平均数教学设计
平均数教学设计1
第一课时
教学内容:
教科书第43页例1及相关练习
教学目标:
1、体悟“平均数”的实际意义。
2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。
3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。
4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。
教学重点、难点:
灵活选用求平均数的方法解决实际问题。理解平均数的.意义
教具、学具准备:
PPT等
教学流程:
一、谈话引入、初步感知平均数
1、学生交流课前收集到的有关平均数的信息。
2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?
3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?
4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。
二、构建新知
1.理解含义,探求方法。
观察棋子,提出问题。(多媒体显示)
师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?
2、感悟“平均数”的实际意义。
动手操作:以小组为单位研究怎样才能使三排棋子同样多。
师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?
这个平均数4与原来每排棋子的个数有什么关系呢?
3、探索求平均数的不同方法。
师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!
①小组活动讨论。
②汇报交流。(生说方法多媒体显示棋子移动过程)
移多补少! 先假设后均分。先求和再均分。
三、初步应用,内化拓展。
师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?
四、课堂总结
1、你现在所认识的平均数是什么?
2、理解平均数是个虚的数。
五、随堂作业
平均数教学设计2
教学目标:
1. 使学生掌握平均数的意义和求平均数的方法。
2 . 使学生能根据数据列出算式求平均数。
3. 在教学活动中提高学生的发散思维能力。
教学重、难点:
1. 重点:掌握平均数的意义和求平均数的方法。
2. 难点:能根据数据列出算式求平均数。
教学过程:
一. 谈话导入
列式:8 ÷4=2 ,在这个算式里 8 称为什么数?(总数) 4 称为什么数?(份数)得到的 2 称为什么数?(每份数,也叫平均数)
今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。
揭示课题:平均数
二. 探求新知
1. 导入新课
同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。
(1)出示统计图。
(2)观察:从统计图中,你能了解到哪些信息?
(3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使 4 个人收集的废瓶子一样多呢?大家来想想办法。
组织学生交流、讨论,然后指名回答。
一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。
二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了 4 个人,再除以 4 )
教师根据学生的回答,并板书:
( 14+12+11+13 )÷4
=52÷4
=13(个)
“ 13 ”在这里也叫什么数?
(4)巩固提问:这里为什么要除以 4 ?
(5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的.平均数。
三. 巩固提高
1. 用四个同样的杯子装水,每个杯子分别标有水面的高度,这四个杯子水面的平均高度是多少厘米?(12厘米,6厘米,10厘米,4厘米)
(1) 指名学生汇报,并说一说你们是怎么求平均数的。教师板书。
(2) 根据学生的完成情况,教师小结。
2、一本书,小明第一天读了12页,第二天读了20页,他平均每天读了多少页?
3、活动:求平均年龄
在小组内说出每个同学的年龄,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均年龄。
4、想一想:下面哪个列式才对?
下面是一只母鸡六个月产蛋的统计表。根据题目中给的数据,算出这只母鸡平均每月产多少蛋。
月份个数
一月20
二月23
三月26
四月28
五月30
六月29
5、一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克。这个小组的平均体重是多少千克?
6、想一想:游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?
四. 全堂小结
今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?
五.布置作业,课后拓展延伸。
自已调查家人的身高及体重,算出平均身高和平均体重。
教案说明:用谈话的方式来培养学生热爱卫生,保护环境的意识来导入进新课(教学例题)。
最后的巩固提高也是按从易到难来设计,先让学生求小棒 的平均数巩固好已学的求平均数的方法,然后用课堂活动来提高学生的学习兴趣,不但培养了学生的学习能力,更好的提高了学生的动手合作能力和运用知识解决问题的能力,更好的提高了学生的学习积极性。
平均数教学设计3
教学目标:
1、知道平均数的含义和求法。
2、加深对“平均数”和“平均分”意义的理解。
3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。
难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。
教学过程:
一、创设情境,初步感知
1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。
2、感知。
(1)学生思考,想移的过程
(2)教师操作引导:现在每排都有7个,7是这组数的什么数?
(3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。
师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。]
二、合作探究,深化理解
1.操作:
师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4个,第三排放3个,注意摆的时候,要一一对应地摆齐。
2.学生合作探究:
师:平均每排有多少个圆形磁铁?你是怎样想的?3.交流汇报a.移多补少:只要从8个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。
b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。
[设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽
象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。] 4、教学例1 (1)、出示情景图,收集数学信息
师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?
生:小明收集15个,小亮收集11个生:小红比小兰多收集2个……
师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?
生:就是让我们求出平均数。
师:你同意他的说法吗?你是怎样理解的?(2)利用情境图,处理数学信息A:移多补少
师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?
生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个
师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)
生:13就是14、12、11、15这组数的平均数B:先求和再平均分师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。
生:14+12+11+15=52(个) 52÷4=13(个)
师:13是这组数的什么数?(平均数)
生:13就是14、12、11、15这组数的平均数C:理解平均数是一个不“真实”的数。
师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗?
生:不是生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。
师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子
师:现在同学们来观察平均数13和原来这一组数,你发现了什么?
生1:小红和小明收集的瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。
生2:平均数在最大的数和最小的数之间。
生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”
生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。” D:归纳“平均数”的含义
师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。
E:小结求平均数的方法,知道平均数在生活中的运用。
师:通过刚才的学习你能说一说求平均数有几种方法?根据学生回答板书:
1、移多补少2、先求和再平均分师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。
师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。
『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会
“平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』
三、巩固应用
1、算一算在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?
2、辨一辨
(1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。
(2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。
3、想一想:
星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?□会□不会□可能会□可能不会师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。
[设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件
发生的可能性,提升了他们数学交流的能力。]
四、全课总结.这节课,你有什么收获?[设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]
五、拓展延伸,深化提高
1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的'知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。
[设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]授课时间:3月27日下午第一节课教学反思教学中,我培养学生多角度地思考问题,迁移类推能力,很注意学生在什么知识点上会产生思维障碍,就在这个地方解决,为了弄清例2怎样计算,让学生运用例1探索的方法,类推迁移,尝试做,增强学生的感性认识。然后类推到“做一做”练习之中。
积极引探,发挥两主作用。课标指出:教学过程中,要充分发挥教师的主导作用和学生学习的积极性、主动性。教学时,教师通过积极的“引”,来激发学生主动地“探”,使教与学产生共振,和谐发展。教师出示例2时,问与例1相对有什么不同?启发学生积极思维;
让学生主动探索出:求平均数先算什么,后算什么,同时注意培养学生的归纳思维能力。
精心设计练习。大纲指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段。练习主要在课内进行,练习要有层次,有针对性,讲究方式,使全班学生都得到较多的练习机会等。”我在课堂练习中,除基本训练打基础外,还出示了“尝试题”,诱发学生学习的积极性,边算边讨论,成功地解答尝试题后,教师还根据本节课的教学重、难点,设计了三个层次的专项练习:
1.基本训练。2.变式练习。3.游戏练习。为学生设计多层次的尝试思维情景,让学生看有所思,练有所想。
加强了信息交流,促进尝试成功。尝试成功的重要条件之一是学生讨论,是在学生获得自己的努力结果之后进行的生动活泼、独具一格的“语言和思维训练”,这种讨论使师生之间、学生之间在情感上得到交流和满足,有利于培养学生的数学语言表达能力和分析推理能力,发展学生思维,加深理解教材。我在课堂教学中设计了三次学生讨论,教师根据学生输送的信息,针对学习新知识的缺陷,作画龙点睛式的讲解,确保学生系统地掌握知识。与此同时,我也参与讨论,及时了解情况,并根据学生反馈的信息,及时进行针对性的讲解,以“教”促“学”,“学”中有“教”,密切了教与学的关系,保证了尝试成功。
平均数教学设计4
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2
二、教学准备
多媒体课件,姓名笔划数统计表每人一张。
三、教学目标与策略选择
平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:
(一)教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学流程设计及意图
教学流程
设计意图
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示自己的姓名。
师:能完成这表格吗?(学生数一数,完成表格)
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察老师姓名的笔画数,你能提出什么数学问题?
预设生(1)每个字笔画数的多少?
(2)比多少?
(3)发现数字间的规律。
(4)求总数?(师追问:你是怎样算出来的?)
师:知道了笔画数的总数,你现在又能解决什么问题?
预设生:可以求出平均每个字的笔画数。
师:平均每个字的笔画数,你是怎么得来的?
预设生(1)通过计算(10+11+16)÷3=12?1
(2)通过移多补少得到。
2、在对话交流中明晰概念
师:袁老师的姓名平均笔画数12画,这又表示什么?
预设生(1)表示袁铭璟三个字笔画数的平均水平。
(2)表示老师姓名笔画数的一般水平。
师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
预设生(1)有关系的,是他们的中间数。
(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。
(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。
(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把12叫做袁老师姓名笔画数的--平均数。(板书课题)
师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
预设生(1)比笔画数的总数。
(2)比平均笔画数。
(让学生先在小组内讨论,然后组织全班汇报交流。)
预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。
(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示(1)文成县实验小学四年级平均每班有学生56人。
(2)四(3)班上学期期末考试数学平均分是81分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。
(2)略
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。
学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5师:你们知道这位同学是怎么想的吗?
预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。
学生计算,注重计算方法的选择。然后交流。
师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的`方法计算,在此暂时不作总结提升,留待练习课中予以落实。
《平均数》教学反思
《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。
突出主体地位,创造了自然和谐的环境
在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。
本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。
尊重个体差异,设计了满足不同需求的练习
家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。
思维深度延伸,激活了学生内在的发展潜能
在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1.什么样的情况下,可以(142+140)÷2? 2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?
2.这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。
平均数教学设计5
教学目标:
1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。
2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。
3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。
教学重点:体会平均数的意义,掌握求平均数的方法。
教学难点:理解平均数的意义
教学具准备:套圈统计图(每组一个)、多媒体课件
教学过程:
一、设疑引欲,提出问题
看套圈比赛的录像,出示统计图。
1、这幅统计图表示他们套中的个数,从中你知道了些什么?
2、想一想,是男生套得准一些还是女生套得准一些呢?
二、解决问题,探求新知
1.产生求平均数的心理需求
(1)学生讨论交流哪一队套圈套得准一些。
(2)提问:怎样比才既合理又公平呢?
(3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。
2.自主探索平均数的意义和计算方法
先求男生平均每人套中的个数,学生讨论交流。
(1)通过移多补少,直观揭示平均数的意义
(2)揭示“先求和再平均分”的求平均数的一般方法
列式计算:5+9+8+6=28(个)28÷4=7(个)
这里的28指的是什么?为什么要除以4?
求女生平均每人套中的个数。
(1)估一估
(2)算一算:11+4+8+2+5=30(个)30÷5=6(个)
这里的30指的是什么?为什么这里用总数除以的是5而不是4?
小结:通过比较,我们发现在这次比赛中,男生套得准一些。
3.理解平均数的'范围
(1)比较
男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?
(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。
三、拓展练习,深入理解
1.练习用“求和再平均分”的方法求平均数
(1)出示校运动队三年级学生肺活量情况统计图(三名学生)
提问:你能算出他们的平均肺活量吗?
交流:把你的想法与同学们交流交流。
(2)出示三年级部分学生肺活量情况统计图(四名学生)
提问:算算他们的平均肺活量。
比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。
2.加深对平均数意义的理解
(1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?
(2)学生交流
3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确
(1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。
我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)
次数第一次第二次第三次第四次第五次心率(次/分)150160180170140
(2)提问:从表中你知道些什么?
(3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?
①130次②160次③190次
(4)根据平均数的这个特点,你能说出这个平均数的范围吗?
(5)小明的运动量适宜吗?
4.进一步理解平均数的意义
(1)出示一高一矮两名学生
指一指:他们俩的平均身高大概在什么位置?
(2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)
指一指:另一位体坛明星大概有多高?
(3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)
指一指:这位运动员的身高大概在哪里?
猜一猜:他是谁?
(4)出示新浪网上的NBA排行榜
找一找:有平均数吗?
想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?
四、全课总结,提升认识
平均数教学设计6
教学目标
知识与技能:
1、能对获得的数据进行整理,并用条形统计图表示出来。
2、认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
过程与方法:
1、经历收集、整理、描述和分析数据的过程。
2、经历读统计图、交流信息、提问题、解决问题的过程。
情感态度价值观:
从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。
教学重点
认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
教学难点
能用条形统计图表示数据,能根据给出的数据提问题并解决问题。
教学方法
尝试教学法
课型
新授课
教学准备
多媒体
教学时数
1
板书设计
教学过程:
一、炫我两分钟
二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。
为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。
从这个故事中你知道的统计有什么作用吗?
【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】
二、尝试小研究
尝试小研究:
研究一:
1.从上面的`统计图中,你得到了哪些信息?
2.这个统计图一个格表示几个人?你是怎么知道的?
3.自己提出问题并解答。
研究二:
1.完成课本91页,试一试:根据统计表,完成统计图。
2.交流展示学生完成的统计图。
三、小组合作探究
尝试研究一
出示小组合作交流建议:
1、组长组织本组成员有序进行交流,确定好组员的发言顺序。
2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。
3、组内分工,为班级展示提升做准备。
【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】
四、班内展示交流,建构新知
1、全班交流,师生评价。
2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)
3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)
小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的方法。
4、鼓励学生根据统计图提问并解答。交流时,学生提出的问题只要合理,就给予肯定。
【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】
平均数教学设计7
一、教学内容:平均数(数学第八册)
二、教学目标:
1、体会、感悟 “平均数”的意义。
2、感受“平均数”所蕴含的丰富的现实背景和“平均数”的作用。
3、会求“平均数”,并能解决相应的比较简单的实际问题。
4、鼓励学生自主探索、合作交流及多策略的解决问题。
三、教学重点、难点:
重点:理解“平均数”的意义。会求“平均数”。
难点:正确理解“平均数”的实际意义,能解决简单的实际问题。
四、教学过程:
(一)开展活动,产生需求
1、钓鱼比赛:
游戏:现场进行钓鱼比赛。
2、填统计表:
第 组 钓鱼情况统计表 20xx年×月×日
同学①②③④⑤合计
钓鱼条数
将各组钓鱼情况填入统计表。
3、随机抽取数据,进行比较,引出平均数:
比较①:我们先比较这两个组。(人数相同,钓鱼条数不同)
哪个组的钓鱼的水平高?为什么?学生讨论。(比钓鱼总数即可)
比较②:人数不同的两个组进行比较。
哪个组的钓鱼水平高?为什么?学生讨论。(有必要认识平均数)
4、了解学生情况:
你对平均数有哪些了解?
(二)自主探索,初建概念,探究方法
1、抛出问题,小组探讨:(任选一组能整除的数据)
例如:第×组 钓鱼情况统计表
同学①②③④合计
钓鱼条数235512
这个组平均每人钓几条鱼呢?
小组讨论。
2、班内交流信息:(根据学生汇报情况方法不分先后,还可有其他方法)
方法a —— 移多补少:学生摆一摆,说一说
方法b —— 求和均分:例如:(2+ 3+ 5 + 2)÷ 4 = 3
为什么要把这几个数加起来,再除以4?
两种方法的结果有什么相同点? (每人钓的鱼同样多了)
小结:同学们用不同的方法都研究出了这个组平均每人钓3条鱼。
这个3就是2、3、5、2的平均数。
3、解决问题:
① 确定另一组钓鱼水平。(任选一组不能整除的数据)
例如:第×组 钓鱼情况统计表
同学①②③④⑤合计
钓鱼条数2234314
a、这个组钓鱼的平均数是几呢?
有的同学用摆一摆方法,得不到平均数。
有的同学们为什么不用移的方法解决呢?
列式:(2+ 2+ 3 + 4+ 3)÷5 = 2.8 为什么要除以5?
b、这组每个人实际是钓2.8条鱼吗?
它表示什么意思呢?
c、2.8条在统计图上怎样表示?
小结:2.8不是每个人实际钓鱼的数。它表示的是这个组钓鱼的一般水平。
②小结计算方法:刚才同学们是用什么方法得到平均数的'?
③各组钓鱼情况:
你们每个组钓鱼的平均数是多少呢?算一算。
④评价:各组报本组钓鱼的平均数。
×组钓鱼水平最高。
(三)初步应用平均数,理解、内化概念。
1、尝试独立解决问题:
小强就特别喜欢打靶,他去打了两次。哪次打得好?为什么?
小强打靶成绩统计表(第一次)小强打靶成绩统计表 (第二次)
第几枪1234第几枪12345
打中分数98910打中分数771079
平均数有什么用?
2、用身边的实例,进一步理解平均数的概念:
怎么计算咱们四(1)班的平均身高?
咱们班的平均身高约为148厘米。148厘米是你的身高吗?(指某一个同学)你的身高比平均数怎么样?
这个148厘米表示什么?(同学身高的一般情况)
四(2)班同学的平均身高是146厘米。请问四(2)班任诚同学的身高一定就比咱们班某个同学矮吗?为什么?
3、估算,明确平均数的取值范围:
①提供素材:(放电视录像:欢乐总动员歌手比赛)
你能很快估计出这位歌手的最后得分吗?
(欢乐总动员评委评分为:96、95、93、94、95、95、96、93、93 )
②全班交流估的分数。
③你是怎样估的?
④为什么不估96分?93分?
⑤验证歌手得分。
a学生计算。b放录象验证歌手得分。
⑥讨论:你认为这种评分方法是否公平、合理吗?你有什么建议吗?
为什么要去掉一个最低分?一个最高分?
如果去掉一个最低分,一个最高分怎样算平均分?
(四)总结
你对平均数有了哪些新的认识?
(五)联系实际,课外延伸
我们的学习和生活中,哪儿还能用到平均数呢?举例说一说
平均数教学设计8
教学内容:《义务教育课程标准实验教科书数学》三年级下册P92-94页
教学目标:
1、在具体的问题情境中,感受求平均数是解决一些实际问题的需要。在操作和思考中体会平均数的意义。学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重点:平均数的意义、计算简单数据的平均数
教学难点:平均数的意义
教学过程:
一、创设情境,引入问题
1、前不久,我们漆桥中心小学三年级同学举行了套圈比赛,每人套15个。老师统计了男、女生套中的个数,并制成了统计表。
2、男生套圈成绩统计表
姓名李小钢张明王宇陈晓杰
个数4896
女生套圈成绩统计表
姓名吴燕刘晓娟史敏敏孙云
个数8645
师问:男生几人参加了比赛?女生几人参加了比赛?你觉得怎样才能比出谁赢了呢?学生观察表后回答:
男生一共套了多少个?4+8+9+6=27(个)
女生一共套了多少个?8+6+4+5=23(个)
结果是男生胜了。
3、师:哎呀!男生赢了,女生输了。为了增强实力,女生再派1名代表参加比赛,和实力强大的男生进行了第二次的比赛。老师统计了第二次的比赛情况制成了统计图,我们看男、女生分别套了多少个?(板书:6、9、7、6)(10、4、7、5、4)
请你算一算这一次男、女生的总成绩分别是多少?
6+9+7+6=28(个)10+4+7+5+4=30(个)
这次比较总数,结果是女生获胜!
4、对这样的比法,你有什么想法?为什么?(人数不一样,不公平)为什么不公平呢?第一次比赛我们不是比较总数吗?
5、看来在人数不相等的情况下,比总数行不行?
二、自主探索,解决问题
那么怎样比才公平呢?同桌交流。(分别算出男、女平均每人套中的个数)
我们怎样才能知道男生平均每人套多少个圈呢?先想,想好后同桌交流。
想出几种方法?(必要时可以写写)
6+9+7+6=28(个)28÷4=7(个)7就是6、9、7、6这组的平均数。板书:7
先求的'是什么?再求的是什么?除了这种方法还有什么方法?在图上移(移多补少)板书
那么你能算出女生平均每人套中了多少个?
学生计算后汇报,师板书:10+4+7+5+4=30(个)30÷5=6(个)
6就是10、4、7、5、4这组数的什么数?(平均数)
求女生平均每人套中几个圈要除以5,而求男生时为什么除以4?
5、现在你知道男生胜了还是女生胜了吗?
男生平均每人套中的个数比女生多,表示每个男生套中的都比女生多吗?你能举举例吗?
这个平均数和平均分不一样,平均数比较好的表现了这一队套圈的整体水平,并不表示每一个人真的套了7个。
6、(1)我们算了2组数的平均数了,现在同学们来观察平均数和原来一组数,你发现了什么?先观察平均数7和原来每个男生套中的个数,你发现了什么?
a、每个男生套中的个数有比平均数多的,有比平均数少的,还有一样的三种情况。
b、平均数在最大的数和最小的数之间。
(2)小结:平均数的大小在最大的数和最小的数之间。一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小,还有些数和平均数一样。
三、巩固练习,拓展应用
1、今天的数学课上,我发现了有3位同学听的特别认真,老师讲课他们听得很认真,同学发言他们也听得很认真。(三人上台领奖品,老师分别奖励他们1支、3支、5支铅笔)
师:请上台的三个小朋友数一数,手里有几只铅笔,然后大声的告诉大家。你们说老师这样奖励公平吗?怎样才公平吗?那么你能用小棒代替把它们移一移。
师:在移之前想好了怎样移?同桌的先说,再移,台上的3个小朋友互相商量一下,再移。
学生移好后,说说移的过程。
师:你还有什么方法求出来吗?
学生计算,指名说出算式,师板书。
我们知道了平均数的特点。谁来说一说,求平均数一般可以用哪些方法?你喜欢用哪种方法?
2、估一估。为了布置教室,小丽买来一些丝带,帮小丽估一估这三条丝带平均长度是多少?
同学们先估一估,平均长度在㎝和()㎝之间,为什么?平均数在大数和小数之间。
再算一算,写在自备本上。
你是怎么算的?都是先求和再平均分吗?为什么这个题目你不用移多补少的方法?
我们要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少简单;数量多,相差大,用先和再平均分。
3、平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。
4、辨一辨
(1)漆桥中心小学的老师平均年龄是38岁,那么诸老师一定是38岁。
(2)漆桥中心小学全体同学向希望工程捐款,平均每人捐款3元。马倩同学不可能捐4元。
5、说一说
(1)李强是学校篮球队队员,他身高155厘米,可能吗?
(2)学校篮球队可能有身高超过160厘米的队员吗?
平均身高是怎么算出来,把篮球队员一共的身高除以篮球队员的人数。
6、想一想:出示游泳图,平均水深110厘米,小明身高145厘米,下去游泳有危险吗?
平均数教学设计9
教学设计教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。
二、探究体验
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、实践应用
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。
2、根据统计表算一算,三年段平均每班踢几下?
班级 三(1) 三(2) 三(3) 三(4)
踢的次数 632 654 668 646
3、生独立完成练习十一第2题。
四、全课总结
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
平均数 教学设计
共4课时 总第23课时
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、情景导入
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的`水的平均重量吗?
2、学生动手解决,并交流解决的方法。
3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
平均数教学设计10
教学目标
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点
理解平均数的意义,学会求简单数据的平均数。
教学难点
理解平均数的意义
教学准备
多媒体课件,作业纸
教学过程
一、谈话导入
谈话:同学们,你们喜欢玩游戏吗?你们经常玩些什么游戏呢?
追问:图上的小朋友们再玩什么游戏啊?(套圈游戏)
二、创设情境,自主探索
1.呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:这是三年级第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈。
2.引入平均数。
出示男、女生套圈成绩统计图。
谈话:老师已经分别把男、女生的套圈成绩制成了统计图。看。
提问:看了这两张统计图,你知道了什么?
主要引导学生读出男女生每人的套圈个数。
提问:根据这两张统计图,你能提出一些什么问题呢?
谈话:男女生套完圈以后,他们想要知道到底是男生套得准一些还是女生套得准一些,想请我们的同学做小裁判帮帮他们,你们有什么方法去比较呢?先请小组4人交流一下。
结合学生的想法,相机进行引导。
想法一:因为吴燕套中的个数最多,所以女生队套得准(比最多)。
追问:用一个人的成绩代表整个队的成绩,这样合适吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
谈话:那请同学们口算一下男生一共套了多少个?女生呢?
男生:28个女生:30个
谈话:如果比总数看起来是女生获胜了,男生对这样的比法有意见吗?为什么?
追问:这种想法已经注意到从整体的.方面去比较,但是这样比公平吗?为什么?(他们两队人数不相等)那可以怎么办呢?
想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。
追问:这样比公平吗?(公平)我们就用“求平均每人套中的个数”这种方法试一试。(板书:求平均每人套中的个数)
想法四:去掉一个女生或者添上一个男生。
谈话:这样的想法是不错的,可是女生谁也不愿意被去掉,而且男生也没有人了。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
3.理解平均数。
操作:男生平均每人套中多少个呢?下面请同学们仔细观察男生的统计图,先在小组里讨论用什么方法找出男生的平均成绩,再完成作业纸上的问题1。看哪些小组想的办法又多又好。
提问:你是怎么找到男生平均每人套中的个数?
学生可能出现两种方法:一是移多补少;
让学生讲解移的过程。
二是先合后分。
学生说一说怎样用先合后分的方法求平均数,并引导列式:6+9+7+6=28(个),28÷4=7(个)。
提问:第一步算得是什么?这里的7表示什么意思?
【说明:将学生对平均数的探求发端于操作和讨论,让学生在活动中获得有关平均数的多种求法。】
谈话:统计图中的红色线条表示什么?
根据学生回答,板书课题:这就是我们今天要研究的统计中的平均数。(板书课题:统计—平均数)
观察:男生套圈的平均数是7,这四个男生套中的个数分别是6个、9个、7个和6个,从图上看你能猜测一下平均数和每人套中的个数相比较,它在哪两个数之间呢?你是怎么想的?
引导:平均数不可能比最大的数大,也不可能比最小的数小,因此平均数的范围在最小的数和最大的数之间。
多媒体出示平均数的取值范围。
提问:根据我们刚才的发现,谁能估一估女生队平均每人套中的个数在什么范围之间?
谈话:女生平均每人套中多少个圈呢?请你结合作业纸上的第二幅图和问题2,自己动手做一做。
反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?
提问:现在你能判断男生套得准还是女生套得准吗?
小结:通过刚才的活动,我们认识了什么?那你认识了平均数的哪些知识呢?
小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。
【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。】
三、巩固深化,拓展应用
1.完成“想想做做”第1题。
先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。
2.想想做做2
谈话:要求的是这三条丝带的平均长度是多少,那你能估计一下平均长度在什么范围之间呢?
学生回答后谈话:那请你动手算一算,看看你得到的结果和你估计的结果是否符合。
3.谈话:生活中有很多事都是和平均数有关的,请看,这是我校篮球队的情况(出示想想做做3)
平均数教学设计11
教学内容:实验教材三年级下册第三单元。
课题:求平均数。
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教师重点和难点:理解平均数的含义,掌握求平均数的方法:“移多补少”的实际意义和应用。
教具/学具准备:多媒体课件、圆片、计算器。
教学过程
一、创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。
2.感知
(1)学生思考,想象移的过程。
(2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?
(3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
二、探究新知
1.理解含义,探求方法。
提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。
师:看着面前的圆片,你能提出什么问题,
生:我想使每排的圆片同样多?
师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。
小组活动讨论。
汇报交流。
生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。
生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。
师:不管怎样移,我们都是把个数多的移给个数少的
请你想一想:在刚才移动过程中,有什么相同的规律?
根据学生回答板书:不相等 相等
小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。
2.初步应用,内化拓展。
师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)
生1:我是这样想的'(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。
生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。
出示幻灯:身高情况
先估计一下平均身高大约是多少?(148,147,149,……)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。
生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。
生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。
三、拓展练习
1.应用一。
小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)
交流反馈。
师:看了两(三)组平均体重数据有何启发?[根据“平均数”可以对两(三)组体重进行比较]
师:教师还收集了一组数据,发现我校第一季度用电情况如下表:
1月
2月
3月
800度
1000度
900度
(1)说说从表中你有什么发现?
(2)算一下我校第一季度平每月用电量。
(3)预测4月份的用电量。
(4)小组讨论,学生间交流。
(5)指名汇报:你是根据什么来估计的?
2.应用二。
请用计算器帮这位小选手算算最后得分。
生1:最后得分(84+70+88+94+82+86)÷6=84(分)。(大部分学生表示赞同)
生2:我不同意,我认为应该去掉一个最高分、一个最低分。最后得分(84+88+82+86)÷4=85(分),这样才公平、合理。
师:这种求平均数的方法,你有没有在哪里见过?(奥运会、电视比赛等)为了使比赛更公平,通常在比赛中采用这种方法求平均数。
3.应用三。
师:星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?
□会 □不会 □可能会 □可能不会
(1)把自己的想法与同桌交流。
(2)指名说说(3个)
(3)学生评价。
师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,也可能正好是126厘米,我们在对待实际问题时就应该根据实际情况分别对待。
四、课堂总结
师:这节课你有哪些收获?还有问题吗?
五、课外延伸
推荐作业:1、现在你对教师上课开始的问题“我们班的平均身高是多少?”
能解决吗?这一问题就留给大家课后去解决。
平均数教学设计12
一、教学目标:
1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。
2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
二、教学重点:理解平均数的意义,学会计算简单数据的平均数。
三、教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
四、教学过程:
1、创设情境,体验产生平均数的必要性。
同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?
我们一起来看看比赛情况。
出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)
A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。
学生讨论比总数——每队总人数不相同,不公平
比最多的——个人水平,不是整队水平
B、到底怎样比才公平地体现两队的实力(投球水平)呢?
(平均每人投中多少个球)——实际就是每队队员投球的平均数
揭题板书——认识平均数
2、认识平均数
刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?
A、同桌合作完成
a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?
B、反馈:哪队赢了?你是用什么方法研究出来的?
a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?
每人投球个数变了
每队的总个数不变
(每队内部的个数调整,不影响整个队的实力)
像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少
刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。
还有别的方法吗?
C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)
(1)、算式中的数都表示什么意思?
(2)、比较平均数,谁赢了?
比较两种方法,你喜欢哪一种?为什么?
小结:当数字比较小又接近的时候我们用移多补少更简便,
当数字比较大而复杂的时候我们用计算的方法更为简单。
3、理解平均数的意义
刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?
(1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?
有的比5大――可能相等或不相等
有的比5小――
(2)、同样都是“5”,它们所表示的意义相同吗?
是个体的.投球水平
是整个队的总体投球水
4、其实,我们身边也有许多平均数,你能举个例子吗?
五、在具体情境中理解、应用平均数
1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?
昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。
(1)、出示身高计表
同学12345
身高cm131136134132137
(2)、估计:他们的平均身高大约是多少?你是怎么估算的?
145cm、130cm可以吗?最小数<平均数<最大数
(3)、算一算他们的平均身高(计算方法)
平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)
(4)、根据第一排同学的身高,请你推测一下咱们班同学的平均身高,并说说你的依据是什么?
(5)、看来推测的结果是否准确和我们选取哪5名同学有很大关系,如果按现在的座位(8排8列),还是选5名同学,你准备怎么选?
小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。
2、小熊商店
(1)、出示统计图,你知道了什么?
(2)、求出前三周的平均数
(3)、预测一下第四周进几箱?
六、拓展
淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?
七、小结
这堂课你学得开心吗?有什么收获吗?
平均数教学设计13
教学内容:
练习十一1—3题,教材42页例1
教学目标:
1、掌握平均数的意义和求平均数的方法
2、知道移多补少求平均数的方法
3、会根据数据列出算式求平均数
教学重点:
掌握求平均数的'方法
教学难点:
正确计算平均数
教具准备:
课件,小黑板,统计表
教学流程:
一、导入
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数
二、学习交流
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程
(1)指名展示
(2)这种方法叫什么?
点拨:移多补少
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=
(2)平均分成4份,怎么办?
52÷4=
4、归纳
要求平均数,可以先求出( )数,再平均分几份
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程
6、算出各小组的平均体重,说说你们是怎么算的?
三、交流展示
展示自己的学习成果,说清求平均数的方法和过程
四、达标测评
1、练习十一第2题
(1)什么是最高温度?什么是最低温度
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录
(4)计算出一周平均最高温度和最低温度
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数
五、总结
通过这节课的学习活动,你有什么收获?
平均数教学设计14
教学内容:
教材第90、第91页的内容及第92页做一做
教学目标:
1、理解平均数的含义,初步学会简单的求平均数的方法
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用
3、感受平均数在生活中的应用,增强探索数学规律的兴趣。
教学重点:
理解平均数的含义,掌握求平均数的方法,“移多补少” “先合并再平分”的实际意义和应用。
教学难点:
初步学会简单的数据分析,进一步体会统计在现实生活中的作用。
教具学具:
多媒体课件教学过程:
一、情境导入
1、谈话引入
师:同学们,喜欢吃桃子吗?老师这有16个桃子,我把它们分给2个同学看,怎样分才能让他们一样多。
2、引入“平均数”师:每人都是8个桃子,8就是一个平均数。这样分两个同学就一样多了。(出示课题:平均数)
同学们在日常生活中还听到或者用到平均数?(平均身高,平均成绩,平均速度,平均产量等等。
二、自主探究,解决问题
1、初步理解平均数的意义和求平均数的方法。
(课件出示教材第90页例1情境图)
师:同学们请看这张图片,这是环保小分队的同学们收集饮料瓶的统计情况,在这张统计图你获得了哪些数学信息?我们要解决的问题是什么?
师:你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?学生汇报交流
师:这个小组平均每人收集了多少个饮料瓶?(13个)
师:大家都同意这个算法吗?13是怎么来的?
“移多补少”的方法。
指名学生说自己用的方法,结合学生的口述和学生动手操作,用课件演示“移多补少”的过程。
师:这种方法对吗?为什么要把小红的.一个给小兰,把小明的两个给小亮?(为了使他们每个人的瓶子数量同样多)能给这种方法起个名字吗?(指名学生试着回答总结)
师:像这样把多的饮料瓶移出来补给少的,使得每个人的饮料瓶的数量同样多,这种方法叫“移多补少”,(板书移多补法)这里平均每人收集了13个,这个“ 13”是他们真实收集到的饮料瓶吗?(不是)而是4个人的总体水平。
师:还有不一样的方法吗?学生口述算理并说算式,老师板书。
师:像这样先合并然后再平均分的方法同叫“先合后分法。”无论是通过移多补少还是先合后分,其目的只有一个,就是使原来几个不同的数变得同样多,这样得到的数就是这组数据的平均数。13就是这4个数的平均数,这也是我们今天要学习的内容。
(板书课题:平均数)它引导学生利用“移多补少”或“平均分的意义”理解,平均数并不是每个学生收集到瓶子的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到数,可能同学们收集到的比这个数量小,也可能比这个数量大。平均数是为了代表这组数据的总体水平而创造出来的一个“虚拟”的数。
2、内化拓展、进一步理解平均数的意义和计算方法。
师:现在让我们一起来看看体育小组的活动(课件出示照片和91页例2情景图——————踢毽比赛)对于比赛,你们最想知道什么?(哪个队赢)那就是想知道哪个队的成绩好?现在老师让你们当裁判,一定要公平公正地裁决。
(1)出示表一:(男女生各一名同学)师:如果你是裁判,你认为哪个队赢?你是怎么知道的?(19>17)
(2)出示表二:(男女生各加入三名同学)师:现在哪个队赢了?你怎么知道?(指名学生说是通过计算总成绩知道的)现在男生算你们队的成绩,女生算你们队的成绩。
通过计算得出:68<76(女生队获胜)引导学生体会,在人数相同的情况下,可以用求总数的方法比较输赢。也可以求平均数的方法。
男生:68÷4=17(个)
女生:76÷4=19(个)17<19(3)出示表三:(男生加入一名同学)
师:看来女生队暂时领先,男生队还有一名队员要加入进来,请各位裁判独立思考后给出最终的裁定?并说出你是怎么想的?
预设:比总数男生对获胜,比平均数合理。
师:怎样列式解答呢?(学生口述,老师板书):男生队平均每人踢毽个数,女生队平均每人踢毽个数:(19+15+16+18+17)÷5,(18+20+19+19)÷4 =85÷5 =76÷4 =17(个)=19(个)17<19。答:女生队的成绩好些。
三、探究结果,回顾小结
1、体会平均数的意义。
师:回忆一下,我们学了什么?(预设:平均数)用自己的话说一说,平均数是一个什么样的数?(引导学生用自己的话说出求平均数的意义和作用。)
①当个数不同,用总数量比较结果时有失公平,可以用两组数据的平均数来比较。
②平均数能较好的反应出一组数据的总体情况③平均数是一个虚拟的数。
2、回顾求平均数的方法。
①把多的瓶子移出来,补给少的,使得每个人的瓶子数量同样多,这种方法叫移多补少。
②用先合后分计算的方法求平均数时,平均数=总数量÷总份数
四、联系实际,拓展应用
1、做一做(课件出示)学生独立思考解决,并指名学生板演并说方法。
2、判一判(课件出示)指名学生读题,独立思考后判断并说理由。
3、说一说(课件出示)学生小组交流并汇报。
五、实践作业、课后延伸
参照十岁儿童身高正常,测量本班同学的身高,判断一下同学们的身高是否正常。
男生:140cm
女生:141cm)
板书设计:
平均数较好地反映一组数据的总体情况
方法:移少补多(有局限)找基数,分多余数
公式:总数÷份数=平均数
特点:最大值﹥平均数﹥最小值;平均数≠实际数。
平均数教学设计15
教学要求:
1、通过练习,进一步巩固求平均数的方法。
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
教学重点:
解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
教具学具准备:
课件、统计。
教学过程:
一、理解平均数意义
“1”:说一说题目说的是一件什么事情?
平均水深140厘米是什么意思?是不是处处水深140厘米?
(不是,是有的'地方比140厘米深,有的地方比140厘米浅)
“2”:自己看题,同桌讨论。
全班交流:
你认为哪些平均数是合理的,哪些是不合理的,为什么?
(1、3合理,2不合理)
二、求平均数的练习:
1、“3、4、6、7”题。
“3”:从表格里你了解到哪些信息?
独立解答(1)、(2),全班交流。
看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?
“4”:
(1)先算一算三年级平均每组植树的棵数。
假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?
假如是6棵呢?为什么?
看着这张统计图,你能不能给出平均数的范围?
(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?
“6”:(1)同桌讨论,可以怎么估计?
介绍自己是怎么估计的。
(选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)
(2)你还能说出这个小组同学身高的哪些情况?
“7”:独立练习。
“你还发现什么?”尽量让学生从多角度说一说。
2、“5、8”题。
“8”:先说一说这一题的解决过程。
学生以小组为单位,调查、记录、解答问题。
“5”:课堂上老师指导说清要求,课后学生完成。
三、“你知道吗?”
举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?
学生计算:(47+78+80+81+82+82)÷6=75
去掉以后,是多少呢?
学生计算(78+80+81+82)÷4 约为80分
看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。
教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。
教学设计
平均数
(第一课时)
一、内容和内容解析
本节教学内容源于人教版八年级下册“20.1.1平均数”第一课时.统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:
以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析
1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析
1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.四、教学支持条件分析
在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度.五、教学过程设计
活动一:创设情景,建立模型,揭示概念
问题1 以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义.在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:
(1)谈谈表格中“86分”所反映的实际意义.(2)求这两个班的平均成绩,并和同伴交流你的计算方法.预设:问题(2)可能会出现下面两种解法:学生对比、分析、讨论,初步理解权的意义.引导
设计目的:问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义.问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫.活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维.本活动中,教师应关注学生:①参与数学活动的主动性和数学思维的深刻性;②实际问题中体验平均数的统计意义和初步了解权的意义;③体会算术平均数与加权平均数的区别与联系.学生归纳:1.平均数反映的是数据的平均水平,;2.“权”反映了数据的相对“重要程度”;3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数.问题2 某市三个郊县的人数与人均耕地面积如下表:
求这个市三个郊县的人均耕地面积(精确到0.01公顷).追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?
追问2: 0.15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?
设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系.活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法.学生归纳:
(1)上例中15,7,10分别是0.15、0.21、0.18三个数据的权,平均数0.17称为三个数0.15、0.21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平.活动二:实例分析,指导应用,体验概念
1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数.思考:各项的权分别是多少?如何计算植树的平均棵树?
2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:
如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?
问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?
设计意图:在变式中理解权的含义.问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识.设计意图:在系统中整体理解数据、权和平均数.通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响.此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用.问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?
设计意图:进一步体会数据权的不同表现形式.(自主合作,共同比较,交流分析,体会权的“掌控”能力.)
活动三:拓展创新,我来决策,感悟概念
一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示: