高一物理高一全部教案(共52个)08.4.动量守恒定律5篇

时间:2019-05-13 22:46:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一物理高一全部教案(共52个)08.4.动量守恒定律》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一物理高一全部教案(共52个)08.4.动量守恒定律》。

第一篇:高一物理高一全部教案(共52个)08.4.动量守恒定律

动量守恒定律

一、教学目标

1.知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。

2.学会沿同一直线相互作用的两个物体的动量守恒定律的推导。3.知道动量守恒定律是自然界普遍适用的基本规律之一。

二、重点、难点分析

1.重点是动量守恒定律及其守恒条件的判定。2.难点是动量守恒定律的矢量性。

三、教具

1.气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。

2.计算机(程序已输入)。

四、教学过程(一)引入新课

前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?

(二)教学过程设计

1.以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。画图:

设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)P=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v′1和v′2,此时它们的动量的矢量和,即总动量p′=p′1+p′2=m1v′1+m2v′2。

板书:p=p1+p2=m1v1+m2v2 p′=p′1+p′2=m1v′1+m2v′2

下面从动量定理和牛顿第三定律出发讨论p和p′有什么关系。

设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v′1-m1v1;m2球受到的冲量是F2t=m2v′2-m2v2。

根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=-F2t。板书:F1t=m1v′1-m1v1 ① F2t=m2v′2-m2v2 ② F1t=-F2t ③ 将①、②两式代入③式应有 板书:m1v′1-m1v1=-(m2v′2-m2v2)整理后可得

板书:m1v′1+m2v′2=m1v1+m2v2 或写成 p′1+P′2=p1+p2 就是 p′=p 这表明两球碰撞前后系统的总动量是相等的。分析得到上述结论的条件:

两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡。桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。

2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零,则系统的总动量保持不变。这个结论叫做动量守恒定律。

做此结论时引导学生阅读“选修本(第三册)”第110页。并板书:

∑F外=0时 p′=p 3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。(1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)

光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t′1和t′2。光电计时器记录下这四个时间。将t1、t2和t′

1、t′2输入计算机,由编好的程序计算出v1、v2和v′

1、v′2。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p1、p2和p′

1、p′2以及前后的总动量p和p′。

由此演示出动量守恒。

注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v′1和v′2方向均相反,所以p1+p2实际上是|p1|-|p2|,同理p′1+p′2实际上是|p′1|-|p′2|。

(2)两滑动完全非弹性碰撞(就弹簧圈取下,两滑块相对面各安装尼龙子母扣)为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。

光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t′。将t和t′输出计算机,计算出p1和p′1+p′2以及碰前的总动量p(=p1)和碰后的总动量p′。由此验证在完全非弹性碰撞中动量守恒。

(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片)将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。

将t1和t2输入计算机,计算出v1和v2以及p1和p2。

引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。

4.例题 甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?

引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。

由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。

板书解题过程,并边讲边写。

讲解:规定甲物体初速度方向为正方向。则v1=+3m/s,v2=-1m/s。碰后v′1=-2m/s,v′2=2m/s。

根据动量守恒定律应有

移项整理后可得m1比m2为 代入数值后可得m1/m2=3/5 即甲、乙两物体的质量比为3∶5。

5.练习题 质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可以认为系统不受外力,即对人、车系统动量守恒。

板书解题过程:

跳上车前系统的总动量p=mv 跳上车后系统的总动量p′=(m+M)V 由动量守恒定律有mv=(m+M)V 解得

五、小结

(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。

(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。

第二篇:高一物理高一全部教案(共52个)08.5.动量守恒定律的应用

动量守恒定律的应用

一、教学目标

1.学会分析动量守恒的条件。

2.学会选择正方向,化一维矢量运算为代数运算。

3.会应用动量守恒定律解决碰撞、反冲等物体相互作用的问题(仅限于一维情况),知道应用动量守恒定律解决实际问题的基本思路和方法。

二、重点、难点分析

1.应用动量守恒定律解决实际问题的基本思路和方法是本节重点。2.难点是矢量性问题与参照系的选择对初学者感到不适应。

三、教具

1.碰撞球系统(两球和多球); 2.反冲小车。

四、教学过程

本节是继动量守恒定律理论课之后的习题课。1.讨论动量守恒的基本条件

例1.在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为m1和m2。讨论此系统在振动时动量是否守恒?

分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等。例2.承上题,但水平地面不光滑,与两振子的动摩擦因数μ相同,讨论m1=m2和m1≠m2两种情况下振动系统的动量是否守恒。

分析:m1和m2所受摩擦力分别为f1=μm1g和f2=μm2g。由于振动时两振子的运动方向总是相反的,所以f1和f2的方向总是相反的。

板书画图:

对m1和m2振动系统来说合外力∑F外=f1+f2,但注意是矢量合。实际运算时为

板书:∑F外=μm1g-μm2g 显然,若m1=m2,则∑F外=0,则动量守恒; 若m1≠m2,则∑F外≠0,则动量不守恒。向学生提出问题:

(1)m1=m2时动量守恒,那么动量是多少?

(2)m1≠m2时动量不守恒,那么振动情况可能是怎样的? 与学生共同分析:

(1)m1=m2时动量守恒,系统的总动量为零。开始时(释放振子时)p=0,此后振动时,当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零。

数学表达式可写成

m1v1=m2v2

(2)m1≠m2时∑F外=μ(m1-m2)g。其方向取决于m1和m2的大小以及运动方向。比如m1>m2,一开始m1向右(m2向左)运动,结果系统所受合外力∑F外方向向左(f1向左,f2向右,而且f1>f2)。结果是在前半个周期里整个系统一边振动一边向左移动。

进一步提出问题:

在m1=m2的情况下,振动系统的动量守恒,其机械能是否守恒?

分析:振动是动能和弹性势能间的能量转化。但由于有摩擦存在,在动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止。所以虽然动量守恒(p=0),但机械能不守恒。(从振动到不振动)2.学习设置正方向,变一维矢量运算为代数运算

例3.抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m1+m2)g,可见系统的动量并不守恒。但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的。

强调:正是由于动量是矢量,所以动量守恒定律可在某个方向上应用。

那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢?(上述问题学生可能会提出,若学生不提出,教师应向学生提出此问题。)一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计。即当内力远大于外力时,外力可以不计,系统的动量近似守恒。

板书:

F内>>F外时p′≈p。

解题过程:

设手雷原飞行方向为正方向,则v0=10m/s,m1的速度v1=50m/s,m2的速度方向不清,暂设为正方向。

板书:

设原飞行方向为正方向,则v0=10m/s,v1=50m/s;m1=0.3kg,m2=0.2kg。系统动量守恒:(m1+m2)v0=m1v1+m2v2

此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反。

例4.机关枪重8kg,射出的子弹质量为20克,若子弹的出口速度是1 000m/s,则机枪的后退速度是多少?

分析:在水平方向火药的爆炸力远大于此瞬间机枪受的外力(枪手的依托力),故可认为在水平方向动量守恒。即子弹向前的动量等于机枪向后的动量,总动量维持“零”值不变。

板书:

设子弹速度v,质量m;机枪后退速度V,质量M。则由动量守恒有

MV=mv

小结:上述两例都属于“反冲”和“爆炸”一类的问题,其特点是F内>>F外,系统近似动量守恒。

演示实验:反冲小车实验

点燃酒精,将水烧成蒸汽,气压增大后将试管塞弹出,与此同时,小车后退。

与爆炸和反冲一类问题相似的还有碰撞类问题。演示小球碰撞(两个)实验。说明在碰撞时水平方向外力为零(竖直方向有向心力),因此水平方向动量守恒。

结论:碰撞时两球交换动量(mA=mB),系统的总动量保持不变。

例5.讨论质量为mA的球以速度v0去碰撞静止的质量为mB的球后,两球的速度各是多少?设碰撞过程中没有能量损失,水平面光滑。

设A球的初速度v0的方向为正方向。由动量守恒和能量守恒可列出下述方程:

mAv0=mAvA+mBvB ①

解方程①和②可以得到

引导学生讨论:

(1)由vB表达式可知vB恒大于零,即B球肯定是向前运动的,这与生活中观察到的各种现象是吻合的。

(2)由vA表达式可知当mA>mB时,vA>0,即碰后A球依然向前

即碰后A球反弹,且一般情况下速度也小于v0了。当mA=mB时,vA=0,vB=v0,这就是刚才看到的实验,即A、B两球互换动量的情形。

(3)讨论极端情形:若mB→∞时,vA=-v0,即原速反弹;而vB→0,即几乎不动。这就好像是生活中的小皮球撞墙的情形。在热学部分中气体分子与器壁碰撞的模型就属于这种情形。

(4)由于vA总是小于v0的,所以通过碰撞可以使一个物体减速,在核反应堆中利用中子与碳原子(石墨或重水)的碰撞将快中子变为慢中子。

3.动量守恒定律是对同一个惯性参照系成立的。

例6 质量为M的平板车静止在水平路面上,车与路面间的摩擦不计。质量为m的人从车的左端走到右端,已知车长为L,求在此期间车行的距离?

分析:由动量守恒定律可知人向右的动量应等于车向左的动量,即

mv=MV 用位移与时间的比表示速度应有

动量守恒定律中的各个速度必须是对同一个惯性参照系而言的速 的速度,以致发生上述错误。

五、小结:应用动量守恒定律时必须注意:(1)所研究的系统是否动量守恒。

(2)所研究的系统是否在某一方向上动量守恒。

(3)所研究的系统是否满足F内>>F外的条件,从而可以近似地认为动量守恒。(4)列出动量守恒式时注意所有的速度都是对同一个惯性参照系的。(5)一般情形下应先规定一个正方向,以此来确定各个速度的方向(即以代数计算代替一维矢量计算)。

第三篇:高一物理高一全部教案(共52个)03.1.牛顿第一定律

牛顿第一定律

一、教学目标

1.在物理知识方面学习牛顿第一定律的内容,正确理解力跟物体运动的关系,掌握惯性的概念。

2.对客观事物的正确认识需要人们经过由表及里,由片面到全面长时间的认识过程。通过本节的学习要让学生建立起正确的认识论的观点,同时体会到人们认识世界的长期性和艰巨性。

3.物理实验是科学研究的方法,对实际问题做出合理的抽象,进行理想实验的研究正是伽利略得到力与物体运动正确关系的基础。我们要学习这种科学抽象的方法,并把它用到今后的物理研究中去。

二、重点、难点分析

1.本节的重点是正确认识物体运动跟力的关系,在物体不受力的情况下,应保持匀速直线运动状态或静止状态。通过对牛顿第一定律的学习,加深对惯性概念的理解。

2.生活常识使人们对力和运动的关系形成了不正确的认识,通过教学要让学生们克服传统观念,形成正确的认识,需要下一定的功夫。

三、教具

1.说明伽利略理想实验的装置,自制导轨和小球。

2.说明物体在不受阻力下做匀速直线运动的气垫导轨和滑块。3.演示惯性的小车和木块。

四、主要教学过程(一)引入新课

介绍本章的地位:在第一章我们学习了物体在静止或匀速直线运动状态下的受力问题,这时物体处于平衡状态,所受的力为平衡力。这部分内容在物理学中叫做静力学。

第二章研究了物体在直线上的运动,包括匀速运动和变速运动。在变速运动中重点讨论了匀变速直线运动。这部分内容在物体学中属于运动学。

在前边两章知识的基础上,我们在第三章里来研究运动和力的关系。这部分知识的基础是牛顿第一定律和第二定律。这部分内容在物理中属于动力学。学习动力学的知识后,可以在知道物体受力情况后确定物体的运动状态;在知道物体的运动状态的情况下,可以确定它的受力情况。动力学的知识在科学研究和生产实际中有着非常广泛的应用,如研究交通工具的速度问题,天体的运动问题等。我们从牛顿第一定律开始。

(二)教学过程设计 板书:

一、牛顿第一定律

实验:在桌上放着一本物理书,它是静止的,怎样才能让它运动起来呢?要用力去推它。从这个例子可以看出物体要运动,需要对它施加力的作用。力是使物体运动的原因吗?

这是一个运动和力的关系问题。这个问题在2000多年前人们就对它进行了研究,下面我们来回顾一下历史。

1.历史的回顾

2000多年前,古希腊哲学家亚里斯多德根据当时人们对运动和力的关系的认识提出一个观点:必须有力作用在物体上,物体才能运动。

这种观点的提出是很自然的。我们从周围的事情出发,很容易就会得到这个结论。如车不推就不走,门不拉不开等。这种观点统治人们的思想有两千年。直到17世纪,意大利科学家伽利略才指出这种说法是错误的,他分析到:运动的车停下来是由于摩擦力的原因,运动物体减速的原因是摩擦力。伽利略提出了自己的看法,他指出:物体一旦具有某一速度,没有加速和减速的原因,这个速度将保持不变。这里所指的减速的原因就是摩擦力。

为了证实结论的正确,他设计了一个理想实验(thought experiment),下面利用一个跟他的理想实验装置相似的实验向大家介绍一下伽利略的实验。

实验:有两个斜面,用一个小球放到左边的斜面上,放手后小球从左边斜面上滚下后滚到右边的斜面上。在有摩擦力的情况下,到达右边斜面的高度比左边的释放高度要低。

伽利略所设计的实验是这样的:实验装置跟现在的一样,实验时若没有摩擦力,(当然没有摩擦力是不可能的,所以他的实验是想象中的理想实验。)我们看一下小球在这个理想实验中会怎样运动。

把小球放到左边斜面的某一个高度,放手后由于有加速的原因,所以小球会从斜面上滚下,越滚越快;到右边斜面时,由于有减速的原因,小球会越滚越慢。在没有摩擦力的情况下,小球应达到左边的释放高度。

改变右边斜面的倾角,倾角变小,小球要达到同样的高度,要在斜面上走更远的距离。当右边倾角为零时,小球将一直滚下去永远达不到左边的释放高度,这个速度将保持不变。

这个实验虽然是个理想实验,但却是符合科学道理的。没有摩擦的情况是很难实现的,现代技术给我们提供了阻力很小的条件。我们来看一下气垫实验。它的原理是气泵给气垫装置打气,导轨上有许多小孔,滑块与导轨间形成一层空气薄膜,滑动时阻力很小。我们观察一下滑块的运动情况,可以看到滑块的速度基本不变。

法国科学家笛卡尔补充和完善了伽利略的论点,提出了惯性定律:如果没有其它原因,运动的物体将继续以同一速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

伽利略和笛卡尔对物体的运动作了准确的描述,但是没有指明原因是什么,这个原因跟运动的关系是什么。

牛顿总结了前人的经验,指出了加速和减速的原因是什么,并指出了这个原因跟运动的关系,这就是牛顿第一定律。

2.牛顿第一定律:一切物体总保持匀速运动状态或静止状态,直到有外力迫使它改变这种状态为止。

从牛顿第一定律可以看出:

(1)物体在不受力时,总保持匀速运动状态或静止状态。

(2)物体有保持匀速直线运动状态的性质,叫做惯性。在初中已经学过惯性的概念,下面通过实验再来看一下物体具有惯性的例子。

小车起动时,车上的木板向后倒;刹车时,木块向前倒。人在坐汽车时也有同样的感受。

(3)物体运动状态的改变需要外力。

我们所遇到的实际问题中,物体不受力的情况是没有的。物体受平衡力时,或者说合力为零时的情况跟不受力的情况是相同的。

3.小结

毛主席在《实践论》中对感性认识和理性认识的关系作出如下的论述:“感性材料固然是客观外界某些真实性的反映,但它们仅是片面的和表面的东西,这种反映是不完全的,是没有反映事物本质的。要完全地反映整个的事物,反映事物的本质,反映事物的内部规律性,就必须经过思考作用,将丰富的感觉材料加以去粗取精,去伪存真,由此及彼,由表及里的改造制作工夫,造成概念和理论的系统。就必须从感性认识跃进到理性认识。”

人们对运动和力的关系的认识经过了从感性认识到理性认识的跃进。这个过程经历了两千年的时间,在此过程中伽利略作出了主要贡献。由此可以看出伽利略的伟大和工作的卓越。就是这样一个伟大的科学家,因为他的科学思想不符合教会的统治思想,受到教会的禁锢。直到最近,梵帝冈教庭才给他公开平反。科学思想得来不易,科学的真理总是要战胜不科学的东西。

4.讨论布置作业

五、说明

1.牛顿第一定律在初中阶段学生已经学习过,在高中阶段再次学习这个内容时,要让学生的认识有进一步的提高。教师在授课时应注意到这一点。2.几个科学家在研究力与物体运动的关系中做出了贡献,在讲课时可以把他们的画像用投影幻灯打出来,增加课堂的活跃气氛,加深学生的记忆。3.说明伽利略理想实验的装置可以自制,用两根粗铁丝按下图制作,末端弯成小环,两根轨道用螺丝灯连起来,可以改变两轨的倾角,选用钢球,注意小球在最低点时要能圆滑地通过轨道。

第四篇:高一物理高一全部教案(共52个)03.9.牛顿运动定律的适用范围(本站推荐)

牛顿运动定律的适用范围

一、教学目标:

1、知道牛顿定律的适用范围;

2、了解经典力学在科学研究和生产技术中的广泛应用;

3、知道质量与速度的关系,知道在高速运动中必须考虑速度随时间的变化。

二、教学重点:

牛顿运动定律的适用范围。

三、教学难点:

高速运动的物体,速度和质量之间的变化关系。

四、教学方法:

阅读法、归纳法、讲练法

五、教学用具:

投影仪、投影片

六、教学步骤:

导入新课

自从17世纪以来,以牛顿定律为基础的经典地学不断发展,取得了巨大的成就,经典力学在科学研究和生产技术中有了广泛的应用,从而证明了牛顿运动定律的正确性。

但是,牛顿运动定律也不是万能的,它也有一定适用范围,那么牛顿运动定律在什么范围内适用呢?

新课教学:

(一)用投影片出示本节课的学习目标:

1:知道牛顿运动定律的适用范围。

2:了解经典力学在科学研究和生产技术中的广泛应用。

3:了解质量之间的关系。

(二)学习目标完成过程:

1:牛顿运动定律的适用范围:

(1)指导学生阅读P67页课文;

(2)用投影片出示思考题:

a:对于宏观物体,牛顿运动定律在什么情况下适用?在什么情况下不适用?

b:牛顿运动定律对微观粒子适用吗?

(3)学生回答后,老师归纳总结:

a:牛顿运动定律对于处理宏观低速运动问题是完全适用的;

b:但对于接近光速时宏观物体的高速运动问题,牛顿运动定律已不再适用。

原因:20世纪初,物理学家爱因斯坦提出了狭义相对论,他指

出物质的质量要随速度的增大而增大,而在经典力学中,认为质量是固定不变的。

c:相对论和量子力学的出现,又说明了人类对自然界的认识是更加深入了,而不表示经典力学失去意义。

d:牛顿运动定律对微观粒子不再适用。

2:对牛顿运动定律一章进行小结:

(用复合投影片逐步展示本章的知识要点)

0牛顿第一定律F合0时,a(惯性定律)惯性——一物体本身固有的属性F合maa与F合方向一致

牛顿运动定律牛顿第二定律超(失)重:由竖直方向的加速度方向决定,与运动方向无关。等值牛顿第三定律作用力和反作用力的关系反向共线

七:小结:

通过本节课的学习,我们知道了:牛顿运动定律只适用于低速运动的宏观物体,但是这并不意味着牛顿运动定律失去了它的意义。

八、板书设计:

适于宏观低速问题牛顿运动定律不能用来处理高速问题一般不适于微观粒子

第五篇:高一物理高一全部教案(共52个)08.3.动量定理的应用[小编推荐]

动量定理的应用

一、教学目标

1.通过例题分析,使学生掌握使用动量定理时要注意:(1)对物体进行受力分析;(2)解题时注意选取正方向;(3)选取使用动量定理的范围。

2.通过对演示实验的分析,培养学生使用物理规律有条理地解释物理现象的能力。

二、重点、难点分析

动量定理的应用,是本节的重点。动量、冲量的方向问题,是使用动量定理的难点。

三、教具

宽约2cm、长约20cm的纸条,底部平整的粉笔一支。

四、主要教学过程(一)引入新课

物体动量的改变,等于作用力的冲量,这是研究力和运动的重要理论。它反映了动量改变和冲量之间的等值同向关系。下面通过例题,具体分析怎样使用动量定理。

(二)教学过程设计

例1.竖立放置的粉笔压在纸条的一端。要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。在同学回答的基础上,进行演示实验。第一次是小心翼翼地将纸条抽出,现象是粉笔必倒。第二次是将纸条快速抽出。具体方法是一只手捏住纸条没压粉笔的一端,用另一只手的手指快速向下打击纸条中部,使纸条从粉笔下快速抽出。现象是粉笔几乎不动,仍然竖立在桌面上。

先请同学们分析,然后老师再作综合分析。

分析:纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿纸条抽出的方向。不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示。根据动量定理有

μmgt=mv

如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度。由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。

如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变。粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。练习:有一种杂技表演,一个人躺在地上,上面压一个质量较大的石板。另一个人手持大锤狠狠地打到石板上。问躺着的人是否会有危险?为什么? 请同学们判断结果,说明原因,老师最后再总结。由于铁锤打击石板的时间极短,铁锤对石板的冲量极小,石板的动量几乎不变,躺着的人不会受到伤害。例2.质量1kg的铁球从沙坑上方由静止释放,下落1s落到沙子表面上,又经过0.2s,铁球在沙子内静止不动。假定沙子对铁球的阻力大小恒定不变,求铁球在沙坑里运动时沙子对铁球的阻力。(g=10m/s2)解法1:(用牛顿第二定律求解)铁球下落1s末,接触到沙坑表面时速度

v=gt=10×1m/s 铁球在沙子里向下运动时,速度由v=10m/s减小到零。铁球运动的加速度方向向上,铁球在沙子里运动时,受到向下的重力mg和沙子对它的阻力f。根据牛顿第二定律,以向上为正方向。

f-mg=ma 沙子对铁球的作用力

f=mg+ma=1×(10+50)N=60N 解法2:(使用动量定理)铁球由静止下落1s末,到与沙子接触时速度为

v=gt=10×1m/s=10m/s 在沙子里运动时,铁球受到向下的重力mg和沙子对它向上的阻力f。以向上为正方向,合力的冲量为(f-mg)t,物体的动量由mv减小到零,动量的改变为0-mv。根据动量定理,(f-mg)t=-mv 沙子对铁球的阻力

说明:因为规定向上为正方向,速度v的方向向下,所以10m/s应为负值。解法3:(使用动量定理)铁球在竖直下落的1s内,受到重力向下的冲量为mgt1。铁球在沙子里向下运动时,受到向下的重力冲量是mgt2,阻力对它向上的冲量是ft2。取向下为正方向,整个运动过程中所有外力冲量总和为I=mgt1+mgt2-ft2。铁球开始下落时动量是零,最后静止时动量还是零。整个过程中动量的改变就是零。根据动量定理,mgt1+mgt2-ft2=0 沙子对铁球的作用力

比较三种解法,解法1使用了牛顿第二定律,先用运动学公式求出落到沙坑表面时铁球的速度,再利用运动学公式求出铁球在沙子里运动的加速度,最后用牛顿第二定律求出沙子对铁球的阻力。整个解题过程分为三步。解法2先利用运动学公式求出铁球落到沙子表面的速度,然后对铁球在沙子里运动这一段使用动量定理,求出沙子对铁球的阻力。整个过程简化为两步。解法3对铁球的整个运动使用动量定理,只需一步就可求出沙子对铁球的阻力。解法3最简单。通过解法3看出,物体在运动过程中,不论运动分为几个不同的阶段,各阶段、各个力冲量的总和,就等于物体动量的改变。这就是动量定理的基本思想。

课堂练习:

1.为什么玻璃杯掉到水泥地上就会摔碎,落到软垫上,就不会被摔碎? 2.质量5kg的物体静止在水平面上,与水平面间的动摩擦因数μ=0.2,物体在F=15N的水平恒力作用下由静止开始运动。物体运动到3s末水平恒力的方向不变,大小增大到F2=20N。取g=10m/s2,求F2作用于物体上的5s末物体的速度。

答案:13m/s。

五、课堂小结

通过例题分析,可以看出:

(1)使用动量定理时,一定要对物体受力进行分析。(2)在一维空间内使用动量定理时,要注意规定一个正方向。(3)正确选择使用动量定理的范围,可以使解题过程简化。

下载高一物理高一全部教案(共52个)08.4.动量守恒定律5篇word格式文档
下载高一物理高一全部教案(共52个)08.4.动量守恒定律5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一物理高一全部教案(共52个)06.4.万有引力定律在天文学上的应用

    万有引力定律在天文学上的应用人造卫星 一、教学目标 1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动......

    高一政治全部教案 3

    第三课 企业和经营者 教学目标 通过教学,使学生了解有关企业的一些基本知识,明确国有大中型企业在国民经济中的地位和作用,认识提高企业经济效益的必要性和可能性,进而增加学生......

    高一政治全部教案 1

    主页 政治教案 第一课 商品和商品经济 教学目标 本课是全书的起始课和理论基础。通过教学,使学生初步懂得马克思主义的劳动价值论,了解商品、货币、价值规律等方面的基本知......

    高一物理公开课教案

    高一物理公开课教案 授课老师:戴志刚班级:高一(11) 班授课时间:2003年12月3日课题:运动快慢的描述 速度 教学目的: (1) 理解速度的概念。知道速度是表示运动快慢的物理量。知道它......

    高一物理功率教案大全

    功率 一、教学目标 1.理解功率的概念: (1)知道功率是表示做功快慢的物理量。 (2)知道功率的定义和定义式P=W/t;知道在国际单位制中,功率的单位是瓦特(W)。 (3)知道公式P=Fv的物理......

    高一物理《机械运动》教案

    教学目标知识目标1、知道什么是机械运动,什么是参考系,知道运动和静止的相对性.2、理解质点的概念,知道质点是用来代替实际物体的有质量的点,是一种理想化的物理模型,知道是否能把......

    高一物理《曲线运动》教案范文

    教学目标知识目标1、知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上.2、理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上.能力目标培......

    高一物理《匀速圆周运动》教案

    教学目标知识目标1、认识匀速圆周运动的概念.2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算.能力目标培养学生建立模型的能力及分析综合能力.......