第一篇:小学平均数的教学
浅谈《平均数》的教学
沙河明德小学段小琴
平均数是一个重要刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算数平均数,也就是一组数据的和除以这组数据的个数所得的商。我们既可以用它来反映一组数据的一般情况(总体水平),也可以用它进行不同组数据的比较,从而看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以生活中经常用到,如平均身高、平均成绩、平均价格、平均速度等等。
平均数是在第一学段已经理解了平均分及除法运算含义基础上教学的。平均数的概念与过去学过的平均分的意义完全不同,平均数是为了代表这组数据的总体水平而创造出来的一个“虚拟”的数。如把6颗糖平均分给3个小朋友,平均每人分得2颗。这里的“2颗”是每个小朋友实际分得的数;如果说3个小朋友一共有6颗糖,平均每人分得2颗,这里的“2颗”就是平均数,因为不一定每个孩子都有2颗糖。
平均数的教学方法:
1、导入环节
一节优秀的课首先要做好课前的导入工作,古人云“良好的开端是成功的一半”,好的导入可以把学生的注意力高度集中,预热环节处理好可以达到意想不到的效果。可以把严谨呆板的数学变得生动起来,激发学生的求知欲,在教学《平均数》这堂课时,我们通常可以抛出和平均数相关的数学问题引发学生的思考。从而引入这堂课的主要内容。例如,我在这堂中是这样引入的的,一次体育课上进行拔河比赛,第一组分了6人,第二组分了4人,第三组分了2人。最后第一组赢了,对于这次的比赛结果,你觉得公平吗?引起孩子们的思考,在他们看来每组4人才能体现比赛的公平性。其实这里的4就是6、4、2这三个数的平均数。揭示课题《平均数》对于平均数你都想了解些什么?再次引入孩子们的思考。
2、讲解重点
本课紧紧围绕生活实例展开,例1展现的是四个小朋友收集空水瓶的情况,呼吁大家爱护环境,增强环保意识。在这里引导孩子们合作交流,根据生活中的已有经验自主探究求平均数,归纳找平均数的方法。像“移多补少”“先合后分”都是生活中常见的解决问题中求平均数的方法。
强调:这里的13是他们真实收集的水瓶个数吗?
不是,13是这组数据的平均数,不是每个学生收集水瓶的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到的数。可能有的同学收集到的比这个数量多,有的比这个数量少。平均数是为了代表这组数据的总体水平。它是一个“虚拟”的数字
平均数和这组数据中的数字有什么关系?(平均数比这组数据中最大的数要小,比最小的数字要大。)
对于例2踢键比赛,我是在学生对平均数了解得基础上,以判断题的形式引出的。使学生认识到:在人数不等的情况下,用平均数表示各队的成绩更合适,进一步体会平均数的意义。使学生逐步体会到:平均数是刻画一组数据的集中趋势的统计量,是统计中应用最常用的一个指标,它既可以描述一组数据本身的总体情况,也可以作为不同组数据比较的一个指标。教学时注意体现这点,进一步体会平均数的意义。
3、练习监督
一套完整的教学方案走下来,整堂课要体现以“学生为主体,教师为主导,练习为主线”的教学理念。可见练习也是课堂的重要环节,任何知识的学习都离不开巩固二字,在课堂上学习的知识需要给学生充分的时间吸收。在这里除了基础知识的练习巩固,还有一些拓展知识,充分发挥学会生的主观能动性。同时也锻炼了学生的逆向思维。
无论在什么时候,面对怎样的教学内容,只要你潜心钻研教材,熟读课程标准,用好教师用书。找到合适的教学方法,充分发挥学生的主观能动性,教师的主导作用,一定可以很好的实现教学目标,实现高效课堂。
第二篇:小学数学《平均数》教学设计
小学数学《平均数》教学设计
教学内容:P92-94 教材简析:
这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题,其中包括平均数的意义和算法。
教材选择一个小组男、女生进行套圈比赛的情景作为教学素材,分两个层次安排教学内容。第一层次先放手让学生从多种角度用数据描述各组套中的情况,在尝试中促使学生产生求平均数的心理需求。第二层次则倡导让学生自主探索平均数的意义和计算方法,然后安排交流。在第二层次里有两个重点:一是通过条形统计图中涂色方块的移多补少,直观地揭示平均数的意义。二是揭示“先求和再平均分”的求平均数的一般方法。
“想想做做”中既安排了巩固求平均数计算方法的练习,也安排了加深对平均数意义的理解的练习。教学目标:
1、使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。教学重点:
理解平均数的意义,学会求简单数据的平均数。教学准备:光盘 教学过程:
一、创设情境,提出问题。
1、谈话:同学们,你们玩过套圈的游戏吗?(boys and qirls, have you ever play games like this ,look…)
2、谈话:看,三年级第一小组的同学进行了男、女生套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。(光盘出示)
3、从图中你知道了些什么?(what do you know in the picture?)和同桌说一说,指名回答,相机板书:(tell your partner)who want to say? Tell us please.男生:6+9+7+6=28(个)女生:10+4+7+5+4=30(个)
4、提问:男生套得准一些还是女生套得准一些?
男生套中28个,女生套中30个。是不是女生套得准一些呢? 女生中有人最多套中10个。是不是女生套得准一些呢? Are you agree? Is it fair?
指名回答,追问:那怎样比才公平呢?
二、自主探索,解决问题。
1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢? 小组讨论,指名回答。
(please share your method with your partner,ok?)(要分别求出男生、女生平均每人套中多少?)
2、提问:男生平均每人套中多少个?
小组再讨论,(first, you can discuss in your group;then you can share your method with your partner.)交流: please tell us your method.(1)移多补少法。提问:怎么移?移动以后的每人7个表示什么意思?谁能给这个方法起个名字?
(2)先求和,再求平均数法。(板书:28/4=7(个))你是怎么想的,为什么除以4?
3、男生平均每人套中7个,是不是每人都套中7个?
4、提问:观察平均数“7”和每个男生套中的个数,你发现了什么?(平均数比每人套中的个数中最大的数小,比最小的数大。)
5、那你能根据这个规律来猜猜看女生平均每人套中多少个? 指名回答。Can you guess?
谁猜得最准确呢?你是怎么知道的?把你的方法和你的同桌说一说。Who is right? How do you know? 板书:30/5=6
追问:为什么除以5?
6、提问:现在你知道男生套得准,还是女生套得准一些了吗?
7、小结:刚才我们学会了用移多补少法和先求和、再求平均数的方法计算平均数,准确地知道了男生套得准一些还是女生套得准一些。当解决问题的方法有多种时,我们要针对不同的实际情况选择最恰当的方法。
三、练习巩固,学以致用
1、做“想想做做”第1题。
出示三筒铅笔。谈话:你能知道平均每个笔筒里有几枝铅笔吗? 先分别数数。
提问:怎样求平均每个笔筒里有多少枝? 同桌讨论,指名回答。
谈话:这两种方法都能得出平均数,你喜欢用哪一种,就用哪一种。
2、做“想想做做”第2题。
指名板演,其余学生做在练习本上。
集体校对讨论:平均数“18”和每根丝带的长度有什么关系?
3、做“想想做做”第3题。光盘出示题目。
在小组内讨论。指名回答,要求说出理由。
4、做“想想做做”第4题。
(1)仔细观察统计图,互相说说你知道些什么。(2)指名回答问题(1)。
(3)把第(2)个问题解答在练习本上。(4)提问:你还能提出什么问题?
四、全课总结
1、这节课学习了什么知识? 板书:平均数
你对平均数有什么看法?
你能用今天学的知识解决生活中的问题吗?
2、(手指一组同学)提问:要想知道这一组同学的平均身高怎么办? 指名回答。
请同学们课后去量一量自己的身高,在小组里交流并求出你们小组成员的平均身高。
第三篇:小学数学教学案例:平均数
平
均
数
教学内容:人教版小学数学第6册42页——45页。教学目的:
1、使学生认识平均数,理解平均数的意义,学会求简单的平均数;
2、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的密切联系。教学重点:理解平均数的意义和求平均数的方法 教学难点:理解平均数的意义
教学准备:把学生分成人数不等的六个组(每4人一组的3个,每5人一组的3个),组内编号 教学过程:
一、创设情境,激发兴趣
师:同学们,今天大家的课桌上既有筷子又有碗,但张老师并不是请同学们来这里吃饭的,我想请同学们一起做个——筷子夹玻璃球的小游戏。(学生笑容满面、兴趣高涨,个个跃跃欲试。)师:大家先别急。游戏之前,请听清楚游戏规则:
1、必须用筷子把玻璃球从篮子里边夹到小碗里,不准用手拿;
2、掉到小碗外边的玻璃球不能算数;
3、游戏时间:30秒。老师宣布“时间到”后,请同学们立刻把筷子放进篮子里。
(教师宣布游戏开始,同学们十分投入地夹玻璃球。教师宣布“时间到”后,同学们停止夹球,迅速坐好。)
师:请各小组长把你们小组每位同学的夹球个数记在统计表上。
(各小组成员向组长汇报自己的夹球个数,组长做好记录。教师巡回指导,搜集、选择教学信息。)
[利用筷子夹玻璃球的游戏导入,不但激发了学生浓厚的学习兴趣,而且为新知的教学提供了丰富的素材,可谓是“一石二鸟”,为整节课创设了和谐的学习气氛。]
二、解决问题,探索新知
1、在解决问题中感知概念
师:这是第 3 小组夹球个数的统计表: 学生编号 1 2 3 4 夹球个数 11 6 6 14
根据表中的数据,你能向同学们提出哪些问题? 生1:第3小组一共有几位同学? 生2:4位。
生3:几号同学夹的最多?夹了几个? 生4:4号同学夹的最多,夹了14 个。生5:几号同学夹的最少?夹了几个? 生6:2号、3号同学夹的最少,都夹了6 个。生7:夹的最多的同学比夹的最少的多几个? 生8:多8个。
生9:这个小组的四位同学一共夹球多少个? 生10:这个小组一共夹球37 个。师:你是怎样算出来的? 生10:11+6+6+14。
(教师根据学生的回答板书出求总个数的算式。并把总个数记在统计表上的“合计”一栏。)师:知道了第3小组4位同学的夹球总数,你现在又能解决什么问题? 生:可以求出平均每位同学的夹球个数。师:说得好!怎么求呢?
生:用总个数除以人数,算式是37÷4=9……1。师:这说明第3小组平均每人夹球的个数是9个多。(教师板书出综合算式:(11+6+6+14)÷4。)师:(指综合算式)我把算式写成这样可以吗?为什么?
生:可以。因为括号里边求出来的还是总个数,意思没有变,道理是一样的。
[让学生根据信息提出问题、解决问题,有助于培养学生主动探究问题的好习惯,自然渗透了“数学知识能解决实际问题”的应用思想。在学生的发问、回答中把知识引向深入,过渡巧妙,衔接紧凑。]
2、在讨论交流中明晰概念
(教师把“平均每人夹球个数”记在统计表上。)
师:请同学们观察表中的数据,这个组的平均夹球个数9个多是他们组中中哪位同学的夹球个数?
生:哪一位都不是。师:那平均夹球个数与小组中每位同学的夹球个数之间还有关系吗? 生:(齐答)有。
师:请同学们小组讨论它们之间都有哪些关系?
(学生讨论,教师巡视指导。小组讨论完毕,开始全班汇报交流。)生1:平均夹球个数比夹的最多的少,比夹的最少的多。生2:平均夹球个数在夹的最多的和最少的之间。生3:平均夹球个数差不多在这四个数的中间那个位置。
师:从同学们的发言中我发现,平均夹球个数反映的既不是这个小组内水平最高的那位同学的夹球个数,也不是这个小组内水平最低的那位同学的夹球个数,而是处在最高和最低之间的一个平均水平。我们把它叫做这四位同学夹球个数的——平均数。(教师板书课题:平均数。)
师:请同学们仿照咱们刚才做的,把你们小组的统计表填写完整。(教师巡回指导,选择、搜集教学信息。)
[“平均数”与“平均分得到的结果”不是一个概念。“平均分得到的结果”是一个实实在在的数量,“平均数”则是表示事物发展中间状态的一个抽象数量。让学生通过观察、比较的方法,而不是实际分一分,更容易使学生体验到平均数的真正意义。]
3、在比较中深化概念
师:如果让你比较两个小组的夹球水平,你最想知道什么? 生1:我最想知道哪个小组的夹球水平更高些。生2:我也想知道哪个小组的夹球水平更高些!
师:(教师同时展示3小组和第1小组夹球水平的统计表)第3小组
学生编号 合计 1 2 3 4平均夹球个数 夹球个数 37 11 6 6 14 9……1 第1小组
学生编号 合计 1 2 3 4平均夹球个数 夹球个数 32 10 4 8 10 8 你认为哪个小组的夹球水平更高些?为什么?
生:第3小组的夹球水平更高些,因为他们的夹球总数多。师:大家有意见吗?(学生点头同意。)师:(教师同时展示第3小组和第5小组夹球水平的统计表)第5小组
学生编号 合计 1 2 3 4 5平均夹球个数 夹球个数 21 5 1 2 5 8 5„„1
这两个小组中哪个小组的夹球水平更高些?为什么?
生:第3小组的夹球水平更高些,因为他们小组人少,夹球的总数却多。
师:我刚才发现,咱们班由4个人组成的小组特别厉害,夹的总数比5个人一组的都多。但不要紧,来这里上课之前,我在我们学校做过调查,这是第7小组夹球个数的统计表:(教师出示第7小组夹球水平的统计表)
学生编号 合计 1 2 3 4 5 6 7 8 9 10平均夹球个数 夹球个数 50 4 6 3 7 5 5 2 8 4 6 5 你认为哪个小组的夹球水平更高些? 生1:我认为第3小组水平更高些。生2:我也认为第3小组水平更高些。(学生意见十分统一。)师:我不这样想。明明是第7小组夹的多,第3小组夹的少,你怎么认为第3小组的水平更高呢?如果大家能说服老师,我就接受大家的意见。大家讨论讨论,看怎样才能说服老师。(学生小组讨论,教师巡视,与学生展开辩论。讨论完毕,全班交流。)师:谁来发表自己的意见?
生1:第7小组的人太多了。他们夹的总数多是因为人太多了。生2:第7小组人数这么多,比总数肯定是不公平的。
生3:第7小组有10人,总数确实多。但平均数不如第三小组。假如第三小组也是10个人,10个对10个,又会是哪个小组的夹球个数多呢?
生4:单个对单个更公平。第7小组靠着人多才总数多,第3小组因为人少所以总数少,如果第7小组只有4个人,肯定不如第三小组总数多。所以,小组人数不一样,比总数不行,比平均数更好。„„
„„
师:我听明白了。看来,在小组人数不同的情况下,比较两个小组的夹球水平再比总数不公平了,我们应该比他们的—— 生:(齐答)平均数。师:我向同学们提一个很难很难的问题:如果让你给咱们班6个小组的夹球水平排出第一名到第六名,比什么更合理? 生1:比合计。
(许多学生举手表示不同意。)
师:看来有不同意见。谁再说说自己的看法?
生2:应该比平均数更合理。因为我们六个小组的人数不一样多,比总数不公平。师:她考虑了咱们分组的实际情况,非常好!
[比较出真知。在有层次的比较中,学生逐步理解了平均数的实际价值,对平均数的理解更加深刻。由于课堂上没有呈现出预想的“比总数好”和“比平均数公平”这两种意见交锋的场面,而是出现了全体同意“比平均数更公平”的一边倒局面,教师能及时调整教学思路,把自己放在被说服的一方,从而把学生的思维引向深入,体现了教师较好的应变能力。]
三、尝试解题,自主归纳
师:(教师出示例题)这是课本42页上的一道题:
一个小组有4个同学,小红收集了14个矿泉水瓶;小兰收集了12个矿泉水瓶;小亮收集了11个矿泉水瓶;小明收集了15个矿泉水瓶。这个小组的平均每个人收集了多少个?
谁来先估计一下这个小组的平均每人收集了多少个? 生1:大约是13个。
生2:应该在12千克和15个之间。
师:每个同学独立列出算式,然后用计算器算出得数,看自己估计的准不准。(学生自己解答,教师巡视指导。选一个学生板书列式。)师:请板书的同学说说你是怎样想的?
生:我先求出了这个小组中4位同学收集的和,然后除以小组人数。师:大家还有什么问题不明白吗?(学生表示没有疑问。)
师:我们知道,在篮球比赛中,身高是非常重要的。欢乐队参加篮球赛,上场的5名队员的身高分别是:148厘米、142 厘米、139厘米、141厘米、140厘米。上场队员的平均身高是多少?大家先估计一下,然后独立解答。(学生独立解答,教师巡视。一生板书算式。)(学生说解题思路,其他同学质疑问难。)
师:刚才咱们求的平均夹球个数、平均体重、平均身高都是平均数。大家能不能总结一下求平均数的方法?个人先想想,然后小组内交流。(学生小组合作,交流看法,教师参与讨论。)师:哪个小组愿意讲讲你们的意见?
第6小组代表:先把每个数加起来,看有几个数就除以几。
第3小组代表:求平均数,应该先求总数量,然后看有几个人或几份就除以几。(教师简单小结求平均数的方法。)
(尝试解答的基础上,让学生自己把求平均数的方法总结出来,“放”的适度,“收”的适时。规律由学生自己发现归纳,看似不起眼,却体现了自主学习的真正内涵。)
四、联系实际,应用新知
师:这是赵老师家七、八、九三个月的用水情况统计表: 月 份 : 七月 八月 九月 用水量(吨): 8 7 9 你能帮老师口算出我家这三个月的平均用水量吗? 生:平均用水量是8吨。师:怎么算的?
生:8+7+9求出三个月的用水总吨数,再除以3。师:你能预测一下我家十月份的用水量吗? 生1:8吨。生2:8吨多一些。
师:你们是根据什么预测的?
生2:根据七、八、九这三个月的平均用水量。生3:10吨。
师:怎么会是10吨呢?
生3:如果你家10月份多洗些衣服,用水量就会增加很多。
师:(笑)看来我家要注意节约用水了。我搜集到了两条与平均数有关的信息,请同学们看看,说说你的想法。(教师出示第一条信息。)生1:他们是不是捐的少了点?
师:你的意思是为希望工程捐款应该多捐些,是吧?真好。平均每人捐了5元,是说每个同学都捐了5元钱吗?
生2:不是,每个人捐的不一定一样多。师:可能出现哪几种情况?
生3:可能有的比5元多,有的比5元少。生4:也可能有和5元一样多的。师:(教师出示第2条信息的前半句)你心情怎样?
生:我很高兴、很自豪。
师:(教师出示第2条信息的后半句)你现在怎么想?
生:我国的平均每人占有量太差劲了。
师:是什么原因造成了总数第一,平均数却居世界第80位的结果? 生:就是因为我国人口太多了。
师:衡量一个国家的综合实力,不仅要看它的总产量,更要看它的平均每人占有量。[练习题的设计能紧密联系学生的生活实际,使学生感觉亲切自然。既巩固了求平均数的算法,又进一步拓展了平均数的作用和意义。]
五、自主评价,完善认知 师:今天咱们学了什么? 生1: 今天学了平均数。
生2:我知道了平均数可以反映一个班或一个国家的整体水平。生3:我知道了在人数不一样的情况下,比平均数比比总数更公平。生4:我们还学会了怎样求平均数。师:怎样求?
生4:先求总数量,再看有几份就除以几。
师:大家觉得咱们班同学学得怎么样?请各小组迅速商量一下,给咱们班同学这节课的表现打个分。最高分10分。
(学生小组商量打分,然后逐个小组汇报,教师板书每个小组打的分数:9分、8分、8分、8分、9分、8 分。)
师:大家能求出咱们班同学这节课表现的平均分吗?感兴趣的同学下课后自己解答一下。
让学生自己给全班同学上课的整体表现打分再求平均分,可谓“妙棋一招”。既使学生加深了对平均数意义的理解,又巩固了求平均数的方法,还将知识巧妙延伸到了课外。看似不经意,实则有深意。] 总评:这节课整体设计颇有新意。
1、注重创设生动鲜活的学习情境,让学生玩中学,学中练,在活动中体验新知,在解决问题中提炼新知;
2、学生的主体作用得到较好发挥,重要的知识点均由学生自己发现归纳,教师能顺着学生的思路适时调控教学;
3、无论是情境的创设,还是例题、练习题的设计,所用素材都来源于学生的生活实际,突出了数学与生活的密切联系和它的应用价值,自始至终课堂上洋溢着浓郁的生活色彩。] 教后反思
与过去教学“求平均数”的思路相比较,这节课体现出了不同以往的特点。过去教学“求平均数”,侧重求平均数方法的多样和灵活,注重算法的优化,而忽视了平均数的实际意义。我在考虑这节课“教什么”的问题时,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。这也是我把课题板书成“平均数”的原因所在。按照新大纲,平均数不再归入应用题的范畴,而被列为统计知识的内容,这告诉我们一个信息:应该从统计的角度教学平均数。在考虑“怎么教”的问题时,我想到了平均数的比较功能,由此我把学生分成人数不等的六个小组,以筷子夹玻璃球这个游戏作为导入环节,为教学提供信息素材,为学生探究新知建立了操作平台。
当然,求平均数的方法并非一带而过。由于学生在对平均数意义的理解上花费了较以往更多的功夫,理解更加深刻,所以学生尝试解题、归纳方法不但费时少而且效果佳。至于“移多补少”、“汇总均分”、“假设调整”中的一些技巧,我个人以为可以放在稍后的练习课中加以培养。
上完课后,虽然教学效果还可以,但我总觉得课上的还不充分、不踏实,还有很大的提升空间。我体会到至少有以下四点值得改进:
1、筷子夹玻璃球的游戏虽然新颖有趣,但我忽视了从活动中进行提炼这一环节,教师一定要注意从解决问题中提升概念、提升方法、提升规律、提升数量关系,以使活动的作用得以充分发挥;
2、求平均用水量那道题,是渗透“移多补少”思想的好时机,我因为怕走老路而舍弃,这是个败笔。创新不是全盘否定过去,过去的好路子不但不应舍弃,而且应该进一步提倡;
3、“平均数”概念的引入似乎还是过早,时机不够成熟。能不能先组织两个小组进行夹球水平的比较,在学生体会到比总数与比平均数产生矛盾的时候再引入“平均数” 呢?这样设计可能学生对“平均数”的认识会更深刻;
4、学生主体性的发挥与教师的主导作用息息相关,我在把握探索时机、实施有效引导上还有很大差距,这也是我今后努力钻研的一个课题。
第四篇:《平均数》教学反思
《平均数》教学反思1
平均数是统计中的一个重要概念,在我们的日常生活中应用也很广泛。它反映的是一组数据的整体情况,代表一组数据的平均水平,其内涵要点有两个:一是代表一组数据的水平,二是虚拟性。通过对教材的分析,我确定本节课的教学目标主要是理解意义和掌握算法,而理解平均数的意义是本节课教学的重难点。教学时先通过对淘气5次记数字情况的分析,引导学生经历寻找代表数的过程,让学生体会平均数虽然没有出现但是“不多不少”,可以是这一组数据平均水平的代表,从而理解平均数的这两个内涵要点。然后教学平均数的算法,两种算法中“求和平均”是学生已经掌握的方法,所以一带而过,侧重点放在“移多补少”的操作中,让学生理解平均数是“平”出来的一个数字。再通过形式多样、层次不同的练习,巩固平均数的计算方法,加深对平均数意义的理解,同时感受平均数在生活中的广泛应用。
这节课虽然经过精心设计,但我在教育机智方面还有欠缺,只顾按照教学流程走,忽视课堂上预设之外的生成,没能加以很好的利用。另外时间安排不够合理,导致后面的练习环节有些仓促,没有达到很好的效果。在以后的教学中我会继续努力探索,力争让自己的课堂有更多的精彩呈现,让学生有更多的收获!
《平均数》教学反思2
教材分析:
本节课的教学内容是了解平均数的意义,体会学习习近平均数的必要性,学会求简单数据平均数的方法。这部分内容在小学阶段占有重要的地位,它为今后学生学习复杂的统计知识奠定了良好的基础。
学生分析:
三年级的学生已经有了一定的知识储备和生活经验,对未知世界已不是单纯的好奇,而是充满着猜想和探索。因此在本节课中,力争为学生提供积极参与、合作探究的学习环境。鼓励学生明确表达自己的想法和接受他人的思想,让观点交锋。让智慧碰撞,让学生从中体验学习数学的快乐与成功。
教学目标:
1.知识与技能目标:感悟平均数的意义,构建平均数的概念,探究求平均数的多种方法。
2.过程与方法目标:能对数据分析结果做出简单的推断和预测。
3.情感、态度与价值观目标:渗透移多补少等数学思想方法,能运用数学知识解决实际问题,并增强学生的数学应用意识。
教学重点:理解和掌握求平均数的方法。
教学难点:培养学生的动手操作能力。
教学策略:
1.教学方式:教师采用激趣创设组织引导的方式教学本节课。
2.学习方式:让学生在自主探索观察发现合作交流实践应用的学习过程中自主学习。
3.评价方式:本节课运用了多元化的评价手段,促进了学生主动学习的欲望,激发了学生学习的兴趣,使他们建立了自信心。
4.教学手段:本节课采用计算机辅助教学。计算机课件会极大激发学生的学习兴趣,加大课堂的信息容量,从而更好地为教学服务。
教学过程:
一、创设情境,激趣导入
师:首先我们一起来看大屏幕。(电脑出示姚明的照片。)同学们你们知道他是谁吗?(姚明。)你们对姚明有哪些了解,谁愿意说说?
生:姚明身高2.26米。
生:他在美国NBA打篮球。
师:你们知道得真多!姚明哥哥,自从加入美国NBA之后,凭着自己的不懈努力,现在已经成为世界篮球巨星。姚明哥哥技术全面。尤其是罚球百发百中。(课件出示。)
师:小朋友们,这又是谁?(蓝猫。)它带着好朋友也来到了我们的课堂。虽然它们个子矮,但特别不服气,一定要与姚明队比比谁的投篮技术好。同学们,你们愿意当裁判吗?(愿意。)那好你们来评判一下两个队哪个队投篮更准!
二、合作探究,建构模型
(一)创设情境
师:继续来看大屏幕,这是两个队在相同的时间内投篮的情况,姚明队只有4人,投中篮球的数量分别是:1号队员投中6个,2号队员投中4个,3号队员投中6个,4号队员投中8个。蓝猫队则派5个。前来应战。谁能介绍蓝猫队每名队员投篮的情况?
生:蓝猫队1号队员投中5个,2号队员投中6个,3号队员投中5个,4号队员投中4个,5号队员投中5个。
师:你们静静地思考一下,哪个队投篮更准呢?请说明理由。
生:我认为蓝猫队投中的总数多,投中25个,姚明队投中了24个,所以蓝猫队投篮准。
师:有多少同学和他的想法一样?
师:谁还有其他想法?
生:投中最多的队员在姚明队,他投中了8个,姚明队投篮更准。
师:还有其他想法吗?
生:应该看平均每个队员投中几个球。
师:谁和他想的一样,请举手。
师:通过你们的总结,要比较哪个队投篮准,有这样3种情况:第1种,比较投篮的总数。第2种,一个人投中的多,就代表整个队伍投得准。第3种,求平均每个队员投中多少个篮球。
师:有的同学认为,在人数不同的情况下,比较哪个队投篮准,比较总数就行,你认为合理吗?为什么?
生:不合理,人数不同,人数多的占便宜。
师:还有的同学认为,一名队员投得多,就认为该队投得准,你们有什么想法呢?
生:一个人的表现,不能代表整个队伍的情况。 师:这两种方案都不行,在人数不同的情况下,比较哪个队投篮投得准,谁知道怎样比较才合理呢?
生:求平均每个队员投中多少个篮球。
师:同意吗?
生:同意。
(二)探究平均数的方法及意义
1.探究平均每个队员投中个数的两种方法。
师:接下来,我们就研究怎样求平均每个队员投中多少个篮球。
师:课前老师给同学准备了学具,同学们可以借助学具小组合作,也可以用计算的方法,每个小组选择一种方法进行研究。
师:谁愿意汇报,汇报时先说出你们采用的方法,然后再讲怎样求的。
生:我用的是摆学具方法,把多的部分放到少的那里,这样就求出了姚明队平均每个队员投中6个,蓝猫队平均每个队员投中5个。
师:小组分工明确、操作熟练,通过把多的移给了少的,很快地求出了平均每名队员投中了多少个篮球,谁来给这种方法起个名字?(板书:移多补少。)
师:还有的同学用的是计算的方法,请这两名同学讲讲他们是怎样求的。
师:看来求平均每个队员投中多少个篮球,有两种方法:(1)是用操作的方法;(2)是用计算的方法。当然解决问题时,我们要针对不同的实际情况选择最恰当的方法。
2.揭示平均数。
师:哪个队投篮更准呢?(姚明队。)
师:姚明队的6个,蓝猫队的5个,这两个数分别表示什么?这两个数还有新的名字吗?(板书:平均数。)
师:原来姚明队、蓝猫队每名队员投中的不一样多,由于把多的补给了少的,这样每个队员投的一样多吗?(一样多。)这个6和5是每个人真正投中的数量吗?(不是,这是两个队投中的平均值。)
3.初步理解平均数的意义。
师:刚才我们用求平均数的方法解决了两个队谁投篮投得准的问题。生活中,很多地方用到了平均数,老师这准备了一些数据:
(1)小刚、小红、小华、小军4个人的平均年龄是10岁。
(2)哈尔滨师范附小三年一班男同学的平均身高是
您现在正在阅读的不服气的蓝猫—《求平均数》教学纪实与反思文章内容由收集!本站将为您提供更多的精品教学资源!不服气的蓝猫—《求平均数》教学纪实与反思138厘米。
(3)王明期中考试数学、语文、英语的平均成绩是98分。看到这条信息你们能知道什么?(最后屏幕打出实际成绩100分、98分、96分。)
师:看来平均数并不一定代表实际数量,平均数应在最大数和最小数之间。
师:想一想在生活中你遇到了哪些平均数,谁来说一说?(学生自由发言。)
师:你的资料在哪里找到的?
师:通过网络查找资料学习数学也是一种很好的方法,我们应该向他学习这种方法。
三、解释应用,内化升华
师:蓝猫队没有姚明队投篮准,但特别不服气,它们用刻苦训练来提高技术,你们看(课件出示。)
1.观察蓝猫队前4天投中篮球情况统计图,请你们计算出平均投中多少个?你们先猜测一下,平均数应该在哪两个数之间?大概是多少?谁来说?(出示课件。)
生:在最大数和最小数之间,应该是200。
师:你们猜测得对不对呢?我们把第一张答题卡拿出来,自己验证一下。
师:谁愿意拿着你的答题卡到前面来汇报?
师:谁愿意来评价一下这名同学的汇报?
师:你能发现同学的优点,这也是你的优点。
2.蓝猫队员骑自行车训练体能,观察统计表,求平均数。
师:蓝猫队不但天天练习投篮,而且天天加强体能训练。我们一起看大屏幕。(出示课件。)
师:同学们把第二张答题卡拿出来。独立完成。
师:谁愿意来汇报?
3.蓝猫队队长看到队员们刻苦训练,它为队员们每天买矿泉水,但是账单被小蓝猫不小心弄污了,你能帮它们算出第4天买了多少瓶水吗?(课件出示。)
师:根据前3天饮用矿泉水的数量,你估计第4天饮用了多少瓶水?
师:你们估计得对不对呢?把第三张答题卡拿出来,小组先讨论,然后解答验证。
师:根据这4天饮用矿泉水的数量,你能知道什么?
师:小蓝猫们认识到自己的差距,进行了刻苦的训练,在这里我们共同祝愿它们取得优异成绩,好吗?
四、实践应用,拓展延伸
师:同学们,你们能根据今天学习的知识来求小组同学的平均身高吗?那你们知道自己的身高是多少厘米吗?先把每个同学的身高填在统计表中,然后再求小组同学的平均身高是多少厘米?只列式不计算。(学生汇报。)
师:回家后把结果计算出来,计算有困难的可以利用计算器来帮忙。
师:同学们。今天我们通过小组之间自主研究、合作探索,学会了用移多补少法和计算法解决生活中有关平均数的问题。
反思:
求平均数一课的教学立足于学生的主体发展,关注学生对学习过程的经历和体验。综观全课,有以下几个特点:
1.提高课堂教学的实效性。
整节课以不服气的蓝猫这一主线贯穿全课的始终。首先,教师利用姚明队和蓝猫队哪个队的投篮更准一些?这个富有挑战性的问题为学生的认知冲突搭建辩论的平台。其次,在学生感受到了平均数产生价值的基础上,引领学生探究求平均数的方法,升华、感悟平均数的本质意义。最后,鼓励学生利用所学的数学知识解决实际问题,突出了平均数的统计意义以及应用价值。整节课的设计巧妙、自然地利用具体情境将数学知识融会贯通,既注意知识间的环环相扣、逐步深化,又注重根据学生的学习实际及时指导,提高了教与学的有效性。
2.突出学生的主体地位。
教学过程中教师为学生提供大量的讨论合作、自主探索、动手操作的时间和空间,引导学生亲身经历、体验、探索学习求平均数的过程,渗透了移多补少、估算、推测等基本的'数学思想和方法,提倡解决问题策略的多样化。每个学生都在愉悦、宽松的氛围中实现知识、技能的内化,促进理解力、探究力与解决问题能力的同步发展。
3.注重基本知识的落实。
本节课重视学生对平均数意义的理解与强化,当学生算出平均数之后,重视引导学生理解6和5表示的是什么?5是指蓝猫队每个队员都投中了5个球吗?在教师持续质疑之下,学生能够比较直观地感受、体验到这两个数并非指每个队员实际投篮的个数,而只是代表着一个队的平均水平。在后面教学中又增添了让学生估测蓝猫队前4天平均每天投中多少个篮球。学生在估测活动中感受到了平均数的取值范围。至此,可以说学生对平均数概念的理解达到了一个新的高度。
这节课的教学充分体现了新的数学理念,较好地落实了三维目标。但回顾整个教学实践,也存在一些不足与遗憾之处:
1.在学生合作交流的细节上还要落到实处。教学中在小组合作、同桌讨论之前缺少足够的独立思考的时间,学生在小组合作中参与的程度还不完全均衡。这就需要我们教师在教学中要对小组合作给予必要的组织和引导。面向全体,关注个别差异,注重组际之间的评价,把合作学习的每一个细节落到实处,这样才能实现学生间的协调互助、共同发展。
2.教师对课堂中的生成问题处理不够灵活。教学中,教师问道:怎样能知道姚明队和蓝猫队哪个队投篮投得更准一些?有个学生直接说出用求平均数的方法来比较,这时教师没有灵活地改变教学预设,而是继续追问:我们和他们比投篮的总数可以吗?在这种情况下,教师应考虑到学生的生活经验和认知水平后因势利导:你们知道用平均数的方法来解决,那么平均数怎样求呢?你们来试一试。这样既满足了学生的认知需求,又调动了学生的学习积极性。教学中我们应顺应学生的认知需求,生成学案,让我们的教学富有灵性
《平均数》教学反思3
加权平均数是教学的难点。难在对“权”的理解。从小时侯开始,学生心中的平均数的定义就是数相加再除以个数。而加权平均数的特点是并没出现所有的数据,相同的数据只是给了权数,这就引起学生的困惑,我是这样处理的:
一、巧引“权”字。从特例入手。举一个班级一次数学测试成绩,有些成绩多次出现,让学生求平均成绩。此时会出现方法的不同,教师继续引导,若两个班级人数相同,各个班级的平均成绩也有了,如何求两个班级的平均成绩?若两个班级人数不相同,怎样求?再举学生身边的几个例子。
这样,很自然引导学生从计算方法的不同上升为两种平均数的定义。
二、重析“权”字。从三个角度,(1)表示数据出现的次数;(学生已理解)(2)表示数据所占的比数;(3)表示数据所占的百分比。(可以由已举的例子各个数据的次数引导学生将它们改写成比、百分比的形式加以分析)
这样,将“权”的三个角度有机的结合起来,明确“权”的实质。
三、多练“权”字。在理解的基础上让学生掌握好加权平均数的公式。能够总结出算术平均数实际上是加权平均数的一种特殊情况,即各个数据的权数相同。
这部分知识作为初中数学的一个学习内容,专门介绍了加权平均数的概念以及计算公式,在具体教学时,我对它的感觉总是有些两难:觉得它既不是难点又是难点。
一是当一组数据中有不少数据多次重复出现时,计算加权平均数的公式是计算算术平均数的另一种表现形式,是一种比较简便的算法。可以类比小学数学中求几个相同加数的和可以用乘法代替,达到简便计算的目的,从而减小了运算量,也比较好理解。在讲解加权平均数中第一种类型时,可以类比学习,这里的“权数”是数据出现的次数,学生理解并不困难。所以可以说它并不难。例如,计算小组平均得分:6个95分,5个84分,3个100分,1个75分,该组平均成绩为多少?
二是教材中在让学生体会了上述加权平均数后,给出了加权平均数的计算公式,但这里的“权数”往往是用连比的形式或是所占百分比的形式体现了一组数据的重要程度,并且用一道例题改变其中的权数,讨论哪个人会被录用的问题,通过此例反映了权数的差异对结果(平均数)的影响,显然权重不同,最终导致了结果的不同。由此发现,对“权数”的理解是否到位,制约了计算公式的运用。课堂上学生能仿照例题的模式去解决类似问题,但并不能从本质上理解这样做的道理,而且,只要稍加变化学生就会出错。所以,它又是教学中的难点。
教学中我发现在学生运用加权平均数的公式解题时,导致出错的原因就是直接弄错了哪些数字是“数据”,哪些数字是数据的“权”,因而错用了公式。这是学生的难点,也是课堂教学中要重点突破的地方。首先要弄清学生对“权”重的理解不到位的原因是什么:由于学生的理解能力和学习基础有差异,对本知识点的理解能力高低不同;大部分学生认为该内容看起来简单易学,兴趣不大。小学学生已经学习过(不加权)平均数的计算,学生受思维定势的影响,习惯于用所有数据之和除以数据总个数来求得平均数这一计算方法。在学习加权平均数时,易局限于以前的思路。
针对学情,在教学中首先要把握好教材的广度和深度,创设丰富的问题情境,联系实际,调动学生的学习积极性,发挥他们的主观能动性,选择典型练习,训练要充分。加深学生对问题中的“权”重的理解,分清“数据”和“权”,从而减少错误的出现。想要学生准确的理解加权平均数中的“权”,教师应注意引导学生巧妙地利用学习中的思维定势,对比小学所学的(不加权的)算术平均数和现在的加权平均数的区别及联系,其实不加权的平均数并不是真正的“不加权”,而是各个数据的权重相等,都是“1”,在这个意义上可以说所有的算术平均数都是加权平均数,再以适当的实例让学生对“权”的理解更加深入,只要学生真正明白“权”重的含义,也就可以突破学生学习的疑点,从而突破本课的难点。
《平均数》教学反思4
《平均数》是四年级(下册)第八单元《平均数与条形统计图》的第一课时。在学生已经具备一定收集和整理数据能力基础上,从生活实例出发,让学生充分产生求平均数的需要,进而自主探究平均数的意义,掌握求平均数的基本方法,并能运用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。
本课的重点是使学生在具体情境中体会平均数的意义,掌握求平均数的方法,教学难点是理解平均数的意义。相对于求平均数的方法,理解平均数的意义更为关键。
《平均数》这一堂课,我磨课过好几次,在这个过程中,不断地推敲、摸索,都有数次的提高,但是由于自身的水平较低,再加上对学生把握不够,而且,平均数是个抽象的概念,怎么使抽象的概念让学生去理解、接受,这是需要不断思索的。
教完这堂课后,觉得有以下收获与困惑:
收获一:情境的成功运用。整节课我以阅读贯穿,以学生身边的事情引入。学生注意力特别集中,兴趣盎然,既而我抛出一个实质性的问题:想评选优胜组,是第一组还是第二组?一石激起千层浪,学生们议论纷纷,有的认为第一组,有的认为第二组,学生各抒己见,各自发表了自己的意见。然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理性。当学生感受到要比较哪组获胜必须先求出“每组平均读了几本”后,我并没有急着让学生讨论或者讲解“平均每人读了几本”的含义,而是让学生用移一移,画一画的,或者用计算的方法求出平均数。
收获二:概念的建构认知。本课的大致知识能力层次如下:认识平均数的意义——求平均数——应用平均数。教学设计从表格呈现数据到变成一幅图,并利用图中书本的移动揭示求平均数的方法,为学生理解平均数的意义提供了感性支撑。再将表格呈现为条形统计图,更加直观,更加明了。整节课由具体到抽象,由模糊到清晰,多纬度构建主体化的平均数概念。并在讲解方法的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。
收获三:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材。第一道题目,学校里捐书活动对算法的巩固,以及在过程中的算法优化;第二题是对平均数的进一步理解。冬冬去河里游泳是不是有危险,根据平均数的意义来解决。第三题是班级阅读量引导整个温州市、全国的阅读量,从小到大的延伸。这个过程中对班级阅读量那么大的鼓励,对我们处在阅读危机中该做什么给予建议。这几道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。
但在这堂课教学中,也存在很多问题,通过听取多位前辈的评价和建议后,对平均数这一堂课感悟更深。现总结如下:
(一)平均数的理解不够。
这是一堂概念性的课,而这一个概念又是抽象的,如何让学生在抽象中把握概念呢?本堂课,在教学过程中,过于注重平均数方法的计算,而忽视了或者说少重视了对于平均数意义的理解。
(二)悟的时间不够。
在第三环节的第2题的练习中,让学生思考冬冬是不是有危险的题目中,让学生说的不透彻,而且没有深入说说平均数的意义。仔细考虑,终其原因是对“平均数意义”的不理解,平均数代表的是整体水平,而不是每个人的实际水平。
(三)语言过于抽象。
平均数本身就是一个抽象的概念,而教师抽象的语言去描述抽象,那学生如何理解?是的,在本堂课中,教师的语言应该反复琢磨,使学生有易于接受理解。
(四)课堂内容不扎实。
这一节课,上下来的总体感觉是太过于粗糙,走马光花,该深入时没有透。还需要提高自身素质和吃透教材。
一堂好的课必须反复磨练,只有多思考,才能不断进步。在一次公开课上,一位记者问一位数学老师,您的课为什么上得这么出色。这位数学老师只是浅浅地回答,我用一生都在备这堂课。是啊!每一堂课,都是一场演出,台下多少工夫都是进步,台上的表演需要我们用一生去演绎。
《平均数》教学反思5
平均数是统计中的一个重要概念,它反映的是一组数据的总体情况,代表一组数据的平均水平,在我们的日常生活中的应用也是很广泛的,因而在本学段的教学中应紧密联系生活实际,注重情感体验,让学生在自主探索、主动参与中学会数学思考,在获取基本数学知识与技能的同时,在情感态度,价值观及解决数学问题等方面得到充分发展,因此,在本课的教学中首先给学生创设一个问题情境:要想比较中国人和韩国人谁的身高更高一些,应该怎么办?结合教师提出的问题情境,学生在比较的过程中发现、经历、感悟到了求平均数的重要性,在交流、合作中认识到了平均数的本质意义,这一点我深感欣慰,孩子们在自学的应用数学解决问题。比起以前单纯地教给孩子们解题方法,更让孩子们体会到了数学的价值。
其次,这节课与以往教学平均数的呈现方式不同。在这节课上我注重了让孩子们在数学活动中学习,首先让孩子们产生对平均数的强烈需求,在经历了平均数产生的过程之中,自然而然地理解了平均数的本质意义,学会了求平均数的方法,然后再去解决问题。
再次,关注了培养学生解决问题的能力。课改提出:“数学要体现生活性”“学有用的数学”。本节课我在设计练习时设计了判断“李强所在的小学篮球队,队员的平均身高是160厘米,所以李强的身高一定是160厘米。”使孩子们在讨论中加深了对“平均身高”的理解,从中体会到了应用数学知识要灵活;在判断健康队和幸福队,哪个队会赢?小组的合作学习,让学生体会数学和自己的生活息息相关。
本节课的遗憾:课堂上未能对每个学生举出的平均数实例进行探索、拓展应用,课结束时学生回顾整个学习过程时只是泛谈体会和收获,鼓励性的语言还少些,以后在这方面多多努力。
学有价值的数学,培养孩子们解决问题的能力,在今后的教学中,我将努力学习,不断提高自己的教学水平。
《平均数》教学反思6
在教学求平均数这一课时,我是这样设想的:课一开始,我以学生熟悉而又喜欢的套圈游戏导入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫。在例题教学中,学生注意力特别集中,兴趣盎然,各自发表了自己的意见,然后进行全班交流。有的学生用最多个体进行比较;有的学生用最少个体进行比较;有的用总数进行比较;还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分的争论,使学生切实感受到用求平均数的方法来解决这一问题的合理性。我并没有着急让学生讨论或者讲解平均每人套中个数的含义,而是让学生用移一移,画一画,或者用计算的方法求出平均数。
《平均数》教学反思7
《平均数》是小学数学人教版第六册统计方面的教学内容,是在学生已经具备一定收集和整理数据能力基础上,从生活实例出发,让学生充分产生求平均数的需要,进而自主探究平均数的意义,掌握求平均数的基本方法,并能运用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与不足:
一|、概念的建构认知。
学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程。本节课我把平均数学习放入一个完整的统计活动中,让学生充分经历了“平均数”的产生、形成、发展和应用的过程。以仔细观察这两幅统计图,你想说什么、引出一系列问题,最总引出当两组人数不相等时比什么可以比出投篮水平的高低为引领,通过层层深入的探究,激发了学生的认知水平,激起学生的思维火花,引出了平均数。接着通过放手让学生自己动手画一画、算一算过程中得到两种求平均数的方法,并在此过程中逐步感悟和理解平均数的意义,体会平均数的实际应用。并在讲解练习的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。
二、尊重个体差别,设计不同层次的练习
家庭环境、特定的生活与社会文化氛围,形成了同学的差别。教师在教学中应持一种客观的态度,使不同的同学得到不同发展,最大限度地满足每一个同学的发展需求,对有特殊数学才干和喜好的同学可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次同学的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养同学估算能力这一宗旨,可谓匠心独具,令人流连。
三、思维深度延伸,激活学生内在的潜能
在求平均数应用题中,同学经常将几个数相加除以几,而不去看题中的具体情况,这是平均数应用题中极易出错的典型问题。一般情况下,同学能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:.如果,这里要除以6,题中的问题又该怎么改?然后再教育学生要仔细审题。这样挖掘,有意识地对同学思维进行深度引领,让同学享受到数学思维带来的乐趣。
但在这堂课的教学中,令我更多思考的是我的不足:虽然这节课我作了精心的设计,由于我过重关注学习结果,而忽视了学生的情感体验、学生在学习过程中的需要、疑惑、困难等。另外教师的教育机智还远远不够,没有及时捕捉学生的契机,学生多好的回答竟然不理睬,还是按自己的路往下走,课堂上对于学生肯定的回答或精彩的回答不给予表扬等。因此,在以后的教学中我还要不断地努力探索,力争让自己的课堂有更多的精彩,让学生有更多的收获,有更多思维碰撞的火花!
《平均数》教学反思8
《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。
突出主体地位,创造了自然和谐的环境
在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。
本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。
尊重个体差异,设计了满足不同需求的练习
家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。
思维深度延伸,激活了学生内在的发展潜能
在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1.什么样的情况下,可以(142+140)÷2?2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?
这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。《人教版三年级数学下册《平均数》教学反思》这一教学反思,来自!
《平均数》教学反思9
平均数是什么?孩子们总是弄不明白,在所出现的数据中为什么看不到它的影子?学习它有什么用?爱动脑筋的学生总会提出这样一些很有见地和实质性的问题。刚刚学习完平均数,学生对它确实陌生的很,我知道这块知识很重要,因为孩子们在以后的学习中还会学习到众数和中位数,这是三个本质和含义很不相同的概念,可上了一节课,他们还是云里雾里,不清楚的地方很多,在课后的练习求平均数中问题尤其突出。该怎样调整课堂呢?
在第二节的课堂教学中我是这样设计的:
首先:出示概念,在分析概念中理解概念的内涵。
平均数:反映一组数据的整体情况。
平均数的实质:是一个虚拟的数。
其次:结合班级内的评价制度进行学习(我们班分四行,每月按行评比一次小红花的个数)能否按各行的总数进行评比,这样做公平么?孩子们马上就能感受的不公平,因为每行的人数不同,只有求出平均数才能做到公平和公正,可这个平均数是不是一定需要出现在每个同学的红花个数中啊?这些问题的设计更好的帮助学生理解。这样结合具体的情境学生掌握起来会更容易一点。如此看来,要想提高课堂教学的有效性确实是需要动一番脑筋的。
《平均数》教学反思10
《新课标》强调“数学应用于实际生活,要使同学体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必需善于挖掘生活中的数学题材。本课教学中,我一上课就再现“神六”胜利发射的辉煌局面,一下子拉近了数学与生活、同学与教师之间的距离,使同学对数学、对教师发生亲近感。而最后的总结可谓“经典”,将同学从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。
一、突出主体地位,发明了自然和谐的环境
在课堂教学中,教师应该充沛尊重同学,给他们以发现问题、解决问题的机会,使教学活动真正面向全体同学,使同学人人得到发展。
本课中,在创设问题情景、出现例题的表格之后,我让同学根据表格中的数据自身提出数学问题。提问题的过程,就是培养同学的主动考虑、主动发现,用数学的眼光看待周围的事物的过程。同时,同学通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由同学自身提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样同学感到:今天学习的问题是由我提出来的,心里充溢了骄傲和自豪。
二、尊重个体差别,设计了满足不同需求的练习
家庭环境、特定的生活与社会文化氛围,形成了同学的差别。教师在教学中应持一种客观的态度,使不同的同学得到不同发展,最大限度地满足每一个同学的发展需求,对有特殊数学才干和喜好的同学可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次同学的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养同学估算能力这一宗旨,可谓匠心独具,令人流连。
三、思维深度延伸,激活了同学内在的发展潜能
在求平均数应用题中,同学经常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,同学能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1。什么样的情况下,可以(142+140)÷2?2。假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3。假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4。再让同学比眼力,猜想五年级四个班哪个班同学的平均身高最高?
这样深入挖掘,有意识地对同学思维进行深度引领,将一条简单的选择题进行多次讨论,让同学享受到数学思维带来的乐趣。
《平均数》教学反思11
首先,本节课进行了课前教材分析:平均数是一个重要的刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。我们可以用它来反映一组数据的一般情况。用平均数表示一组数据的情况,有直观、简明的特点。
同时,本节课也对学生的学情、学法进行了分析。平均数是在第一个学段已经理解了平均分及除法运算含义的基础上教学的。本节课教学,创设比赛情境,自然产生用“平均数”进行评估的需要。然后用各种方法求平均数,体会平均数的特点。最后用平均数来解决生活中的各种问题。
本节课教学后感触较深的是对于练习进行了一番设计,使原本零散的练习变得有情境有次序。如巩固练习阶段:学了平均数,你会对我说什么?分开3个小练习。
(1)当我很矮时
师:下面这些问题,同样需要我们借助平均数的特点来解决。小李同学身高140厘米,篮球技术特别好,想要参加篮球队。但是看到快乐篮球队队员的平均身高是160厘米时,他很难过。你有什么想对他说的吗?
生1:别难过,160厘米只是平均身高。可能有人比160厘米矮。
生2:平均身高160厘米,并不表示每个人的身高都是160厘米。
生3:只要篮球技术好,身高矮一些问题也不大。
师:听了你们的发言,李强同学表示很高兴。
(2)当我长高时
师:打篮球长得快,小李身高长到170厘米。有一天来到一个池塘边。低头一看,发现了什么?
生:平均水深110厘米。
师:小李心想,这也太浅了,我的身高是170厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗?
生:不对!
师:怎么不对?小李的身高不是已经超过平均水深了吗?
生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如180厘米。所以,小李下水游泳可能会有危险。
师:说得真好!想看看这个池塘水底下的真实情形吗?
(师出示池塘水底的剖面图,如图12)
生:原来是这样,真的有危险!
师:谢谢你们的正确建议,小李平安长大,现在他参加了中国国家篮球队
(3)当我很高时
出示国家篮球队平均身高:200厘米。
某家大酒店如果按照篮球队员的平均身高来订购新床,合理吗?
预设:
生:不合理
师:为什么啊?
生:姚明身高超过200厘米。睡不下。
师:看来具体情况要---具体分析
这三个练习以身高为情境,灵活应用平均数解决生活中的问题。练习1对平均数与平均分进行了辨析;练习2利用平均数对学生进行安全教育;练习3利用逆向思维引导学生对平均数的应用进行了一个斟酌。
点滴反思,聚少成多,一点反思,一点成长。课堂教学不止,专业成长不息。
《平均数》教学反思12
教学完这节课后,我进行了认真地反思,下面我主要从本节课的优点、存在问题和我的收获三方面来谈一谈对本节课的反思内容。
优点:
一、教学目标明确,重、难点突出。不管是探索新知部分还是练习巩固部分,都为“掌握求平均数的方法、理解平均数的意义”这一重、难点展开,力争每个教学内容都踩在教学目标的点上。
二、练习安排充分让学生参与,并加入判断题练习。练习1:笔筒操作题,注重让学生动手操作解决问题;练习2:估算3条丝带的平均长度,注重学生动脑思考根据平均数的规律解决问题;练习3:判断对错,注重学生的动口说,让学生的学习外显于语言;练习4:解决问题,让学生在练习本上独立列式计算,注重学生的独立动手解题能力。总之,练习的设计充分让全体学生参与,使每一个学生对教学重难点都得到巩固、深化。
三、问题设计细化,引导自然到位。上这节课之前的每一天,教案都在不断修改,问题的设计都在不断改变、改进,总在思考,某一个问题到底怎样提出,学生会更明确,引导会更到位,对问题的揣摩细化到每一个词、每一个字。例:在引导学生观察统计图运用移多补少法求出男生套圈的平均数时,不能直接告诉学生用移多补少法,因为还没学,要引导学生观察发现可以用这种方法,再总结出移多补少法。那么这个问题到底该怎样引导提出呢?我反复揣摩、思考,最后对学生提出:我们怎样移动方块能一眼看出4名男生平均每人套中多少个圈呢?问题一提出,学生马上知道要用移多补少法。确实,问题设计细化,能够使引导自然到位。
存在问题:
一、注重培养学生的数学语言表达能力,但不要急于求成。
本节课在教学“男生平均每人套中多少个圈”时,经讨论、探究得出4名男生套圈的平均数是7,接着让学生讨论平均数“7”和每个男生套圈个数间的关系。学生说到:7是中间数、7比9小比6大。学生说到这里,其实已经把平均数在一组数据中的规律说的很清楚了,但作教师的却还不满足,总想让学生总结的和老师教案所预设的准确的数学语言一样,实际上,又喊了两个学生总结,也还是不能像老师所想像的一样能够准确运用难度较大的数学语言。其实这时,学生表达完正确的规律意思后,教师接着出示准确的数学语言规律,让学生大声读一读,教学效果就会很好,不应急于求成。因此,有难度的数学语言,对学生的培养一定要循序渐进。
二、 在教学过程中没在真正意义上做到以学生为本。
由于上课时使用的预案是多次修改后形成的,所以在上课时感到自己的思想不够灵动,不敢对教案擅自改动,一旦教学实际与原来的教学设计有出入,心中就有些紧张着急。
在进行练习2时,请学生估测三条丝带的范围,学生估测的数值不对,不符合平均数的规律。这时,教师就有些紧张,因为备课时根本没有想到学生对此题的估测会出现问题。其实,这时,教师正好可以借机再强调平均数在一组数据中的规律来引导学生进行正确估测,这样,既能起到强调难点的作用、又能很好的引导学生解答此题,使难点迎刃而解。结果呢,教师因为教学实际和教学预案不一样,一着急,草草了事,这一环节就略显紧张和不踏实。
但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!
《平均数》教学反思13
3月31日,我校迎来了华师大新基础的负责团队,其中吴老师听了我的一节课,内容是加权平均数。在听完课后,吴老师对我的课进行了详细的评述,是我对此堂课有了全新的认识,对此我对这堂课也进行了全面的反思,收获如下。
一、小问题
1、有一个问题是估一估什锦糖的单价范围在哪里?在这里可以改为两个问题(1)、配成什锦糖有几种可能。(2)、在什么范围之间?在这里,把一个问题改成两个问题,把问题放大,让学生有讨论的时间和空间。
2、在第一大块寻找学生的资源的时候,找答案的意识强,不关注全体学生,这也是问题,是只关注结果的一个病根。
3、在第一大块教学的时候,没必要两次估计什锦糖的单价,这是在移植课中出现的一些问题。
二、相对较为突出的问题
1、对于资源的收与放吴老师作了以下解释,她认为收资源的类型有以下几种(1)、辨析提升型。(2)、有机沟联型。(3)加工生成型。本节课属于第三种。第一层次资源是当学生出现a(60+100×4)时老师可以问这是什么意思?学生可回答一千克水果糖与4千克巧克力合起来的价钱。第二层次资源是(60+100)÷(1+4),这里主要是让学生体会总价是两千克的,与5千克数量不对应。第三层资源是(60+100×4)÷(1+4),也是让学生体会不对应的思想。另外一层意思是(60+100)÷2是求的一千克巧克力与水果糖的平均价,与这里的要求不一致。
2、如何在一堂课中体现神似主要体现在三方面。
(1)、渗透数学研究方法,这里体现在配糖前交代研究的前提、目的。第一步:比如配置5千克什锦糖,可以是多少水果糖以及可以是多少巧克力呢?让学生说一说。第二步:师先说怎么去研究呢?以此交代研究目的,那么多的研究方案,可以从个例开始,个例研究好之后,再大量例举事实发现规律。第三步是例举时,再一次问:怎么例举有助于发现规律。
(2)激发学生主动参与的习惯,这里可以先由一个学生研究其中的几种情况,然后四个人一组汇总,通过这种形式一是激发参与意识,二是养成合作习惯。
(3)进一步重心下移,在合作的过程中,第一种简单要求可以是我讲,同桌复述。第二种稍高要求两人轮流讲。第三种是进一步要求,四人合作,共同汇总。最后一种最高要求是个体与群体合作,当一个人会并说的时候,其他同学可以轻轻的说。千万不要一起读,重心要下移。
3、融练习与只是形成过程中的丰富性,比如在第三大块的教学中,当巧克力多的时候,什锦糖是五千克。那说果糖多的时候什锦糖可以是多种千克数,这样可以把总价与千克数的对应放到不同的环境中。又比如(100+60)÷2让学生体会到可以同是5千克,或者是3千克等也可以这样做。另外也要加强中间价的说明,什么叫中间价,是两个价格的中间数。这样就可以在巧克力多的是时候更容易发现什锦糖的更小价格范围了。
以上是我在本次调研活动中的一些反思,当然也有不足与需改进之处,在今后的教学研究中还需进一步的提高,这也是我当下的我急需做的事。
《平均数》教学反思14
培养学生多角度地思考问题,培养学生迁移类推能力。我在教学中,很注意学生在什么知识点上会产生思维障碍,就在这个地方解决,为了弄清例2怎样计算,让学生运用例1探索的方法,类推迁移,尝试做,增强学生的感性认识。然后类推到“做一做”练习之中。
积极引探,发挥两主作用。课标指出:“教学过程中,要充分发挥教师的主导作用和学生学习的积极性、主动性。教学时,教师通过积极的“引”,来激发学生主动地“探”,使教与学产生共振,和谐发展。如出示例2时,问与例1相对有什么不同?启发学生积极思维;让学生主动探索出:求平均数先算什么,后算什么,同时注意培养学生的归纳思维能力。
精心设计练习。大纲指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段。练习主要在课内进行,练习要有层次,有针对性,讲究方式,使全班学生都得到较多的练习机会等。”我在课堂练习中,除基本训练打基础外,还出示了“尝试题”,诱发学生学习的积极性,边算边讨论,成功地解答尝试题后。我还根据本节课的教学重、难点,设计了三个层次的专项练习:1.基本训练。2.变式练习。3.游戏练习。为学生设计多层次的尝试思维情景,让学生看有所思,练有所想。
加强了信息交流,促进尝试成功。尝试成功的重要条件之一是学生讨论,是在学生获得自己的努力结果之后进行的生动活泼、独具一格的“语言和思维训练”,这种讨论使师生之间、学生之间在情感上得到交流和满足,有利于培养学生的数学语言表达能力和分析推理能力,发展学生思维,加深理解教材。我在课堂教学中设计了三次学生讨论,然后根据学生输送的信息,针对学习新知识的缺陷,作画龙点睛式的讲解,确保学生系统地掌握知识。与此同时,我也参与讨论,及时了解情况,并根据学生输来的信息,及时进行针对性的讲解,以“教”促“学”,“学”中有“教”,密切了教与学的关系,保证了尝试成功。
《平均数》教学反思15
《求平均数》这一课的教学,主要是让学生感悟“平均数”的实际意义,在实践中探索求“平均数”的多种方法,并能根据具体情况灵活选用方法进行解答,在其中培养学生估算的能力,同时对数据分析结果作出简单的推断和预测,体会“平均数”在现实生活中的实际意义及广泛应用,培养锻炼学生自主探索、合作交流的意识和能力。
本节课的重点是灵活选用求平均数的方法解决实际问题,对于学生来说,理解平均数的意义难度较大。因此,在设计教案过程中,教师应为学生提供他们所熟悉的经验,利用学生现有的知识水平和他们所熟悉、感兴趣的素材组织教学,转化“以教材为本”的旧观念,适当地调整教材,根据实际情况,提高学习兴趣,以达到教育较学目标。
数学知识源于生活,而又高于生活。所以教材安排了一个生活中,学生比较熟悉的收集矿泉水瓶的例子,目的是让学生实实在在地感受到数学不再枯燥、抽象,数学就在他们的身边,易激起学生学习的兴趣。古人云:“学起于思,思起于疑。”当学生对平均数的意义很想弄懂但又无法弄懂,很想说清但又无法说清的时候,便会萌发强烈的求知欲,教师适时恰当引导,能使学生较快进入学习情境,有利于对新知识的接受和掌握。
第五篇:《平均数》教学设计
《平均数》教学设计
《平均数》教学设计1
教学内容:
《义务教育课程标准实验教科书数学》三年级下册P42页例1
教材简析:
教材从现实生活出发,选取学生身边的事例,将生活素材贯穿于整个教学活动的始终,遵循了数学源于生活、寓于生活、用于生活的理念。让学生在动手实践的活动中学会用平均数来比较两组数的总体情况,体会数学与生活的联系。平均数是统计中的一个重要概念。它通常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。平均数的概念与平均分的意义是不完全一样的,平均数是一个“虚拟”的数,它是借助平均分的意义通过计算得到的。它具有直观、简明的特点,在生活中经常用到。
学情分析:
平均数是统计中的一个重要概念,而求平均数是统计的基本方法之一。此时的学生虽已初步具有了信息的分析、处理和对实际问题的决策能力。但他们的思维仍处于由具体形象思维过渡到抽象逻辑思维的转折时期,仍需要依据实际经验或借助具体形象的支持,通过下定义的方式获得概念。针对这一特点,在理解平均数的概念时,我让学生根据自身已有的生活经验操作实践和通过动态演示,把概念的关键属性和学生的认知结构相联系,使学生掌握概念。另外,三年级的学生好奇心强,求知欲旺,具有一定的探索意识,故在教学时,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决问题。而教师只是作为组织者、合作者的身份引导学生从不同角度发现生活中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。
设计理念:
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的、动手实践、自主探索与合作交流是学生学习的重要方式。本课教学在新理念的指导下主要设计了“创设情境、初步感知—合作探究、深化理解──应用知识、解决问题──拓展延伸、深化提高”的数学学习过程。
教学目标:
1、知道平均数的含义和求法。
2、加深对“平均数”和“平均分”意义的理解。
3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。
难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。
教学过程:
一、创设情境,初步感知
1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。
2、感知。
(1)学生思考,想移的过程
(2)教师操作引导:现在每排都有7个,7是这组数的什么数?
(3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。
师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。]
二、合作探究,深化理解
1.操作:
师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4个,第三排放3个,注意摆的时候,要一一对应地摆齐。
2.学生合作探究:
师:平均每排有多少个圆形磁铁?你是怎样想的?
3.交流汇报
a.移多补少:只要从8个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。
b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。
[设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。]
4、教学例1
(1)、出示情景图,收集数学信息
师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?
生:小明收集15个,小亮收集11个
生:小红比小兰多收集2个
……
师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?
生:就是让我们求出平均数。
师:你同意他的说法吗?你是怎样理解的?
(2)利用情境图,处理数学信息
A:移多补少
师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?
生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个
师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)
生:13就是14、12、11、15这组数的平均数
B:先求和再平均分
师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?
生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。
生:14+12+11+15=52(个) 52÷4=13(个)
师:13是这组数的什么数?(平均数)
生:13就是14、12、11、15这组数的平均数
C:理解平均数是一个不“真实”的数。
师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗?
生:不是
生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。
师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子
师:现在同学们来观察平均数13和原来这一组数,你发现了什么?
生1:小红和小明收集的瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。
生2:平均数在最大的数和最小的数之间。
生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”
生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。”
D:归纳“平均数”的含义
师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。
E:小结求平均数的方法,知道平均数在生活中的运用。
师:通过刚才的学习你能说一说求平均数有几种方法?
根据学生回答板书:
1、移多补少
2、先求和再平均分
师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。
师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。
『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会“平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』
三、巩固应用
1、算一算
在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?
2、辨一辨
(1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。
(2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。
3、想一想:
星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?
□会□不会□可能会□可能不会
师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。
[设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。]
四、全课总结.
这节课,你有什么收获?
[设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]
五、拓展延伸,深化提高
1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。
[设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]
反思:平均数是统计中的一个重要概念,对于三年级的学生来说它也是一个非常抽象的概念。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学平均数,注重引导学生在故事中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。这节课我注重了以下几个方面:
一、创设情境,沟通数学与生活的联系
通过故事引导学生展开交流、思考。让学生感受到数学就在我们身边,从而深刻认识到数学的价值与魅力。在学生的讨论中,感受平均数是实际生活的需要,产生学习“平均数”的需求。
二、探究学习,理解平均数意义和归纳求平均数的方法
分桃子活动从多方面向学生提供充分从事数学活动的机会,让每一位学生主动从事数学活动,让学生自己探索出求平均数的方法。一种是先合再分,一种是移多补少。由于生活经验和知识基础,学生中有一部分已经知道用移多补少的方法找出平均数;还有一部分数感较强的学生,能够根据提供的一组数据感觉出平均数大概是多少;而用总数除以份数得到平均数的计算,也不难,学生肯定会有这种思维。因此,在教学过程中,我让学生自主探索,找到求平均数的方法,再小组合作学习,互相将自己探索的'方法交流,达到共识。学生虽然求出了平均数,但概念也是非常模糊的,平均数”的概念比较抽象,很多人对平均数的含义不理解。移多补少对理解平均数的意义很有帮助,让学生在移多补少中建立平均数的表象,通过学生移一移、说一说,教师直观板书,从感官上理解平均数的由来,理解平均数的意义
三、练习有坡度,让不同层次的学生得到发展
练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让不同层次的学生得到发展。第一个层次是巩固新知求平均数,通过先估计再验证的方法使学生感知平均数的区间,从中渗透估算的数学思想和方法;第二个层次是通过计算4个人的平均分而只给出3个数据,目的让学生进一步感受计算平均数时,总数要与份数相对应;第三个层次是课件设计通天河横截面图,让学生直观辨别平均数是一个虚拟数。
四、拓展延伸,让数学回归生活
课堂小结时,给教师表现打分及计算平均分再次强化了本节课的知识;体现了平均数在生活中的实际应用,又得到了这节课的真实信息的反馈;作业的布置是对课堂的拓展延伸,进一步激发学生继续探究生活中的平均数的兴趣。
五、不足与遗憾之处
一是在学生合作交流的细节上还要落到实处。教学中在小组合作、同桌讨论之前缺少足够的独立思考的时间,学生在小组合作中参与的程度还不完全均衡。这就需要我们教师在今后教学中要对小组合作给予必要的组织和引导,面向全体,关注个别差异,注重组际之间的评价,把合作学习的每一个细节落到实处,这样才能实现学生间的协调互助、共同发展;二是教师对课堂中的生成问题处理不够灵活。教学中我们应顺应学生的认知需求,因势利导,让我们的教学富有灵性;三是教育要以促进人的发展为本,本节课中缺少对学生润物细无声的人文感染,要加强数学与生活的紧密联系,注重对学生的人文思想教育。
《平均数》教学设计2
教学目标:
1.使学生掌握平均数的意义和求平均数的方法。
2.使学生能根据数据列出算式求平均数。
3.在教学活动中提高学生的发散思维能力。
教学重、难点:
1.重点:掌握平均数的意义和求平均数的方法。
2.难点:能根据数据列出算式求平均数。
教具、学具准备:练习本、自制统计图、米尺
教学过程:
一.谈话导入
老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)
引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?
8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)
在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)
今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。
揭示课题:平均数
二.探求新知
1.导入新课
同学们,你们都是爱卫生、保护环境的.小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。
(1)出示统计图。
(2)观察:从统计图中,你能了解到哪些信息?
(3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。
组织学生交流、讨论,然后指名回答。
一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。
二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)
教师根据学生的回答,并板书:
(14+12+11+13)÷4
=52÷4
=13(个)
“13”在这里也叫什么数?
(4)巩固提问:这里为什么要除以4?
(5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。
三.巩固提高
1.活动“数小棒,求平均数”
早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。
(1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。
(2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。
(3)根据学生的完成情况,教师小结。
2.活动:求平均身高
在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。
四.全堂小结
今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?
《平均数》教学设计3
教学内容:
平均数
教材分析:
平均数是一个重要的刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。我们既可以用它来反映一组数据的一般情况,也可以用它来进行不同数据组的比较,从而看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均身高、平均成绩等等。平均数是在第一学段已经理解了平均分以及除法运算的意义基础上教学的。与实验教材相比,修订教材对平均数的处理,更加突出其统计意义。通过“两队人数不同不能用总数比较”这一思维的矛盾,促进学生进一步理解平均数的意义,进而发现运用平均数作比较的必要性。
教学目标:
1、体会平均数的作用,掌握计算平均数的方法。
1、经历求平均数的过程,尝试用自己的语言解释其实际意义。
2、感受数学与生活的密切联系,激发学生学习数学的兴趣。
教学重点难点
重点:体会平均数的作用,掌握计算平均数的方法
难点:初步理解平均数的实际意义。
教具准备:
桃心卡片课件
教学过程
一、创设情境,初步感知
1、猴妈妈有三个孩子,这天猴妈妈在山上摘了很多新鲜的桃子,于是给大儿子6个,给了二儿子7个,给了小儿子2个,小儿子不高兴了。
(边讲边贴桃形纸片,贴三行,为下面的移多补少做铺垫)
师:小儿子没什么不高兴了?你们觉得这样分公平吗?
学生讨论,指名汇报。
2、你能帮猴妈妈重新分一分吗?怎样分的公平?指名学生演示。
3、小结:这种方法叫“移多补少”(板书)
谁还有其他的办法解决这个问题?
(先把三个人的桃子合起来有15个,再平均分给这3个小猴子,这样每个小猴子都分到5个桃子。)
这种方法也很好!我们也给它取个名字。“先合再分”
(板书)。
4、刚才我们用移多补少和先合后分的方法,都能使这三个小猴的桃子个数从不同变成相同,都是5个。这里的“5”就是“6、7、2”这三个数的平均数。像这样,几个大小不等的数,通过移多补少或者先合再分的方法,使它们变成一个相同的数,这个相同的数就是这几个数的平均数。(课件出示)
板书课题平均数
二、自主探索,解决问题。
1、出示大家在操场踢毽子的情景(PPT)
出示男女各3人一组
姓名
个数
小军
15
小强
15
小明
15
姓名
个数
小雨
18
小涵
17
小敏
16
女看哪组成绩好?怎么比?
可以比总数,可以比平均数,指名学生汇报,并说明计算方法。
2、人数不同
男生组有一个同学不服气,真正的'高手没上,小飞同学每分钟踢了19个
男生队女生队
姓名
个数
小雨
18
小涵
17
小敏
16
姓名
个数
小军
15
小强
15
小明
15
小飞
19(一)现在比总数的话公平吗?
(二)怎么比?比平均数比较公平。
(三)先不计算,观察这组数据的特点,猜测一下,小飞的加入,男生队的成绩会发生什么变化?平均数会超过15个吗?会超过19个吗?平均数会在什么范围?
(四)请计算出新的男生队的平均成绩。
1、学生汇报并板书算式
(19+15+15+15)÷4=16(个)
2、对比观察,小飞的加入平均数有什么样的变化?平均数变大了。
3、为了公平起见,女生队也加入了一个队员,想一想,如果要保持领先,至少要踢多少个?
姓名
个数
小军
15
小强
15
小明
15
小飞
19
姓名
个数
小雨
18
小涵
17
小敏
16
小云
9你能计算出现在女生队的平均成绩吗?
随着小云同学的加入,平均数有什么变化?
师小结:平均数会受到较大数据或较小数据的影响。
4、质疑:平均数是16个男生队是每个人都踢了16个吗?女生队是每个人都提了17个吗?
5、小结:16这个平均数表示男生队的一般水平,17这个平均数表示女生队的一般水平。
6、结合平均成绩、平均身高、平均工资等素材理解平均数的意义。
如通过平均身高可以了解身体生长状况,平均成绩可以找到差距。
7、生活中的平均数,你还知道哪些?
8、小结:平均数可以表示一组数据的一般水平,也可以用来个数不同数据的比较。
三、巩固练习。
接下来老师看看你们能不能运用所学平均数的知识解决实际问题。
1、纸条,师估计平均长度是30厘米,你们同意吗?
2、我从体育老师哪里了解到咱们班孩子的平均身高是136厘米,有没有可能有孩子的身高是145厘米?125厘米?是不是咱们班每一个孩子的身高都是136厘米?为了让大家理解更透彻,老师带来了一张珍贵的照片。
3、讲一个平均数的小故事,一个老爷爷,70岁了,在看到报纸上说中国男性的平均寿命是71岁时,伤心地哭了,你们知道老爷爷为什么哭了吗?请你用学到的平均数的知识安慰安慰老爷爷。
4、平均水深是110厘米,小华身高140厘米学游泳,有危险吗?
四、全课总结,说说你都学到了什么,你有什么收获?
板书设计:
平均数
移多补少先合后分
(15+15+19+15)÷4
=64÷4
=16(个)
一般水平
《平均数》教学设计4
教学设计教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的'糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。
二、探究体验
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、实践应用
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。
2、根据统计表算一算,三年段平均每班踢几下?
班级 三(1) 三(2) 三(3) 三(4)
踢的次数 632 654 668 646
3、生独立完成练习十一第2题。
四、全课总结
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
平均数 教学设计
共4课时 总第23课时
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、情景导入
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
《平均数》教学设计5
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备
多媒体课件
教学课时
1课时
教学过程
一、情境引入。
1、出示课件:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的.儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示课件:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
《平均数》教学设计6
教学目标:
1、通过实际问题,经历了解“平均数”意义的过程。
2、了解“平均数”的意义,初步学会求简单数据的平均数,能运用生活经验对“平均数”作出解释。
3、体会求“平均数”在现实问题中的必要性,感受数学与生活的密切联系。
教学重点:了解“平均数”的意义,初步学会求简单数据的平均数。
教学难点:能运用生活经验对“平均数”作出解释。
课前准备:CAI课件、教师准备5个纸杯,杯中放上不同根数的筷子。学校第一季度用水量表。
一、师生谈话,引入新知。
师:同学们,你们喜欢课间活动吗?在课间活动中你喜欢做哪些游戏?是怎样组织的?
学生可能会说:
生1:我喜欢玩跳绳,我们4人一组,我们组跳的最多。
生2:我喜欢玩呼拉圈,我们两人一组,我们组我转得最多。
师:同学们在课间活动中玩的真开心,!老师特意排了张照片,你看!他们在做什么游戏呀?(踢毽子!)好玩吗?老师把咱们班这两组同学踢毽子的情况记录了下来,你们看!(CAI课件出示统计表)
师:从这里你了解到哪些信息?
学生可能会说出很多:
生:第一组王艺丹踢了8个,穆德芳踢了7个,赵丹宁踢了6个,郭帅成踢了7个。
生:第二组……
二、讨论交流,探究新知。
师:刚才你们从表中了解到这么多数学信息,真了不起!你想通过这些信息知道哪些问题?
学生可能提出这样的问题,如:
生1:第一组一共踢了多少个?第二组一共踢了多少个?
生2:哪一组的成绩好?(板书)
师:你提的问题特别有价值,你们认为那一组的成绩好?
生3:第二组成绩好,因为第二组有踢毽子冠军。
生:我不同意他的观点,一个人的成绩好,并不代表全组的人都好。
生:我认为第二组的成绩好,因为第二组比第一组多踢两个。
生4:我不同意,因为第一组人少,第二组人多,人数不一样,比总数不公平。
师:看来比总数、有头球冠军都不行,都有矛盾冲突。那么大家在思考一下怎样比才公平呢?
学生可能说到:把每个组踢的总数平均一下,比较每组平均成绩就公平了。
师:你从哪知道平均成绩?(期末老师说过我们班的平均成绩是多少)求每组的平均成绩就是求什么?
(每组平均每人踢了多少个?板书)
师:你们同意他的意见吗?那就请同学们小组合作,先商量一下怎样求出每组平均每人踢毽子的个数,然后再算一算,看哪个组合作得最愉快!
教师巡视,注意了解学生的计算方法,对学困生进行指导。(在合作接近尾声时,让学生将自己的方法写在黑板上,并写上组名。)
可能会出现以下两种方法:
1.分步:(解题思路:先算什么,再算什么。)2.综合算式:(找小组同学讲出解题思路)
(蓝兔)第一组:8+7+6+7=28(个)
(虹猫)第一组:(8+7+6+7)÷4
28÷4=7(个)(4表示什么?7个是什么?)
第二组:9+8+5+3+5=30(个)
30÷5=6(个)第二组:(9+8+5+3+5)÷5
=30÷5
=6(个)
师:仔细观察这两组的解题方法有什么不同?有什么共同点?
生:不同点:一个是分步计算,一个是列综合算式。
生:相同点:都是用总个数除以每组的人数。
师:我们在解决问题时,如果没有特殊要求,分步综合都可以。现在谁能大声说出那组的成绩好?
生:第一组!
师:让我们一起鼓掌向穆德芳这一组表示祝贺!(板书:优胜组),第二组同学请继续努力。
师:通过踢毽子这个游戏,你知道了什么?
生:我知道要求每组的平均成绩,应用这组的总个数除以每组的人数。
生:要知道哪组的成绩好应比较每组踢的平均个数。
师:看来这个数的作用真不小呢,他能反映出每组的整体水平!(用手指板书)谁来给每组平均每人踢得个数起一个名字?
生:平均踢的个数……(很好!能不能再简捷一点?和我们的名字一样两个字或三个字?)
生:平均数。(非常好,那我们就把平均每人踢得个数叫平均数。)
板书:平均数
师:刚才我们用“平均数”这个新朋友解决了哪组成绩好的问题。在现实生活中还经常遇到求平均数的问题。看,这是我班环保小卫士梁捷统计的他家一周内丢弃塑料袋的情况。(课件出示)
师:请你们帮梁捷算一算,他们家平均每天丢弃几个塑料袋?自己独立试一试,有困难的可以找同桌帮忙。
师:把你计算的方法和结果和大家交流一下。
学生可能会出现两种方法:
生1:先算出梁捷家一星期丢弃塑料袋的总个数,再除以7。(实物投影)
分步:1+3+2+3+2+6+4=21(个)综合算式(1+3+2+3+2+6+4)÷7
21÷7=3(个)(7表示什么?)=21÷7
=3(个)
答:梁捷家平均每天丢弃3个塑料袋。
师:你们同意他的解题思路吗?同学们真聪明,这么快就求出了梁捷家每天丢弃3个塑料袋。我们的好朋友蓝灵鼠听说大家在研究平均数,特意赶来向我们请教一个它一直很糊涂的问题。你看!(课件配音出示蓝灵鼠画面:求出的“3个”是实际每天丢弃的塑料袋个数吗?)小组讨论一下帮蓝灵鼠解决这个问题。
学生可能有两种认识:
生:我认为“3个”就是梁捷家实际每天丢弃塑料袋的个数(教师可以让学生再次观察表格,明确“3个”不是实际数)。
生:我认为“3个”不是梁捷家每天实际丢弃的个数,而是梁捷家平均每天丢弃塑料袋的个数。它是一个“平均数”。
师:平均数“3个”和实际每天丢弃的塑料袋个数比较可能会怎样?你能举个例子说说吗?(适时激励表扬)
生:实际丢的个数有的.比平均数多,有的比平均数少。(如果学生不能说出教师给予提示)
师:蓝灵鼠听了大家的解释满意吗?一起了解一下!(课件出示蓝灵鼠:哦!原来是这样呀!谢谢大家,拜拜!)(师生一起拜拜!)
师:我们算出了梁捷家平均每天丢弃3个塑料袋,照这样计算,请想一想我们班有80个同学,那么80个家庭一天一共丢弃多少个塑料袋?算一算一周丢弃多少个塑料袋?
学生算完后,交流计算结果。
师:通过刚才的计算,你想到了什么?
学生可能说:
生:那就会到处都是塑料袋,我想对丢弃塑料袋的人说:“请不要随意丢弃塑料袋了。”
生:塑料袋满天飞。
……
师:有了我们这些环保小卫士的努力,相信我们的环境会变得越来越好!
三、动手实践,理解新知。
师:接下来我们一起做一个非常有意思的装筷子游戏。请各组派代表准备好杯子,按老师的要求做。
师:仔细观察装好的筷子,你发现了什么?
生:杯中筷子的根数不一样。
生:……
师:如果要使纸杯中的筷子一样多,可以怎样做?小组合作,先商量一下,然后再试一试,看哪个小组的方案最有创意。
学生可能会出现三种情况:
(1)把铅笔都取出来,用刚学过的求平均数的方法计算,先求纸杯中共有多少根铅笔,再求平均每个纸杯放几根。(必须出现)
分步:3+4+2+5+1=15(根)综合:(3+4+2+5+1)÷5
15÷5=3(根)=15÷5
=3(根)
师:你真聪明,能用我们今天所学的知识解决问题。我们为她鼓掌!
(2)把所有的小棒收到一起,再一根一根的分次放到纸杯里。
(3)先算出平均数,再移多补少。把多的移到少的中,使每个纸杯中都是3个。(你的方法更有创意,你真棒!)
师:刚才我们用不同的方法解决了这个问题,看来求平均数的方法不只一个。其实,解决同一个问题会用不同的解决方法,我们要根据实际情况和自己的需要灵活选择,相信同学们一定会开拓出新的天地!
四、走进生活,应用新知。
师:同学们,平均数在我们日常生活中有广泛的用处,为了更好的认识这个新朋友,我们一起来了解下面的信息。
课件出示:学校第一季度的用水量统计表:
月份
1
2
3
平均每月用水吨数
吨数
246
180
270
1.算一算我校第一季度平均每月的用水量。
2.说说从该表中你有什么发现,你想对学校的老师和同学们说些什么?
生:3月份用水量最多,同学们、老师们我们都应该节约用水。
师:同学们,你们知道老师最想说的是什么吗?
师:节约用水,从我自己做起!
五、深入生活,拓展应用。
屏幕出示画面
师配以画外音:一条弯弯曲曲的小河,穿过了一片土地,平均水深120厘米,你们看。谁来了?小明来了!我的身高可是140厘米,不会游泳,如果我在这条河里面玩耍,会有危险吗?
师:听了同学们的劝告,小明一定不会在河里玩耍了。(德育教育)
六、回顾总结,畅谈收获。
好的同学们,不知不觉,就要下课了,通过这节课的学习你有什么收获和感想,和大家分享一下?
希望同学们的每一节课多能收获多多,快乐多多!
七、课间游戏,体验应用。
师:课下作业,课后,请同学们自由结合小组,进行一次拍球比赛,比一比哪组的成绩好。
规则如下:
1.以小组为单位,在室外进行。
2.每人拍3次,记录最好成绩。
3.计算出小组同学的平均成绩。
师:请同学们认真完成,下节课我们选出优胜组,大课间给大家表演!好了今天的课就上到这里,同学们再见!
《平均数》教学设计7
第一课时
教学内容:
教科书第43页例1及相关练习
教学目标:
1、体悟“平均数”的实际意义。
2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。
3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。
4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。
教学重点、难点:
灵活选用求平均数的方法解决实际问题。理解平均数的'意义
教具、学具准备:
PPT等
教学流程:
一、谈话引入、初步感知平均数
1、学生交流课前收集到的有关平均数的信息。
2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?
3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?
4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。
二、构建新知
1.理解含义,探求方法。
观察棋子,提出问题。(多媒体显示)
师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?
2、感悟“平均数”的实际意义。
动手操作:以小组为单位研究怎样才能使三排棋子同样多。
师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?
这个平均数4与原来每排棋子的个数有什么关系呢?
3、探索求平均数的不同方法。
师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!
①小组活动讨论。
②汇报交流。(生说方法多媒体显示棋子移动过程)
移多补少! 先假设后均分。先求和再均分。
三、初步应用,内化拓展。
师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?
四、课堂总结
1、你现在所认识的平均数是什么?
2、理解平均数是个虚的数。
五、随堂作业
《平均数》教学设计8
教学内容:
练习十一1—3题,教材42页例1
教学目标:
1、掌握平均数的意义和求平均数的方法
2、知道移多补少求平均数的方法
3、会根据数据列出算式求平均数
教学重点:
掌握求平均数的方法
教学难点:
正确计算平均数
教具准备:
课件,小黑板,统计表
教学流程:
一、导入
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数
二、学习交流
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程
(1)指名展示
(2)这种方法叫什么?
点拨:移多补少
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=
(2)平均分成4份,怎么办?
52÷4=
4、归纳
要求平均数,可以先求出( )数,再平均分几份
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程
6、算出各小组的`平均体重,说说你们是怎么算的?
三、交流展示
展示自己的学习成果,说清求平均数的方法和过程
四、达标测评
1、练习十一第2题
(1)什么是最高温度?什么是最低温度
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录
(4)计算出一周平均最高温度和最低温度
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数
五、总结
通过这节课的学习活动,你有什么收获?
《平均数》教学设计9
一、教学目标
(一)知识与技能
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
二、教学重难点
教学重点:理解平均数的含义,掌握求平均数的方法。
教学难点:借助“移多补少”的方法理解平均数的意义。
三、教学准备
课件、实物投影。
四、教学过程
(一)创设情境
1.谈话引入。
以幻灯片形式出示教师家的书橱。
现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。
2.感知课题。
(1)学生思考,想象移动的过程。
(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?
(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
(二)探究新知
1.引发质疑,探索新知。
教师:看到这个课题,你想通过这节课学习到哪些知识?
预设:
(1)平均数是一个什么数?
(2)怎样计算平均数?
(3)平均数在生活中有什么用?
2.理解含义,探求方法。
出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。
仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?
预设:
(1)小红比小兰多收集多少个瓶子?
(2)小明再给小亮几瓶,他俩的瓶子就一样多?
(3)他们平均每人收集了多少个瓶子?
你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?
学生汇报交流。
小结1:求平均数实际就是把多的`补给少的,在数学上叫做“移多补少”。
小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。
(14+12+11+15)÷4=13(个)。
【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。
3.理解平均数的含义。
教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?
引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
预设:
(1)本周平均最高气温6摄氏度。
(2)三年级学生的平均身高是140厘米。
(3)四年级2班五位同学平均每人捐10本图书。
(4)李莉同学平均每天上学路上花费15分钟。
【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。
(三)知识应用
1.判断。
(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。
( )
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。
( )
(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。
( )
【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。
2.选择。
小明家平均每月用水( )吨。
A.(16+24+36+27)÷365
B.(16+24+36+27)÷12
C.(16+24+36+27)÷4
【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。
(四)全课小结
今天你有什么收获?
再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?
《平均数》教学设计10
以往对于平均数的概念引入,比较典型的是组织两组人数不等的比赛,在学生初步体会到比总数不公平的前提下,顺利过渡到比平均数的环节上来。而张齐华老师的“平均数”一课,从比投篮技术的情境引入:首先出场的是小强,他1分钟投中5个球,可是他对这一成绩似乎并不满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,会同意他的'要求吗?这样使学时体会到由于随机误差的存在而使得一次投球的成绩很难代表小强的真实水平,应该再给他两次机会。小强又投了两次,很巧的是后两次投篮成绩都是5个,显然是张老师精心设计的,使学生意识到用5来表示小强1分钟投中的个数最合适,避免了学生不会计算平均数的尴尬。接着小林出场,小林第一次只投中了3个球,“如果你是小林,会就这样结束吗?”从而自然引出第二组数据:3个、5个、4个。可是也引出了麻烦:三次成绩各不相同。这一回,又该怎么办?在学生思维的碰撞中,发现也用5来表示小林的成绩显然对小强来说是不公平的,学生凭直觉认为4最能代表小林1分钟的成绩,这样平均数的意义悄悄地被学生自己发现了。
张老师精巧的设计,再加上他灵活、智慧地处理生成,是课堂充满生机与活力,使我受益颇多。
《平均数》教学设计11
导学目标:
1.在丰富具体情境中,感受求平均数是解决一些问题的需要,体会平均数的意义。
2. 学会计算简单数据的平均数。
3、能从现实生活中发现问题,并根据需要收集有用的信息,培养同学们的策略意识和应用数学解决实际问题的能力。
重 点:学会求简单数据的平均数。
难 点:理解平均数的意义。
教学资源:自制课件、彩笔及笔筒
教学过程:
一.创设情境,提出问题
1、谈话:同学们,课间休息时玩什么?
(丢沙包、踢毽子、跳皮筋、跳绳等)
课前让同学们记录自己一分钟跳绳的次数,请一个小组汇报。
男生和女生谁获胜了?怎样比较?(求总数)
2、你玩过套圈的游戏吗?三年级第一小组的同学进行了男、女生套圈比赛,(出示成绩统计图),从图中你能获得什么信息?
你觉得男生成绩好还是女生成绩好?比什么?怎样比?
A、比男、女生的总数(质疑不公平)
B、套的最多的、最少的都是女生,不好比。
C、比男生还是女生套的准?
二.自主探索,解决问题
1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?
小组内说说自己的想法。
各组代表向全班学生汇报
本组的想法。引出平均数。即:分别求出男生、女生平均每人套中的个数。
2、求男、女生平均每人套中的个数
(1)学生演示移动条形统计图中方块,使4个男生套中的个数变得同样多。
移动女生条形统计图中方块,使5个女生套中的个数变得同样多。
动手操作移动彩笔。(说清移动方法及结果)
质疑:移动有局限性,数大或者没图怎么移?(如:求平均身高)
(2)通过计算求平均数:
求男生平均每人套中的个数。(抽生讲解思路并板书)
独立计算女生平均每人套中的个数。(抽生板书)
求丝带的平均数。(P94页2题)
求平均身高。
小结:求平均数的过程及注意事项。
三、巩固练习,拓展应用。
1、提问:学校篮球队员的平均身高是160厘米。李强是学校篮球队队员,他身高是155厘米,可能吗?学校篮球队可能有身高超过160的队员吗?
(1)在小组内讨论。
(2)指名回答,要求说出理由。
2、河水平均深度110厘米,身高145厘米,下河游泳一定安全吗?
(1)在小组内讨论。
(2)指名回答,要求说出理由。
揭示平均数的意义:平均数表示的是一组数据的平均水平,有些数可能比平均数大,有些数可能比平均数小,有些可能和平均数相等。
四、实际应用:
1、生活中哪些地方用到平均数?
2、给本节课打分(提出对老师、同学的建议,进一步渗透平均数的应用意识。)
五.课堂总结:今天学会了什么?有哪些收获与困惑?
教学反思
用平均数的知识解释简单实际问题,体验运用统计知识解决问题的乐趣。教完这堂课后,觉得有以下收获与困惑:
收获一:情境的成功运用。课一开始,我以学生熟悉而又喜欢的运动会跳绳的`录像引入,把学生一下子引入了课堂。这一情境的创设为新课的教学做好了铺垫,同时也为求平均数的方法(移多补少法)起到了迁移的作用。在例题教学中,我让学生观看了“套圈比赛”的录象,学生注意力特别集中,兴趣盎然,既而我抛出一个实质的问题:是男生套的准还是女生套的准?一石激起千层浪,学生们议论纷纷,有的认为男生组,有的认为女生组,学生各抒己见,各自发表了自己的意见?然后进行全班交流:有的学生用最多个体进行比较,有的学生用最少个体进行比较,有的用总数进行比较,还有的用求平均数的方法进行比较。这时候鼓励他们将心中的矛盾展示出来,让他们充分地争论,使学生切实感受到用求平均数的方法来解决这一问题的合理。当学生感受到要比较谁套得更准一些必须先求出“男、女生平均每人投中的个数”后,我并没有急着让学生讨论或者讲解“平均每人套中个数”的含义,而是让学生用移一移,画一画的,或者用计算的方法求出平均数。在此,我把思考的权利交给学生,不交流的权利还给学生,让学生充分感受所学知识的价值。
收获二:数学与生活紧密联系。在教学中,我还结合教材内容,遵循学生认知规律,把学生对生活的体验融进课堂,引导学生领悟数学与生活的联系,发掘现实生活中的数学素材,利用身边有效的数学资源学习数学知识。在我所选取的四个练习,由浅入深,层层深入,所选的内容都与学生生活贴近的题材,如:第一题是对平均数的理解;第二题是对平均数的应用,第三题是对平均数的深化认识。这三道巩固练习都与学生的生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,从而对数学产生极大的兴趣,主动地去学数学,用数学。这样的教学实现了数学教育的多重价值,使各学科起到了有效的整合作用。
但在这堂课教学中,我也有困惑:首先问题的设计是否能引起学生的兴趣,进行合作讨论、探究,更深层次地理解概念;其次小组合作的学习方式,有流于过场的倾向,怎样实现这一学习方式优化及发挥其最大功用,这些问题仍值得不断探究和实践!
《平均数》教学设计12
一、教学目标:
1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。
2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
二、教学重点:理解平均数的意义,学会计算简单数据的平均数。
三、教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
四、教学过程:
1、创设情境,体验产生平均数的必要性。
同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?
我们一起来看看比赛情况。
出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)
A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。
学生讨论比总数——每队总人数不相同,不公平
比最多的——个人水平,不是整队水平
B、到底怎样比才公平地体现两队的实力(投球水平)呢?
(平均每人投中多少个球)——实际就是每队队员投球的平均数
揭题板书——认识平均数
2、认识平均数
刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?
A、同桌合作完成
a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?
B、反馈:哪队赢了?你是用什么方法研究出来的?
a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?
每人投球个数变了
每队的总个数不变
(每队内部的个数调整,不影响整个队的实力)
像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少
刚才同学们用移多补少的`方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。
还有别的方法吗?
C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)
(1)、算式中的数都表示什么意思?
(2)、比较平均数,谁赢了?
比较两种方法,你喜欢哪一种?为什么?
小结:当数字比较小又接近的时候我们用移多补少更简便,
当数字比较大而复杂的时候我们用计算的方法更为简单。
3、理解平均数的意义
刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?
(1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?
有的比5大――可能相等或不相等
有的比5小――
(2)、同样都是“5”,它们所表示的意义相同吗?
是个体的投球水平
是整个队的总体投球水
4、其实,我们身边也有许多平均数,你能举个例子吗?
五、在具体情境中理解、应用平均数
1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?
昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。
(1)、出示身高计表
同学12345
身高cm131136134132137
(2)、估计:他们的平均身高大约是多少?你是怎么估算的?
145cm、130cm可以吗?最小数<平均数<最大数
(3)、算一算他们的平均身高(计算方法)
平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)
(4)、根据第一排同学的身高,请你推测一下咱们班同学的平均身高,并说说你的依据是什么?
(5)、看来推测的结果是否准确和我们选取哪5名同学有很大关系,如果按现在的座位(8排8列),还是选5名同学,你准备怎么选?
小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。
2、小熊商店
(1)、出示统计图,你知道了什么?
(2)、求出前三周的平均数
(3)、预测一下第四周进几箱?
六、拓展
淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?
七、小结
这堂课你学得开心吗?有什么收获吗?
《平均数》教学设计13
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2
二、教学准备
多媒体课件,姓名笔划数统计表每人一张。
三、教学目标与策略选择
平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:
(一)教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学流程设计及意图
教学流程
设计意图
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示自己的姓名。
师:能完成这表格吗?(学生数一数,完成表格)
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察老师姓名的笔画数,你能提出什么数学问题?
预设生(1)每个字笔画数的多少?
(2)比多少?
(3)发现数字间的规律。
(4)求总数?(师追问:你是怎样算出来的?)
师:知道了笔画数的总数,你现在又能解决什么问题?
预设生:可以求出平均每个字的笔画数。
师:平均每个字的笔画数,你是怎么得来的?
预设生(1)通过计算(10+11+16)÷3=12?1
(2)通过移多补少得到。
2、在对话交流中明晰概念
师:袁老师的姓名平均笔画数12画,这又表示什么?
预设生(1)表示袁铭璟三个字笔画数的平均水平。
(2)表示老师姓名笔画数的一般水平。
师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
预设生(1)有关系的,是他们的中间数。
(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。
(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。
(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把12叫做袁老师姓名笔画数的--平均数。(板书课题)
师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
预设生(1)比笔画数的总数。
(2)比平均笔画数。
(让学生先在小组内讨论,然后组织全班汇报交流。)
预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。
(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示(1)文成县实验小学四年级平均每班有学生56人。
(2)四(3)班上学期期末考试数学平均分是81分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。
(2)略
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。
学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5师:你们知道这位同学是怎么想的吗?
预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。
学生计算,注重计算方法的选择。然后交流。
师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。
《平均数》教学反思
《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的`密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。
突出主体地位,创造了自然和谐的环境
在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。
本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。
尊重个体差异,设计了满足不同需求的练习
家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。
思维深度延伸,激活了学生内在的发展潜能
在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1.什么样的情况下,可以(142+140)÷2? 2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?
2.这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。
《平均数》教学设计14
教学目标
1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。
2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题能力。
教学重难点
教学重点:灵活选用“求平均数”的方法解决实际问题。
教学难点:平均数的意义
教学准备:多媒体课件、秒表、绳子
教学流程
(一)创设情境,激发兴趣
师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的'“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?
生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。
师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?
生:6人一起跳,分组数数。
师:哦,好主意!那就按你的方法比赛吧!
(二)解决问题,探求新知
1、引出“平均数”,体验“平均数”产生价值。
6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:
第一组:82、86、81第二组:78、83、82
师:请同学们以最快的口算算出结果,并汇报补充板书如下:
第一组:82+86+81=249第二组:78+83+82=243
师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)
师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)
师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?
生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。
师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的办法来比较这两组总体跳绳水平的高低了吗?
(全班寂然无声,学生思索着,半晌,有学生举手了)
生:我在电视上看到过这种类似的情况,比较平均数就可以了。
(这时有很多学生表示赞同,并投去了赞赏的目光)
师:(赞赏)哦,你知道的知识真多,老师佩服你!
2、探索求平均数的方法
师:怎样计算每个组跳绳的平均数呢?
(在老师的引导下,学生提出了方法,师要求任选一组说想法)
生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83
生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83
师:谁听明白了吗?(再指5名学生说)
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法移多补少法
师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
......
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数......
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县—xxxx年家庭电脑拥有量的统计图。
图略:350台,20xx年600台,xxxx年1000台,xxxx年1600台,xxxx年2500台
(1)求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2)估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?
(3)从图上你还知道些什么?
2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
b、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法移多补少法)
第一组:(82+86+81)/3=83第二组:(78+83+82+83)/4~81
当人数不相等,比总数不公平时,我们就得看“平均数”。
“平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势
《平均数》教学设计15
教学内容:本课内容是人教版义务教育课程标准实验教科书四年级下册90页的内容。
学习目标分析:
1、认知目标:在具体问题情境中,感受求平均数是解决一些实际问题的需要,理解平均数的意义,初步学会简单的求平均数的方法。
2、能力目标:能运用平均数的知识解释简单的生活现象,解决简单的实际问题。积累分析和处理数据的方法,发展统计观念。
3、情感目标:增强与同伴交流的意识与能力,体会平均数在生活中的实际应用,积累学习数学的情感。
教学重、难点:
本节课的教学重点是理解平均数的'含义和简单求平均数的方法。根据教材内容特点并结合四年级学生的认知基础,我将本课的教学难点定为:理解平均数在统计学上的意义和作用。
教学资源与工具设计
多媒体课件
教学过程
一、创设情景导入新课
1、李明和王小飞两位同学要进行篮球的定点投篮比赛。
(课件出示)比赛规则:每人各进行3次1分钟的定点投篮,以每次投中个数为成绩。
(课件出示)比赛成绩统计图:
观察,你从统计图中知道了什么?
问题:谁赢了?为什么?
2、王小飞再投一次,(课件出示成绩统计图)
问题:现在谁赢了?为什么?
发现问题:次数不同,比总数不公平。从而引出新课
二、新知探究
(一)、认识平均数
1、合作讨论
讨论问题:次数不同,比总数不公平时,该怎样比才公平?
2、探索求平均数的方法
想一想:(以李明三次投球为例)能计算出李明三次投球成绩的平均数吗?
教师适时板书:(7+3+8)÷3
=18÷3
=6(个)
问题:(1)、“6”是哪几个数的平均数?
(2)、我们是怎样求出7、3、8这三个数的平均数的?
小结方法:先求和再平分。
3、理解平均数的意义
(1)、引导:不计算,有办法找到李明三次投球成绩的平均数吗?
小组讨论
根据学生回答,课件出示移动变化的过程和结果。
说一说:根据刚才以多补少找平均数的过程,说说你对平均数的理解。
想一想:“6”表示的是李明三次都投中6个球吗?“6”表示什么?
在学生回答的基础上引导学生理解平均数的含义,认识平均数的特征。
3、即时练习
学生独立完成求王小飞平均每次投中球的数量。
组织汇报,交流方法
结论:通过比较平均数,谁赢了?
通过这次比赛的经历,你有什么感受或体会?
4、沟通平均数与生活的联系
想一想:在平时的生活中,你们见过平均数吗?
三、联系实际,拓展应用
1、判断下列说法正确吗?为什么?
(1)、不会游泳的小明身高140cm,他要到平均水深110cm的河里游泳不会有危险。
(2)、小明家去年4个季度的用水量分别是16吨、24吨、35吨、21吨。小明家平均每月用水量是(16+24+35+21)÷4=24(吨)。
2、你能想办法求出他的语文成绩吗?
(1)、先估测一下:语文成绩可能是多少?
(2)、同桌合作讨论。语文成绩究竟是多少?
四、拓展延伸
我校的舞蹈队参加市舞蹈比赛,评委亮分96、91、95、96、84、99、97,算一算,我校舞蹈队的最后所得平均分是多少?
激发认知矛盾:平均分是94分,可评委却宣布最后得分是95分。这是为什么?
师:请孩子们带着这个问题下课后自己去寻找答案。
板书设计:
、