到深化,这样,审美能力就会得到提高。这需要教师利用有限的课堂教学和形式多样的课外活动,引导学生在美的海洋中陶冶性情,形成一定深度的审美观念与方法,提高审美水平及对美丑的判断力。其次,还要具有丰富的文化艺术修养,这有助于我们对美的欣赏和创造。如对泰山的欣赏,不同的人会有不同的感受。但如果我们对泰山的文化知识背景有足够的了解,就会获得更深层次的审美感受。即便是具有同样的文化知识背景的人,在对泰山的观照中也会获得不同的情趣。这就是审美创造性的充分体现,也是审美个性的充分体现。欣赏者通过审美创造、发现、彰显了美。在这种意义上,对美的欣赏也是一种创造,在对美的欣赏中也提高了主体的审美创造能力。
美是生活的最高法则。俗话说“爱美之心,人皆有之”。通过审美修养的提高,使学生能发现生活中的美,欣赏身边的美,自觉分辨现实生活中的美丑,主动追求美、创造美,用审美的态度观照人类的生命活动,用审美的眼光对待生活,面对人生。从更高的层面来讲,美育不仅仅是学校的责任,全社会的每一个公民都应该自觉地创造美、维护美,确立美的意识,为人类对美的追求创造一个良好的社会文化氛围。
二、生活美的发现和欣赏
首先,审美素养包括认识美、评价美、感觉美、鉴赏美、享受美、表达美、创造美等意识和能力。这些都可以在孩子的日常生活中加以培养。家长在日常生活中培养孩子审美素养时,一般可以分以下五个阶段:
1、输入各种美的信息
(1)营造审美的家庭环境。家庭环境是陶冶孩子审美情趣,产生潜移默化影响的独特空间。不仅家里设计审美化,还要有家庭人际关系的审美化,因此家
里力求净化、绿化、美化,家庭成员和谐化。
(2)借助审美的媒介。利用现代化的媒介,如电脑、电视,组成声音、图
像、文字的综合体,更直观,让孩子身临其境,调动多种感官感知。还可以运用电影、音乐、绘画等拓展想象空间,引发审美心理。
2、进入审美状态
(1)让孩子在美术和文学作品去发现美
人的审美能力是在审美活动的实践中提高,而美术欣赏是最重要的审美活动之一。这种有组织、有指导的活动方式使审美体验进入自然规律状态,通过对美术名作的赏析,掌握欣赏的方法、要领及规律,从而提高对艺术的欣赏能力,对美丑的分辨力,增强对美术美的感受力、理解力。
一个六年级孩子如果只读语数外,没有在文学艺术中陶冶情感和开拓眼界,不仅知识面显得狭窄,而且也扼制了多种兴趣的发展,情感变得非常单一,就像一株折去枝叶的树干,不可能健康生长。他对生活缺少热情,性格也容易变得迂腐、怪癖。
家长要引导孩子发现美、感受美、了解美,认识美在生活中无处不在,在审美实践活动中,陶冶自己的情操,提高审美素养。这样,才能避免惧美,乏美等现象的产生。
(2)培养孩子的审美情感,提高孩子的审美敏感度
审美情感是一种不同于他人的独特的生命体验。在家庭教育中,只有让孩子真正参与到审美活动中,使他们不但拥有自己的感受,还能充分表达出自己的感受。鼓励孩子与家长间进行平等的对话与交流,使学生的潜能真正表现出来,从而进行审美情感的培养。以一种无功利、超脱世俗的心态进入对审美对象的欣赏,孩子们才能够进一步发现美、欣赏美、创造美,具有审美的敏感度。
3、升华为审美意识,经常以审美的角度去看、去听、去想
古时候的蔡文姬从小听父亲弹琴,有时琴弦突然断了,能听出断的是哪根弦。画家经过训练的眼睛能辨别同一颜色的细微差别。孩子要感知外界事物,必须使自己的各种感觉分析器官有敏锐的感受能力。在儿童时期,就需要通过文学艺术的审美教育进行训练,以开发孩子对音乐、色彩和语言的感受能力。
人们在欣赏艺术作品时,总会引起艺术联想,并通过想象去体会艺术作品的意境,理解艺术作品塑造的形象和表达的内容。因此,一个艺术作品,往往因欣赏者的不同而引起不同的想象与思维。想象力的培养是艺术创作和欣赏的最杰出的本领。
第二篇:初中数学建模教学教案
课题 二元一次方程
随着数学教育界中数学建模理念地不断深化,提高数学建模教学势在必行。通过数学建模能力的培养,既能使学生可以从熟悉的情境中引入数学问题,拉近数学与生活、生产的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识;既能使学生掌握学习数学的方法又能培养学生的创新意识以及分析和解决实际问题的能力,使“人人学有价值的数学”。这正是新课程改革和数学教育的目的。
一、教学目标
1.理解二元一次方程及二元一次方程的解的概念;2学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中渗透类比的思想方法并渗透数模教学.二、教学重点、难点 重点二元一次方程的意义及二元一次方程的解的概念.难点把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式其实质是解一个含有字母系数的方程.三、教学方法与教学手段 通过与一元一次方程的比较加强学生的类比的思想方法;通过“合作学习”使学生认识数学是根据实际的需要而产生发展的观点.四、教学过程
1、方程(组)模型
方程(组)是研究现实世界数量关系最基本的数学模型,求解此类问题的关键是:针对给出的实际问题,设定合适的未知数,找出相等关系,但要注意验证结果是否符合实际问题的意义。
1.情景导入 新闻链接桐乡70岁以上老人可领取生活补助, 得到方程80a+150b=902 880.2.新课教学 引导学生观察方程80a+150b=902 880与一元一次方程有异同 得出二元一次方程的概念含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.做一做
1根据题意列出方程: ①小明去看望奶奶买了5 kg苹果和3 kg梨共花去23元分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ②在高速公路上一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米如果设轿车的速度是a千米/小时卡车的速度是b千米/小时可得方程.2合作学习,活动背景:爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.问题参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后能使方程两边相等.得出二元一次方程的解的概念使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.并提出注意二元一次方程解的书写方法.试一试
检验下列各组数是不是方程2x=y+1的解: ①4,3,xy ②2.5,4,xy ③6,13.xy ②③是方程的解每个学生再找出方程的一个解引导学生得到结论一般情况下二元一次方程有无数个解.3.合作学习 给定方程x+2y=8,男同学给出yx取绝对值小于10的整数的值女同学马上给出对应的x的值 接下来男女同学互换.比一比哪位同学反应快请算的最快最准确的同学讲他的计算方法.提问给出x的值计算y的值时y的系数为多少时计算y最为简便 出示例题已知二元一次方程 x+2y=8.
1用关于y的代数式表示x; 2用关于x的代数式表示y;
3求当x= 2,0,-3时,对应的y的值并写出方程x+2y=8的三个解.当用含x的一次式来表示y后再请同学做游戏让同学体会一下计算的速度是否要快
4.课堂练习
(1)已知:5xm-2yn=4是二元一次方程,则m+n=(2)二元一次方程2x-y=3中方程可变形为y= 当x=2时y=;
(3)已知 2,1xy是关于x,y的方程2x+ay=5的一个解则a=.5.你能解决吗 小红到邮局给远在农村的爷爷寄挂号信需要邮资3元8角.小红有票额为6角和8角的邮票若干张问各需要多少张这两种面额的邮票说说你的方案.例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理?
[简析]:设与墙面垂直的边长为x米,可得方程x(25-2x)=50。解方程可得答案。
数学建模教学的方式
数学建模应结合平常的教学内容切入,把培养学生的应用意识落实到教学过程中,使学生真正掌握数学建模的方法,培养学生的数学建模能力。
1、以课本知识为基础,培养数学建模能力
2、以课堂教学为平台,培养数学建模能力
在课堂教学中想培养数学建模能力不是简单把实际问题引入,而应根据所学数学知识与实际问题的联系,在教学中适时地进行培养。
6.课堂小结
(1)二元一次方程的意义及二元一次方程的解的概念注意书写格式;(2)二元一次方程解的不定性和相关性;(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.7.布置作业
第三篇:初中数学第三册教案-教学教案
一、教学目标:
(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。2.学生理解、巩固一元一次不等式的解法.3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。4.学生将文字表达转化为数学语言,从而解决实际问题。5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的解法。2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经
历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使 学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系 起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法
解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
第四篇:初中数学教学
初中数学教学反思
《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。
一、激发自主学习的动机动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。
二、创设自主学习的条件苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本
本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。
三、重视自主学习的过程教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。例如,教学中组织学生小组合作完成练习题,汇报时,引导学生说出自己的思维方法及解题过程,激发了学生的表现欲,使问题清晰化、明朗化。总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。
第五篇:初中数学公开课教案:
初中数学公开课教案:
1.1 正数和负数(2)
授课人: 时间:2008.9.9 地点:多媒体教室
1.1 正数和负数(2)
教学目标:
知识与能力
能把给出的有理数按要求分类,了解0在有理数的分类中的作用。
过程与方法
培养学生对数进行分类讨论的意识和正确进行分类的能力。
情感、态度与价值观
通过正、负数的学习,渗透对立统一的辨证思想。
教学重点
有理数的分类。
教学难点:
对分数的理解。
教学过程:
一、知识回顾与深化
问题1:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?分别是什么?
把下列各数填入相应的大括号内。
2221+1,-3.8,-6.2,-4,0,-6,12,3.14 732正数集合:{ „ } 负数集合:{ „ } 2.若下降5m记作-5m,那么上升8m记作,不升不降记作。学生回答后追问学生0是正数还是负数?使学生进一步理解正数、负数的概念及0的特殊意义。
二、分析问题、解决问题
师:在小学大家学过1,2,3,4„„这是什么数呢? 生:自然数。
师:在这些自然数前面加上负号,如-1,-2,-3,-4„„这些是什么数呢?
生:负数。
师:具体叫什么负数呢?
师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。1.分类数的名称
1,2,3,4„„叫做正整数; -1,-2,-3,-4„„叫做负整数。0叫做零。
811252,3,5.2(即5)„„叫做正分数; 61133)„„叫做负分数; 2,7,3.5(即4正整数、负整数和零统称为整数。正分数和负分数统称为分数。整数和分数统称有理数。即
整数
有理数
分数
2.我们知道正数和负数可以表示相反意义的量,你认为有理数还可以怎样分类?请与同伴交流。
正整数 0
负整数 正分数 负分数
三、巩固练习:
(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?
四、阅读思考:
13下列有理数-7,10.1,-,89,0,-0.67,1中,哪些是整数,哪些是分数,65哪些是负数?
学生思考,然后找学生回答,其他同学补充或纠正。
五、小结与作业:
1、课堂小结:今天我们学习了哪些内容,你有哪些收获?有哪些地方不太明白吗?和同学交流一下。
2、本课作业(1)、必做题:教科书第7页习题1.1第3,6,7,8题
(2)、选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和有理数的两种不同的分类。2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后。除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.