第一篇:公开课教学设计及反思 公开课《三只猴子》教学设计
公开课《三只猴子》教学设计
设计意图:
针对大班幼儿年龄特点,借助图谱,图词结合,引导幼儿理解记忆歌词并以游戏的形式始终贯穿教学,引导幼儿在自然、轻松的情况下学唱歌曲,感受歌曲幽默、诙谐的情绪,还运用了不同的方法让幼儿跳出不同的节奏。最后一段小猴子被送进了医院,让幼儿对小猴说些什么,同时也让幼儿在游戏时不能像小猴子一样乱蹦乱跳,要注意安全,学会懂得保护自己。
活动目标
1、感受歌曲幽默诙谐的情绪,体验歌唱活动的乐趣。
2、通过节奏游戏,培养幼儿感知节奏的能力。
3、在听听、说说、玩玩的过程中理解歌曲内容,逐步学唱歌曲。
活动过程
一、倾听音乐
导入:小朋友好,今天我们一起来听听音乐,玩一玩,听听歌里有什么?发生了什么事情?(播放前三段音乐)
2、音乐听完后,个别幼儿把自己所听到讲出来,教师轻唱出示相应图片。
师:你听到了什么?发生了什么事? 三只猴子在干嘛?后来怎么了?
二﹑基本过程:节奏游戏,感知歌曲。
谈话:小猴子为什么会在床上跳?怎样跳头上才不会起包呢? 幼儿自由回答,教师小结:
师:我们跟着音乐有节奏地跳,大概头上就不会起包了。
1、播放音乐一遍,全体幼儿站在原地,跟着节奏尝试跳。
2、教师出示小卡片ⅹ,出示节奏︳ⅹ ⅹ ⅹ ⅹ︳要求幼儿按照每一句跳四下的方法跳一跳。钢琴老师给出前奏,教师清唱歌曲第一段。约定前奏不动,音乐起才开始跳。
3、幼儿三人一组,扮演三只猴子,手拉手跳节奏︳ⅹ ⅹ ⅹ ⅹ。(更换节奏观察XX这个一拍要跳两下,教师唱,幼儿用手拍出节奏。
幼儿三人一组跳出节奏︳ⅹ ⅹ ⅹ ⅹⅹ ︳再次更改节奏型︳。
4、分组练习。幼儿三人一组,自己用节奏卡片编一个节奏,跟着音乐(三段)跳。教师每组进行指导。
5、分组练习后,教师把幼儿练习的节奏类型放到黑板上,进行集体练习。此时要求其他幼儿和老师一起进行伴唱。
6、合作练习。
7、教师小结:这样会比小猴子跳的更安全,头上不会摔包。三﹑拓展延伸
师:提问:孩子们,猜猜猴子到哪去了?我们一起来听一听。(播放第四段音乐)
师:你想对小猴子说什么(以后你别在床上跳了)师:回去把歌曲唱给别的小朋友听。附教学反思: 活动初,我先让孩子们认真的倾听音乐。孩子们回答一个问题我便根据他的回答出示与歌曲有关的系列图片。在学唱歌曲的过程中,幼儿学得快乐,玩得开心。从引题听赏歌曲到玩节奏游戏到结束,整个过程中,我都在用自己的歌声,感染小朋友。
活动开展中有做的好的地方也存在一些不足。
1、在本次活动的开展中我示范了三组节奏型,都是我重在操作,让孩子学跳,如果给孩子机会,让他们拍一拍,孩子记忆就会更深刻。
2、活动过程中游戏环节孩子很感兴趣,应该给孩子更多的时间去玩,这样才能够为下面的教学做好铺垫。
3、前期的准备工作做得不够,应该让孩子练习一下。
总之在任何一个教学活动中,都要以幼儿的发展为主体,挖掘领域的特征,切透教材,精心准备每个环节,正如纲要中所提到:在艺术活动中面向全体幼儿,要针对他们的不同特点和需要,那样才能够使活动效果更佳。
以上就是我对本次教研活动以及我开展的活动的一点反思和想法。2014.10
第二篇:公开课教学设计及反思
公开课教学设计及反思
科目:数学
课题:三角形的内角和
授课班级:四年(2)班
授课教师:许连玉
授课时间:2018年4月18日
第三篇:教学反思 三只猴子
《三只猴子》是一首简单、有趣、又有教育意义的歌曲。它表现了小猴在床上蹦蹦跳跳以及摔了跟斗的情形。这种情形与幼儿的生活有着密切的联系,很容易引起共鸣。《纲要》中的教育理念让我们越来越注重幼儿在活动过程中自主性的发挥,都尽可能地在活动中创设条件,让孩子能自由选择、自由探索、自主想象、自主表达。只要是幼儿感兴趣、能自发参与的,都是在自主学习。因此,通过模仿小猴跳、用夸张的表情、动作、语气词表现小猴摔跤、脑袋上肿起大包的那种可怜、可笑来表现歌曲的内涵,感受歌曲的快乐。活动中,需要掌握好安全教育与学习歌曲之间的关系。第一,歌曲中已经揭示了小猴床上蹦跳吃苦头的必然结果,不必再多地说教。第二,小猴摔跤、脑袋上肿起大包的可怜、可笑,要表现得生动鲜明,让幼儿真切地领悟到这种行为的后果。
《三只猴子》活动目标定为学唱歌曲,初步体会歌曲诙谐、幽默的风格;在倾听和做动作参与游戏的过程中逐步学唱歌曲;培养初步的安全意识,懂得不能在高的地方乱跳。
在以往的音乐活动的组织过程中,主要的教学方式就是用非常传统的方法教幼儿,大多数是以跟唱为主,却忽略了幼儿的兴趣。在活动过程中我增加激励性语言来激发幼儿的学习兴趣。用简单而又体现小猴角色行为肢体动作表现歌曲让整个活动首尾呼应。小猴子活泼可爱的形象、在游戏中学习歌曲的过程,让孩子们感到歌唱的快乐,从而萌发出对音乐活动的兴趣。活动下来,孩子们在表演的过程中开心的学会了歌曲并领悟到歌曲所表达的安全教育意义。在任何一个教学活动中,我们都要以幼儿的发展为主体,从幼儿的心理和生理年龄特点发展为目的,挖掘领域的特征,吃透教材,精心准备每个环节,正如纲要中所提到:在艺术活动中面向全体幼儿,要针对他们的不同特点和需要,让每个幼儿都得到美的熏陶和培养,那样才能够使活动效果更佳。
托尔斯泰曾说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”随着活动的进程,手偶表演——手指游戏——教师表演——集体表演——分组表演,幼儿自然地融入其中,边游戏边学唱歌曲。活动结束时,歌曲也基本学会了。和传统的歌唱教学相比较,这样的教法不带任何灌输性质,重视的是幼儿音乐情趣的培养,并且在活动中幼儿也有自由协商、充分想象的空间。同时通过小猴的这种行为,让幼儿真切地领悟到后果,潜移默化地教育了他们,从而进一步提高了孩子们的安全意识
第四篇:公开课教学设计
公开课教学设计
《 练习三 》
(新北师大版四年级上册数学)
亳州八中 张卫东
二零一五年十月
教学内容:练习三 教学目标:
1.练习乘法竖式、乘法估算。
2.乘法竖式、乘法估算。用乘法解决实际问题。教学重点:练习乘法竖式、乘法估算。教学难点:
1.乘法竖式、乘法估算;2.用乘法解决实际问题。教学过程:
一、乘法口算、竖式练习
做第1题:
做第2题:
二、乘法估算练习
教师注意解析题目内容,学生注意听讲: 1.第3题:不用计算判断乘法计算的对错。独立完成,订正时说估算的方法。
2.第4题:出示题目,让学生观察图上的信息,特别是两只挂钟上的时间。
学生观察后,可以让他们回答笑笑与淘气的问题。鼓励学生交流估计的方法。
3.第6题:解决该问题的关键是会观察图上的信息。首先让学生说说图中的信息,其次再让他们估计结果。
三、数学游戏:
这个游戏的策略主要是两方面: 一是,先占领棋盘上的哪个格子;
二是,怎样估计格子上的积是哪两个数相乘的结果。
板书设计: 练习三
乘法竖式、乘法估算
四年级班主任工作总结
张卫东
在学校整体思想的指导下,取得了一定的成绩。现将本学期总结如下:
一、热爱学生、尊重学生、相信学生。
我相信学生在我的主导作用下能管好自己,所以,首先,我充分发挥班干部的主体作用。在一定意义上说,创建和谐的班集体,班干部是决定性的因素于是,我着手对管理体制进行“放权”:通过几次班干部例会,要求班干部敢想,敢做,不仅要做实干家,更要做决策者,只要能发动同学们自觉参与班级管理,有利于同学们的学习和各种爱好的发展,什么想法和活动都可以讨论。这样一来发挥了班干部的主体性,调动了班干部的积极性,工作起来轻松许多,而且效果也较好,除了学校组织的活动外,在班内还开展各种活动,鼓励同学们积极参加,这些活动大都由学生们自己策划、组织、总结、收到较好的效果。
二、以强化常规训练带动教育教学工作。
良好的常规是进行正常的学习和生活的保障,一个学生调皮捣蛋、不合常规的举动往往会使一堂好课留下遗憾,使整个集体活动宣告失败,甚至使全班努力争取的荣誉付诸东流,直接影响到班集体的利益。因此,要扎实有效地加强一个学生的常规训练。训练的内容包括《小学生守则》和《小学生日常行为规范》要求的常规、课堂常规、集会常规、卫生常规、劳动常规等等诸多方面。训练可以通过集体或个人、单项强化或全面优化相结合的方式进行(根据具体情况选择),务必使每个学生具有“服从集体,服从命令”的思想,具有自我约束力,形成习惯。
三、激发学生竞争意识。
使孩子形成比学赶帮超的良好学习氛围,一一对应的帮助差生活动,互相促进,共同提高。重视对后进生的教育工作,针对每一个学生的基础和特点,进行正确的指导和必要的帮助,使每个学生都能得到良好的充分的发展。由于本班男生较多,差不多占全班的三分之二,一部分男生不但难于管理,而且学习不刻苦,成绩也较差,所以利用课间、课后找他们谈心,深入细致地做他们的思想工作,让他们树立学习的信心和勇气,帮助他们制定学习计划,和划分学习小组,提高他们的学习成绩。
四、重视与家长的联系
班主任只凭自己的威信和力量是不可能取得教育成功的,必须力争本班科任老师和家长对学生有一致的要求和态度,并时常同他们交换意见。家长会是学校与家长联系的重要途径,应高度重视,确保会议质量,尽量与家长取得共识。会上可以请个别优秀家长介绍成功教育孩子的经验,可以谈教改的方向,谈本期教学内容及要求,谈本期整体情况,进行作业展览或者谈学校对家庭教育的建议均可。充分调动家长的积极性,配合学校教育好孩子,这样班主任工作才能更加顺利轻松。
当然我做的还很不够,有时是缺少了会发现的眼睛,因此才让班级管理出现了很多不尽人意的地方,可以说班主任工作是任重道远。有人曾说,能发现问题,并解决问题,就是一个成长进步的过程。通过这半年的学习锻炼,相信在以后的工作中,我将会以更大的信心和热情投入到其中。
浅谈初中数学思想方法的教学
张卫东
开展数学思想方法教育应作为新课改中所必须把握的教学要求,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的需要,是提高学生解题能力的需要。初中数学教学中要注意在知识发生过程中渗透数学思想方法,在思维教学活动过程中挖掘数学思想方法,在问题解决过程中强化数学思想方法,并及时总结以逐步内化数学思想方法。
一、对数学思想方法的认识。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。
中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。
可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。因此,新课标明确提出开展数学思想方法的教学要求,旨在引导学生去把握数学知识结构的核心和灵魂,其重要意义显而易见。
那么,初中数学思想方法有哪些呢?
二、认识初中数学思想方法。
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想
数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1]。在数学教学中,许多定律、定理及公式等常可以用图形来描述。而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系。例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图: 依据线路图,我们可以找出其中的等量关系 S小明=S小彬+10,然后设未知数列方程即可。
2、分类讨论的思想
分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。对数学内容进行分类,可以降低学习难度,增强学习的针对性。因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想。如当取何实数时,对当时,;当<3时,的值的分类讨论:。
3、转化思想
数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。例如:当求
时,的值。该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式。
4、函数的思想
辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函数的思想方法。例如:进行求代数式的值的教学时,通过强调解题的第一步“当„„时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值。如代数式x2-4中,当x=1时,则x2-4=-3;当x=2,则x2-4=0„„通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。
我们又该如何进行数学思想方法的教学呢?我认为可着重从以下几个方面入手:
三、数学思想方法的教学实践体会。
1、在知识发生过程中渗透数学思想方法
由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如华东师大版第二章《有理数》,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
2、在思维教学活动过程中,揭示数学思想方法
数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以“多边形内角和定理”的课堂教学为例,简要说明。
教学目标:增强运用化归思想处理多边形问题的一般策略;掌握运用类比、归纳、猜想思想指导思维,发现多边形内角和定理的结论;学会用化归思想指导探索论证途径,掌握化归方法;加强数形结合思想的应用意识。
教学过程:(1)创设问题情境,激发探索欲望,蕴涵类比化归思想。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化为三角形)那么,五边形内角和你会探索求吗?六边形、七边形„„ n 边形内角和又是多少呢?(2)鼓励大胆猜想,指导发现方法,渗透类比、归纳、猜想思想。教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何化归为三角形?数目是多少?六边形„„ n 边形呢?你能否用列表的方式给出多边形内角和与它们边数、化归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜 n 边形内角和有何结论?类比、归纳、猜想的含义和作用,你能理解和认识吗?(3)暴露思维过程、探索论证方法,揭示化归思想、分类方法。我们如何验证或推断上面猜想的结论呢?既然多边形内角和可化归为三角形来处理,那么化归方法是否唯一的呢?一点与多边形的位置关系怎样?(分类思想指导化归方法的探索)哪一种对获取证明最简洁?(至此,教材中在多边形内任取一点 O,连结点O与多边形的每一个顶点,可得几个三角形的思维过程得以充分自然地暴露)(4)反思探索过程,优化思维方法,激活化归思想。教师:从上面的探索过程中,我们发现化归思想有很大作用,但是,又是什么启发我们用这种思想指导解决问题呢?原来,我们是选择考察几个具体的多边形,如四边形、五边形等,发现特殊情形下的解决方法,再把它运用到一种特殊化思想当中。我们再来考察一下式子: n 边形内角和 =n×180°-360°,你能设计一个几何图形来解释吗?对于 n 边形内角和=(n-1)180°-180°,又能作怎样的几何解释呢?(至此,我们又可探索出另一种思维方法,即”在多边形某一边上任取一点 O,连结点O与多边形的每一个顶点来分割三角形)让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。
3、在问题解决过程中强化数学思想方法
在数学教学活动中,常常出现这样的现象:学生在课堂听懂了,但课后解题,特别是遇到新题型便无所适从。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。针对这种现象,教师应全面展示知识发生发展过程,并发挥学生的主体作用,充分调动学生参与数学的全过程,让全体学生能在躬行的探索中理解知识,掌握方法,感悟数学思想[2]。
例如:求下图中∠BCA的度数。
方法1:先求出∠BAC=600,后利用三角形内角和即可得∠BCA=1800-600-350=850 方法2:直接利用三角形外角性质,求得∠BCA=1200-350=850 显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想做出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力。
概括数学思想一般可分两步进行:一是揭示数学思想的内容、规律,即将数学对象共同具有属性或关系抽取出来;二是明确数学思想方法与知识的联系,即将抽取出来的共性推广到同类的全部对象上去,从而实现从个别性认识上升为一般性认识。比如,通过解方程(x-2)2 +(x-2)-2=0,发现也可用换元法来求解。在此基础上推广也可用换元法求解。由此概括出换元法可以将复杂方程转化为简单方程,从而认识到化归思想是对换元法的高度概括,还可进一步认识到数学思想是数学的灵魂,它是对数学知识的高度概括。
由于同一数学知识可表现出不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,甚至是某个概念、定理公式、问题数学都可以在纵横两方面归纳概括出数学思想方法。
四、数学思想方法教学的心理学意义。
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。”“学习结构就是学习事物是怎样相互关联的。”数学思想与方法为数学学科的一般原理的重要组成部分。下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。
第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。” 第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
第四,强调结构和原理的学习,“能够缩挟‘高级’知识和‘初级’知识之间的间隙。”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义。而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等。因此,数学思想、方法是联结中学数学与高等数学的一条红线。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。
第五篇:公开课教学设计
公开课教学设计
学前数学《区分10以内数的单双数》 余湾小学 赵丽
设计意图: 区分10以内数的单双数是大班初期幼儿的基本要求,传统的教学方法往往是采用集体教学的方法,将两个两个数,正好数完的那个数是双数,两个两个数,剩下一个的那个数是单数等抽象词句让幼儿记背区分,虽然幼儿反复记背后,说得十分流利,但一遇到实际区分某数是单数还是双……
设计意图:
区分10以内数的单双数是对学前班的基本要求,传统的教学方法往往是采用集体教学的方法,将“两个两个数,正好数完的那个数是双数”,“两个两个数,剩下一个的那个数是单数”等抽象词句让幼儿记背区分,虽然幼儿反复记背后,说得十分流利,但一遇到实际区分某数是单数还是双数时却十分困难,不是胡乱猜测就是茫然不知所措.如何将枯燥的数学活动融入孩子的生活,激发孩子对数学活动的兴趣,让孩子通过自己的亲身经验来感受单双数的概念,并区分10以内的单双数,是本次活动设计的主导.让幼儿在游戏的情景中养成自觉遵守规则的习惯,初步体验,感受单双数,理解单双数的含义.活动名称:区分单双数
活动目标:
1、理解10以内单双数的含义,知道两个两个的数数,正好数完的数是双数,两个两个的数数,还剩下1个的数是单数。
2、能进行10以内的单双数的相互转换,感受事物的多变性,锻炼思维的可逆性和灵活性。
3、能积极发现生活中的单数、双数,快乐的参加游戏活动。
活动准备:
1、实物:一双袜子、一个沙包
2、幼儿每人1张五角星练习纸,每人10块插花
3、PPT图片(练习10以内的单双数)、钢琴曲《雨的印记》
活动过程:
一、教师出示单双数的实物,让幼儿感知“单”“双”数的概念。
1.出示沙包
提问:几个沙包?用数字几表示?他有好朋友吗?
小结:像这样没有好朋友的数字,自己很孤单,我们给它起了一个名字叫单数(幼儿学说)
2.出示小袜子
提问:几只袜子?他有好朋友吗?我们通常说一双袜子。
小结:像这样成双成对的数字我们也给他们起了一个好听的名字叫双数。
二、教师出示数字卡片幼儿认读。
小朋友你们认识这些数字宝宝吗?一起来读读。小朋友们真聪明,今天我和大家一起来做几个游戏,想不想做?看看谁最聪明?
1.教师出示星星表,幼儿先观察后做题。
小朋友你们真聪明,认识了这么多的数字宝宝,老师今天给大家带来了一幅图,请小朋友仔细看,每个数字下面都有相应数量的小星星,请小朋友把星星两个两个的圈起来,看看哪个数字下面的小星星没有好朋友了?(幼儿做题)
小结:1、3、5、7、9
刚才我们说了没有好朋友的数字是什么?(单数)2、4、6、8、10是什么数?(双数)
2.请小朋友拿出数字卡片把单双数分出来,看谁分的快又对?(幼儿操作)
小结:小朋友你是这样分的吗?教师出示“小房子表”幼儿检查。
3.教师出示综合图幼儿找数字宝宝,并说明谁是单双数。
三、游戏《数插花》
1.提供插花,幼儿自由抓一把,两个两个得计数,判断单双数,可反复练习。
2.启发幼儿操作思考:怎样才能把单数变双数,双数变单数?如:添上一个或去掉一个。
四、游戏《找一找》
幼儿照照自己身上或周围什么是单数,什么是双数?
五、游戏《抱一抱》
1.听音乐学小鱼在大海里游泳,当听到老师说单数就自己抱自己,双数就两个好朋友抱在一起。
2.可以加深难度,当说出一个数字,先判断是单数还是双数,然后再决定抱一抱。如“7”幼儿就自己抱自己,“4”就好朋友互相抱一抱。游戏反复进行。
活动反思:
活动的第一环节圈画。出示十六张星星图片,让幼儿数数图片上的星星数,并贴上相应的数卡。这让幼儿巩固了点与数的相对应。以要完成任务为由,让幼儿对星星图片进行圈画,要求是让每张图片上的星星两个两个抱在一起。为了让幼儿有从下手,我分别拿一个单数和双数进行示范。在让幼儿完成任务之前,我对任务的要求重点强调。幼儿圈画时,我让他们自由选择一张星星图片进行任务,因为时间有限,我请一位小朋友说出了自己的结果,其他幼儿只是对照答案,没有很好的总结交流,师幼一起小结了星星全部圈完的数字,和星星没有圈完的数字,并告诉幼儿:没圈完的1、3、5、7、9叫做单数,圈完的2、4、6、8、10叫做双数。