第一篇:初中数学教学案例分析
初中数学教学案例分析
传统的课程理念认为:教师讲得越多越好,因此在课堂上教师总是尽量讲深讲透,生怕遗漏,将讲整理好的数学呈现给学生;学生则是被动的吸收,机械的记忆,重复的练习。《初中数学新课程标准》也要求教学的变革,那么我们首先要在理念上更新,明确。
下面我就想以一些数学教学案例为例,就新课程标准下的部分课堂环节进行一些探讨:
1、导入
随着课改的深入,教师的新课导入设计形式多样,精彩纷呈,逐步体现出新课程理念,但是也有一些过于形式化,牵强附会。有个老师是以生活情境导入的:
班上要举行联欢会,生活委员小明去市场买一种水果,价格为每公斤9.8元,现称出水果10.2公斤,小明随即报出了要付现金99.96元,你知道小明为什么算得这么快吗?说说你的理由。
导入材料呈现后,教师让学生对上述问题发表看法,学生积极发言,有人说小明是神童,有人说小明用了计算器,等等。为了弄清小明为什么会这么快算出结果,教师让学生翻书阅读,并示意学生安静,但部分学生难以从刚才的讨论中静下来。许多教师都认为,此导入设计从生活中的事例出发让学生感悟数学,符合学生的生活实际,体现了数学来自生活,同时该情境导入设置悬念,能激发学生的学习兴趣。因此认为这种情境导入是有意义的。但事实上,教学效果理想吗?并不理想,问题出在哪呢?上述导入设计使得学生并不清楚自己要学什么?学习内容需要用到什么样的知识和经验,所以学生往往会无从下手,这是难免会产生一些随意的各种各样的想法。
其实,上述导入设计的教师没有很好的发挥该导入的作用,不妨将小明的思考过程暴露出来,原来小明是这样计算的:9.8×10.2=(10-0.2)(10+0.2)=100-0.04=99.96。请问,(1)他这样处理正确吗?请验证。(2)这种运算是不是巧合呢?你能举例说明吗?(3)你能写出一般结论吗?并与前面学过的知识进行比较。这样的导入设计就能充分发挥导入材料的作用了。
2、合作与探究
探究式教学是时下流行的一种教学方法,既能提高学生的各种能力,又能活跃课堂,调节课堂气氛,提高课堂效果。如何才能做到感性探究,理性课堂呢?
我们以“垂线”这一节的教学设计为例,进行探讨。
上课开始,教师播放一组图片,其中含有垂线形象,简洁明快,且配以舒缓的背景音乐。环节1:动手操作
在音乐中,老师说:“我们来做一个数学活动,请大家拿出两支笔,两笔交叉,固定一支笔和焦点,转动另一支笔到你认为的特殊位置停下,举起模型。
教师:老师观察大家停下来的位置全都是“十”字的性质,这是为什么呢?
学生:两直线互相垂直。
教师:在小学时大家对垂直已经有了初步认识,今天我们就来学习与垂直有关的内容—垂线。我们能用什么方法来说明这个位置是真的垂直呢? 学生:拿三角板的直角去度量。
教师:很好,大家都会解决问题了,大家思考,垂直的关键是„„ 学生思考,大部分都会回答是直角。
通过学生动手操作,让学生感受到垂线是随处可见的,利用实物(两支笔)这一动态过程引入,加强直观教学,在逐步探究中使学生对垂直从定量认识深化到定性认识,并为下面过一点作已知直线的垂线的唯一性作铺垫。环节2:观察思考
观察生活中的实物,让学生找垂直,验证垂直,相互谈论垂直,从而引出垂直的定义。图片中熟悉的场景,使教学内容贴近学生的生活实际,通过做垂直、找垂直、验证垂直,一系列的探究活动形成了丰富的概念表象。此环节培养学生将背景抽象成数学化的能力。环节3:理解概念(1)定义:
当两条直线相交所成的四角中有一个角是直角时,我们就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,交点叫做垂足。教师引导学生找定义中的关键词,师生共同比较垂直与垂线的区别,强调垂线是一条直线。(2)表示法
垂直符号:“⊥”读作“垂直于” 如图(教师画出互相垂直的直线图形)(3)应用格式(教师书写出规范的格式)
学生接触几何的时间不长,掌握几何概念的学习方法很重要,在感性认识的基础上进行抽象概念的教学,培养学生的抽象概括能力,在原型基础上进行变式,突出概念的本质特征,有利于培养学生的读图、识图能力。用图形、文字、符号三种语言来表示,让学生感受三种数学语言是密不可分的。深化概念
(1)两条直线相交,当满足 时,则这两条直线相互垂直。学生得出一下一些条件:①有一个角直角②四个角相等③有三个角相等④邻补角相等⑤对顶角互补。
教师让学生比较哪种说法条件最简单、学生明白数学定义的简约性,最终都归结为有一个角是直角。
设置开放性问题作为探究问题,多角度进行思考,拓展思维空间,但对部分学生也可肯能难度太大,思维跳跃度太快,而且定义的得出是一个逐步抽象逐步简约的过程,这里出现了一次循环,此问题放在定义得出前可能更符合学生的认知规律。
(2)如图,找出图中垂直的线段(教师画出一个三角形中的垂线段)教师:观察图形中的垂线出现了两条,那么任意一条直线的垂线有几条呢?(大部分学生回答无数条,有几位学生回答两条)教师:结合大家的经验,任意一条直线的垂直有无数条。
本环节的作用是承上启下,显然结论的得出教师操之过急,如不妨让学生尝试一下画一条直线的垂线,结论的得出更自然合理,也有利于培养学生的合情推理能力。
第二篇:初中数学教学案例分析
初中数学教学案例分析
上传: 刘春花
更新时间:2012-5-18 0:05:38 初中数学教学案例分析 案例标题:《同底数幂的运算》
案例情境:数学运算的教学枯燥无味,总是不知如何入手,听了张老师的一 节《同底数幂的运算》,大有收获,现与大家分享。
老师:现在我要用一道抢答题来考考你们,题目是:(投影)已知三个数 2、3、4,你能从中任取两个数组成算式,使其运算结果最大吗?(有人脱口而出3×4=12)老师:(微笑而不作答)想想我们已学过了哪些运算?(停顿)学生 1:4的3次方!
学生 2:不对!应该是3的 4 次方!(其它同学点头表示赞同)
老师: 3 的4 次方进行的是什么运算?这里的3叫做?4叫做?3 4 =?
这里的三个数还能组成哪些幂?(老师一句一句问,学生一问一问集体回答)老师:幂也是个数,那幂能否再进行运算?(引入课题:幂的运算)
下面我们就利用刚才得到的六个幂(允许重复使用)来研究幂的运算,怎样入手研究呢?我们的研究方法是:(投影)第一步:试验
寻找一些形如右图的式子。可先考虑加和减,再看乘和除。第二步:观察
(1)你找到了哪些等式?
(2)你从这些等式中有什么发现?(3)你能用语言概括你的发现吗? 请以小组为单位合作研究。(学生立即展开讨论,大家七嘴八舌,气氛十分热烈,老师在教室里巡视,不时参与小组的讨论。)
老师:请各小组将你们的研究成果展示在黑板上。(立即有几位同学拿着草稿纸上黑板去写研究所得)学生 3:(板书在黑板上)①2 ³ +2 4 =4 7 ②2 4-2 4 =0 学生 4:(板书在黑板上)③2 ³+2 4 =128 ④3 ² +3 ²=2×3 ² 学生 5:(板书在黑板上)⑤4 ³-4 ³ =0 ⑥4 ³+4 ³ =2×4 ³ 老师:还有没有不同的研究成果?(停顿,确信没有人发言后)这里的六个式子都是等式吗?你有办法验证吗?(有许多学生马上拿出计算器,很快验证得到①③不成立,②④⑤⑥成立)老师:从②④⑤⑥你发现了什么?(学生小声议论)
学生 6:相同的幂相减一定为0,相同的幂相加就等于2乘以这个幂。
老师:回答得非常好!如果将④中的 3换成a,就是我们以前学过的合并同类项吧?(学生点头认可)现在我们有了一个研究成果,那就是:相同的幂可以进行加减运算。下面我们继续研究:幂能不能进行乘法运算。仍以小组为单位合作研究,并请小组代表将研究成果展示在黑板上。
(学生继续投入讨论,教室里不时传来“你这个不成立,两边不等”,老师仍在教室里巡视,不时参与小组的讨论,恰当给予指点。)学生 7:(板书在黑板上)①3 ² ×3 4 =3 6 ②2 ³ ×2 4 =2 7 ③4 ² ×4 ³ =4 5 学生 8:(板书在黑板上)④3 ³×4 ³ =12 3 ⑤3 ²×4 ²=12 2 老师:这五个等式均成立的吧?(学生齐声回答:成立)两位同学给出的等式好象有点差别,你们看出他们的差别了吗?
学生 9:①②③每个等式中幂的底数是相同的,④⑤每个等式中幂的指数是相同的。老师:这是个伟大的发现!我们看到①②③都是相同底数的幂在相乘,而④⑤是不同底数的幂在相乘,今天我们先重点来研究相同底数幂相乘即同底数幂的乘法(板书课题:同底数幂的乘法)仔细观察①②③你还能发现什么? 学生 10:(急不可耐)左边幂的指数相加就等于右边幂的指数。(学生因发现而面露喜色)老师:刚才我们是在计算器的帮助下找到①②③三个等式的,现在你们能不用计算器,告诉我 5 2 ×5 6 的结果吗?结果用幂表示。(学生脱口而出:等于5 8)老师:那 a ² ×a ³ =?说说你的理由。
学生 11:等于a 5.因为a ² ×a ³ =a×a×a×a×a=a 5.老师: a m × a n =
学生12:a m+n.因为a m 表示 m个a相乘,a n 表示n个a相乘,所以一共有m+n个a相乘。
(老师板书:略)
老师:用语言如何叙述?
师生共同:同底数幂相乘,底数不变,指数相加。
老师:这就是同底数幂的乘法法则。下面我们来用一用刚才研究出来的法则。(以下略)案例反思和分析:
教育家苏霍姆林斯基说过:“教师如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而是不动情感的脑力劳动,就会带来疲倦,处于疲倦状态下的头脑,是很难有效地吸取知识的。”这就要求我们在课堂教学中,要设置恰当的情景,一开始就吊起学生的胃口。张老师通过学生熟悉但易错的问题入手,让学生在抢答中体会到乘方运算的重要性,同时创设了使学生迫切地想知道幂的运算性质的氛围,激发了学生强烈的学习兴趣。荷兰著名数学教育家弗赖登塔尔强调:“学习数学唯一的方法是实行‘再创造',也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生。”他还认为:“学习数学是人的一种活动,如同游泳一样,要在游泳中学会游泳,我们必须在做数学中学习数学。”这就要求我们在课堂教学中应充分发挥学生的主体性,让学生在亲身实践中去体验、去感悟。在这里,我们看到张老师创造了条件让学生去动手实践,自主探究。通过给出研究问题的方法,使学生在开放的学习情景中经历了发现与再创造的过程,培养了学生的观察能力、猜想能力及探究能力。学生在完全开放的学习情景之中,思维空间更大,更有利于“做数学”,事实上,学生的“做数学”的热情并没有因为同底数幂乘法法则的得出而告结束,在下课前,学生进一步猜想得到:①同底数幂相除,底数不变,指数相减;②同指数幂相乘,底数相乘,指数不变。可见,只有老师创设真正的“做数学”的氛围,才会使学生的“做数学”的积极性不因下课铃声而告终。《数学课程标准》指出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想方法,获得广泛的数学活动的经验。”在这节课中,张教师始终关注对学生研究方法的指导,在让学生就具体的数值,通过比较、猜想,获得了真理的过程中,学生能解决的问题,教师不急于告诉,而只是作一些必要的提示,让学生体验成功;当学生进行讨论时,教师积极参与到小组讨论中去,使小组讨论顺利进行;当出现错误时,老师并不是直接指出,而是让学生去发现错误,从中掌握排除错误的方法,为后续学习打下基础。这些都充分体现出老师对学生在学习过程中的变化和发展,以及在活动中表现出来的情感与态度的关注。因此,在这节课中,虽然“做数学”花的时间很多,但学生的收获必然大得多,真正体现了学生是学习的主人。曾听一位老师说过:“在课堂上,我感谢每一个敢于发言的同学,无论他是答对了还是答错了,我都要说声‘谢谢!',因为他们让我看到了学生对问题的不同理解。”确实,在课堂教学中,我们不仅要对有创新或独特见解的学生表示赞赏,对有错误见解的学生同样不应吝啬我们的真诚。在这节课,我们能听到老师对学生发出的“很好!”“回答得非常好!”等鼓励的话语。特别是张老师还把学生写出的等式称为“研究成果”、归纳出的结论称为“伟大的发现”、当一部分学生展示研究所得后,张老师仍不忘问一句:“还有没有不同的研究成果?”,充分体现了张老师对学生劳动的尊重与欣赏,这对学生激励的作用是其它任何语言所无法比拟的。新课程标准指出:教师可以不必拘泥于教材形式,可以不完全按教材教学,只要以新课程为依据,达到新课标规定的整体性的理论和目标就可以了。同时指出,教师要有独立性,要能根据自己的教学实际情况去创造性地运用教材。这节课在情境创设上不同于教材,整个教学思路与教材都有了明显的差异,这样开放性的处理使学生始终处于探索过程,更能激发学生学习的积极性,学习效果必然更好。
初中数学全等三角形教学设计与反思
上传: 卢锡平
更新时间:2013-2-2 10:23:52 初中数学教学设计
一、教学设计:
1、学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时
点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。、教学过程(略)
教学步骤 教师活动 学生活动 教学媒体(资源)和教学方式
7、反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗? 对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1、一个条件:一角,一边
2、两个条件:两角;两边;一角一边
3、三个条件:三角;三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应 相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件„经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗? 画一画:
按照下面给出的两个条件做出三角形:(1)三角形的两个角分别是:30°,50°(2)三角形的两条边分别是:4cm,6cm(3)三角形的一个角为
30,一条边为3cm 剪一剪:
把所画的三角形分别剪下来。比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等 学生举例说明
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习
学生在教师引导下回顾反思,归纳整理。
z+z平台演示
z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。
第三篇:初中数学教学案例分析
初中数学教学案例分析
———合理创设问题情境,引发学生思维
新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。
一、联系学生的生活实际,创设问题情境
生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。
例如在教学菱形性质时,导入时是这样设计的:
1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:(1)吃过的菱形形状的食物(2)春节时门上贴的剪纸花(3)居室装饰地板砖(4)中国结(5)菱形衣帽架等。
2、为什么把这些图案设计成菱形呢?
3、菱形到底有哪些特殊的性质和运用呢?(板书课题)通过本节课的学习之后大家可以总结出来。
然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,然后让学生思考日常生活中还有哪些菱形性质方面的应用。
这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。
二、变更表述形式,创设问题情境
在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形
B
C A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)
图(2)
学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。
三、猜想验证法,创设问题情境
在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。
例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。
总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。
第四篇:初中数学案例分析
关于课堂中以学生为主体的一点思考
一、把活动还给学生
在讲授探索三角形全等的条件这一部分的内容时,新课改要求学生在实际动手过程中思考,并最终得出三角形全等的条件,教材中设置了几个做一做,已知几个边角条件,组织学生作出三角形,通过观察测量最后得出结论。以此作为本节内容的探索过程。
在上本节内容之前,我有幸听了几位老师讲授关于探索三角形相似的课,之后,我发现几节课存在着一个共同的问题:学生在老师的组织下作三角形,之后在老师的要求下测量了三角形三边的长度,然后老师对测量的结果进行了分析并做了总结,整个过程,学生动手的主动性没有充分调动,学生的思维也非常压抑,使得学生对于老师得出的结论云里雾里,随声附和,整个探索的活动过程不像是学生的学习过程,更像是课堂的一个组成部分。活动的主体不是学生而是老师。
活动的主体应该是学生,活动过程中的思考空间也应该属于学生,其中最关键的步骤是要让学生明白:自己现在正在做什么,为什么要这么做,下一步要做什么,最终我们要通过活动得出什么结论。基于上述思考,对于探索全等三角形全等的条件这一节内容,授课时在组织探索过程进行之前,我详细有条理的说明了我们要做什么,为什么要这么做,最终要得到什么。具体为:两个三角形三角相等三边相等,那么两个三角形全等,如果运用定义来说明三角形全等非常麻烦,能不能运用尽可能少的条件证明两个三角形全等呢?这几句话说出来很简单,但一定要取得学生的认同,达到思维上的共识。之后告诉学生:如果我们利用已知条件作出的三角形一模一样,那么就可以说明已知的条件可以证明三角形全等,如果作出的三角形不一样,那么已知的条件不足以证明三角形全等,在学生认同了这一点之后再进行探索活动。我想如果把这个活动看作是一个游戏的话,在游戏之前让每一个学生都明白这个游戏的游戏规则非常重要,只有这样才会有更多的学生真正地参与到活动中来。这样的活动才是属于学生的,这样的课堂也才会属于学生。
二、把思维的权力留给学生
在讲授一元一次方程的应用时有这样一道题目:一个角的补角比这个角大40度,这个角是多少度?这道题的解题步骤是:设这个角为x,则这个角的补角为:1800—x,根据等量关系列方程得:1800-x-x=400。学生听完部分学生说懂了,还有一部分学生沉默不语,我正准备再讲一边,一位学生在下面喊道:“老师,我还有一种方法”。我点头,这位同学随即上黑板写出方程:x+x+400=1800。我还没有说话,下面很多同学喊道:“老师,我也是这样列的”。上黑板列方程的那位同学是这样说的:“设这个角为x,那么它的补角为x+400,根据等量关系列方程得:x+x+400=1800”。说罢,很多同学附和着:“这种方法简单”。
我很迷惘,补角表示为1800—x,与表示为x+400,这两者到底有着怎样的区别?,前者要求学生用字母表示未知量,与后者相比前者对学生的思维要求更高一点。于是我想:对于一道针对新知识的应用题目,学生运用已有知识可以解决,再要求学生运用对于他们来说陌生的复杂的思维去思考是没有必要的,这样的题目无益于对新知识的理解掌握,相反会让学生无所适从,练习的过程是学生思维提升的过程,而这样的题目显然有碍于学生思维的发展,我想在学生原有知识的基础上符合学生思维习惯的题目更有益于学生思维的提升和知识的建构。所以在教给学生知识之前应该下大功夫去研究学生的知识体系。以便更加有效的调动学生的思维,更快更好的促进学生的发展。回想那一节课,如果我稍微急躁就变成了课堂的霸王和思维的镇压者。我深深的意识到:学生不应该是老师教会的,而是他们自己学会的。否则知识永远不是他们自己的,迟早要还给老师。
以学生为主体的课堂不应该只停留在形式上,更应该从思想上达到真正的转变,把课堂那一片天空留给学生,让他们有更多机会展翅翱翔。
第五篇:初中数学教学案例分析_12533
探索三角形全等的条件
(一)案例与评析
老河口市纪洪中学 陈敏 陈书明
1、教学目标:
学生在教师引导下,积极主动的经历探索三角形全等的条件的过程中,体会利用操作归纳获得数学的过程。掌握三角形全等的“边边边”的判定方法,了解三角形的稳定性,能用三角形的 全等解决一些实际问题。培养学生推理能力,发展有条理地表达能力,积累数学活动经验。
2、教学重点与难点:
重点:三角形全等条件的探索过程和运用“边边边”规律解决问题。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要作出全面、正确的分析,并对各种情况进行讨论,对学生来说有一定难度。
3、学习方式:
为了使学生更好地掌握这一部分内容,遵循启发式教学的原则,用设问形式创设问题情景,涉及一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型并运用所学知识解决实际问题,真正把学生放在主体位置。
4、课前准备:教师准备一张画有两个全等三角形的白纸
一、创设情景,导入新课
师:我们先来看几幅美丽的图片(投影出示)部分生:噢!好漂亮的图片。
部分生:这些图片都是由三角形组成的。
生1:这些三角形大小多么一致,是全等的吧?
师:对!这些美丽的图片都是由全等三角形组成的,大家想不想自己用全等三角形设计几幅美丽的图片? 生:(齐答):想!
生2:怎样画三角形,画出来的三角形才全等? 生3:画全等三角形需要满足什么条件?
师:问得好!三角形全等需要什么条件呢?这就是我们这节课需要研究的问题。(出示课题)
点评1:通过投影出示欣赏几幅美丽的图案,让学生感受美的同时激发学创造美的意识,培养学生学习和探索的兴趣,调动了学生学习的积极性。
二、师生互动,探求新知。㈠、提出问题,引发探索。师:(出示课前准备好的两个三角形)老师这张白纸上有两个三角形(如下图),在△ABC和△A′B′C′中,其中A′B′=AB,B′C′=BC,A′C′=AC,∠A=∠A′,∠B=∠B′,∠C=∠C′,大家猜想这两个三角形全等吗? 部分生:全等。
师:我们能否想个办法来验证这两个三角形是否全等? 生4:我们把其中一个剪下来,看是否与另一个重合,若是重合的,那么这两个三角形就全等。
师:对(老师把其中一个剪下来,放在另一个三角形上)大家看,这两个三角形全等吗? 生(齐答):全等。
师;我们从上面的活动中可以看出,满足什么条件的两个三角形一定全等? 部分生:三条边分别对应相等,三个角分别对应相等。
师:但是,两个三角形全等是否一定需要六个条件?条件能否尽可能少。大家猜想可能需要几个条件? 生5:5个条件。生6:1个条件。生7;3个条件。
师:大家说了这么多种情况,我们就从最少的1个条件开始考虑,同时大家思考1个条件包括哪些情况。生8:一边相等。
生9:一边相等,一角相等。
师:对!一个条件包括两种情况:
1、一边相等,2、一角相等。那么大家通过画图来探究只有一个相等条件的两个三角形是否全等?
(学生在演草纸上画图,教师适时地进行点拨,指导,对某些有困难的学生给以帮助,鼓励,教师收集学生作品,并展示学生作品)
。生10:在△ABC和△A′B′C′中,其中∠C=∠C′=90,显然这两个三角形不全等。如图(1)生11:在△ABC和△A′B′C′中,其中AC=A′C′,但这两个三角形不全等。如图(2)师:从上面的画图中,我们可以得到:两个三角 形中只有一个条件相等,这两个三角形不一 定全等。
点评2:教师提出问题并帮助学生分类后,让学生自己动手操作,画图验证。充分培养了学生的动手操作能力,为学生提供了一个自主探索的空间。
㈡、自主探索,探究发现
师:下面我们来研究具有两个相等条件的三角形是否全等。在研究之前我们先分析两个条件分几种情况。生12:两边相等;两角相等。
生13:两边相等;两角相等;一边相等,一角相等
师:我们综合以上同学的回答得到两个条件分三种情况:(1)两边相等(2)两角相等(3)一边相等,一角相等。这样的三角形是否全等,需要大家画图验证)
(学生分小组画图,学生们可以进行分工合作,可以让部分学生画两边相等,部分学生画两角相等,另一部分画一角相等,一边相等。然后在一起互相交流,看每种情况是否全等,画完之后,教师找每组学生代表回答。)
生14:在△ABC和△AB′C′中,其中∠B=∠B′,∠C=∠C′,但这两个三角形不全等。(如图3)生15:在△ABC和△A′B′C′中,其中AB=A′B′,∠B=∠B′,但∠ABC和△A′B′C′不全等。(如图4)生16:在△ABC和△A′B′C′中,AC=A′C′,AB=A′B′,但两个三角形不等。(如图5)
师:所以,只具备两个相等条件的三角形,不一定全等。
点评3:用开放性的教学方法,让学生积极参与课堂讨论,并且通过学生自己动手画图,比较归纳等自主探索活动,及师生之间、生生之间的合作交流活动,让学生获取知识和能力。
下面我们就来研究具有三个相等条件的两个三角形是否全等,三个条件,可以分成哪些条件呢? 生17:1.三角相等。2.三边相等。
生18:1.两边一角相等。2.两角一边相等。
师:我们今天只研究三角相等和三边相等的两个三角形是否全等。
生19:我们刚才在画图的时候,我发现我们组有很多同学用的三角板却不一样,但却有一个是等腰直角的,所以我认为三角相等的两个三角形不一定全等。
师:这们同学非常细心,他的发现非常正确,而且大家看老师用的三角板和同学们用的三角板都有一个为等腰直角的,但显然不重合,所以三角对应相等的两个三角形不一定全等,我们来看下面这个题目。(投影出示)
如图6:已知△ABC,画一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC。
师:我们画三角形需要确定它的两个顶点,我们如何才能确定△A′B′C′的顶点呢? 生20:我们先画一条边B′C′,使B′C′=BC,就可以确定两个顶点。师:点A′和B′的距离为多少?,点A′和C′的距离为多少? 生21:A′B′=AB 师:我们怎样做能使A′B′=AB。生22:以B′为圆心,以AB的长为半径画弧。师:对同样的道理,我们以C′为圆心,AC的长为半径画弧,两弧交点就A′,教师演示作图过程,并要求学生说出三个主要的步骤。
(投影出示)任意画一个△ABC,然后画△A′B′C′,使A′B′=AB,B′C′=BC,A′C′= AC。
学生画完图后,将其中一个三角形剪下来,放在另一个上面,看两个三角形是否全等,并与小组中其他同学交流意见,教师收集学生作品,并展示学生代表的作品。生23:在△ABC和△A′B′C′,且A′B′=AB,B′C′=BC,A′C′=AC,如下图:我将其中一个剪下来,放在另一个上面,发现它们是完全重合的,所以这个两个三角形全等。(如图7)
师:我们从上面的活动中发现:三边对应相等的两个三角形全等,简写为(SSS)。(并板书)
三、应用知识,解决问题
(投影出示)
例1如图8:△ABC是一个支架,AB=AC,ADJ 连接点A与BC的中点D的支架,求证:△ABC≌△ACD。师:我们想证明两个三角形全等需要几个条件?为什么? 生24:需要三个条件,由边边边规律可知。师:题目之中已有哪些条件。生25:AB=AC 生26:还有一个公共边AD=AD。师:对学生回答总结归纳并板书:
证明:∵D是BC的中点
∴BD=CD ∴在△ABC和△ACD中 AB=AC BD=CD AD=AD
∴△ABC≌△ACD(SSS)
变式:①证明∠B=∠C ②∠AD⊥BC ③DA平分∠BAC 点评4:在教师的引导下会画全等三角形后,让学生在‘画一画’,‘剪一剪’,‘比一比’等一系列活动,自己得出规律,充分培养了学生乐于动手,勤于实践的意识和习惯,切实提高学生动手能力、实践能力,注重引导学生体验知识的形成过程,并能运用所学知识解决问题。
四、课堂练习巩固拓展
1、P96思考
2、P96练习
(运用所学知识解决实际问题)
五、课堂小结
这节课你学到什么知识?有什么收获?
六、课外活动:
用一些全等三角形设计一个美丽的图案,明天上课时交流,看有谁设计的图案闻美观、最新颖。
总评:
1、本节课强调学生动手操作,自主探究,注重师生之间的互相合作交流。在一系列‘画一画’‘剪一剪’‘比一比’的探究活动中培养了学生乐于动手,勤于实践的意识和习惯,切实提高学生的动手能力,实践能力,注重引导学生体验知识的形成过程,并从中获取知识和能力。
2、注重转变学生学习方式,本节课的教学内容主要采用了讨论法,即课堂上教师(或学生)提出适当的数学问题,通过学生与学生(或老师)之间相互讨论、相互学习,在问题的解决过程中发现新知的产生过程。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识和创新能力的培养有着积极的意义。