第一篇:函数的单调性教学案例
函数的单调性教学案例
【教材分析】
《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。【教学目标】
知识与技能:
1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。2.学会应用函数的图象理解和研究函数的单调性及其几何意义。过程与方法:
1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。情感与态度:
1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。
2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。【重点难点】
重点:函数单调性概念的理解及应用。难点:函数单调性的判定及证明。关键:增函数与减函数的概念的理解。【教法分析】
为了实现本节课的教学目标,在教法上我采取了:
1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。【学法分析】
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。【教学过程设计】
(一)问题情境
1.海宁潮,又名钱江潮,自古称之为“天下奇观”。“八月十八潮,壮观天下无”。海宁潮是一个壮观无比的自然动态奇观,当江潮从东面来时,似一条银线,“则玉城雪岭际天而来,大声如雷霆,震撼激射,吞天沃日,势极雄豪”。潮起潮落,牵动了无数人的心。
如何用函数形式来表示,起和落?
2.教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。
如何用学过的函数图象来描绘这些成语?
设计意图:创设海宁潮潮起潮落,成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发 学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。
(二)温故知新
1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。
观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。
2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的? 例如:初中研究yx时,我们知道,当x<0时,函数值y随x的增大而减小,当x>0时,函数值y随x的增大而增大。
回忆初中对函数单调性的解释:
图象呈逐渐上升趋势数值y随x的增大而增大;图象呈逐渐下降趋势数值y随x的增大而减小。
函数这种性质称为函数的单调性。
设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。
(三)建构概念
问题3:如何用符号化的数学语言来准确地表述函数的单调性呢?
对于区间I内的任意两个值x1,x2,当x1x2时,都有f(x1)f(x2)。
单调增函数的定义:
问题4:如何定义单调减函数呢? 2可以通过类比的方法由学生给出。
设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。让他们充分感悟数学概念符号化的建构原则。问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。
(四)理解概念
1.顾名思义,对“单调”两字加深理解
汉语大词典对“单调”的解释是:简单、重复而没有变化。2.呼应引入,解决问题情境中的问题
如:y2x1的单调增区间是(,);y3.单调性是函数的“局部”性质 如:函数y上减函数?
引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取x11,x2
1在(0,)上是减函数。x11在(0,)和(,0)上都是减函数,能否说y在定义域(,0)(0,)上xx
1)。
2设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。在学习如何证明一个函数的单调性之前,先与学生一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。
(五)运用概念
通过两例,教师要向学生说明:
1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。
2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。练习:作出函数y|x1|
1、y|x21|的图象,写出他们的单调区间。
设计意图:单调性证明是学生在函数内容中首次接触到的代数论证问题,通过本例,要让学生理解判断函数单调性与证明函数单调性的差别,掌握证明函数单调性的程序,并深入理解什么是代数证明,代数证明要做什么事。
(六)回顾总结
本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。
第二篇:《函数单调性》教学案例
《函数单调性》教学案例
1.【案例背景】
“函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。“课标”规定两个课时,所选案例为第一课时。
函数的单调性是函数的一条基本性质,从知识结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究基本初等函数、三角函数等内容的基础。在这之前,学生已经学过函数的定义,函数的表示,学习过一次函数,二次函数,反比例函数等,函数单调性是学生研究函数整体性质的开始,之后还有奇偶性周期性等,所以本节内容承前启后,解决有关的函数问题,这一节学好了,学生获得的知识就会对后面几节的知识产生正迁移作用。
2.【教学内容分析】
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.3.【学情分析】
高一的学生正处于经验逻辑思维发展阶段,具备了一定的逻辑思维但要想 使学生“以一系列的行动队一系列的条件作出反应”却需要很大的努力的。函数单调性的本质是利用定量的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.
因此首先要重视学生的亲身体验:将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识。运用新知识尝试解决新 问题.其次重视学生发现的过程.充分展现学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程。充分展现在正、反两个方面探讨活动中,学生认知结构升华、发现的过程. 最后重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.
4.【教学过程】
一、创设情境,引入课题 课前布置任务:
(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题1:请同学们观察图,指出该天的气温在如何变化?(学生独立思考)
【设计意图】通过生活实例,让学生对图象的上升和下降有一个初步的感性认识,让学生感受到函数的单调性和我们的生活密切相关,进而激发学生的兴趣,引发学生进一步学习的好奇心。
生1(主动回答):0~4时,温度下降,4~14时温度上升,14~24时温度下降。问题2:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二.借助图象,直观感知
问题3:观画出y=x和yx2的函数图象,回答下面两个问题:
⑴分别指出上面两个函数的图象在哪个区间是上升的,在哪个区间是下降的?
【设计意图】顺应学生的认知规律。
(小组合作探求)
生1:一次函数y=x其定义域上是上升的,二次函数yx2是先下降后上升。师:这样回答准确吗?
生2:一次函数y=x在区间(-∞,+∞)上是“上升”的;二次函数y=x2在区间(-∞,0)上是“下降”的,(0,-∞)上是“上升”的。
⑵同学们能用数学语言把这两个函数图象“上升”或“下降”的特征描述出来吗?
【设计意图】有感性上升到理性。(给学生适当的思考时间)
这时学生们思维较为混乱,无从下手。教师及时通过“几何画板”展示y=x图象上A点的运动情况,让学生观察x,y值的变化。师(及时提问):同学们能用数学语言把y=x图象“上升”的特征描述出来吗? 生3:该函数随着x的值增大,y的值相应的增大。师(面向全体学生):大家同意生4的回答吗?
生4:老师,我有补充,应该说:该函数在区间(-∞,+∞)上随着x的值增大,y的值相应的增大。师:生5补充的很好,明确提出了函数变量在对应区间上的变化情况,那么函数yx2呢? 生5:函数yx2在区间(-∞,0)上随着x的值增大,y的值相应的减小;在区间(0,+∞)上是随着x的值增大,y的值相应的增大。
师:在数学上,我们把y随着x的增大而增大,称为增函数;把y随着x的增大而减小,称为减函数。
五、巩固概念,适当延展
练习2:证明函数f(x)x在[0,)上是增函数. 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.
六、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.课后探究:
研究函数yx1(x0)的单调性,并结合描点法画出函数的草图. x 在整个教学过程当中收获了以下几点心得:
1、概念教学就是对知识发生过程的了解,数学概念是一系列常识不断精细化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求。本案例通过“直观”到“抽象”的跨越,使学生意识到自己能力上的缺陷,从而引发认知上的不平衡,产生学习的动力。
2、概念形成困难的原因在于新旧知识结构上的矛盾(如语言形式上的差异太大,学生认知水平、抽象水平与新内容的要求落差大等),所以解决的策略应是要培植知识的生长点,搭建恰当的脚手架。为此,我循序渐进、螺旋式地设计了问题组和运用了信息技术,是学生从“形”到“数”有了清新的认识。
第三篇:《函数单调性》的教学案例
《函数单调性》的教学案例
一、教学目标:
(1)知识与技能:理解增函数、减函数的概念,初步掌握判断 函数单调性的方法;
(2方法与过程:通过观察、归纳、抽象、概括等,培养学生 从图象中发现函数的单调性,并用数学语言加以刻画的能力,领会数形结合的数学思想方法。
(3)情感态度与价值观:在学习中,体验数学的科学价值和应
用价值,培养善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点
教学重点:在图象中发现函数的单调性并形成概念;
教学难点:将函数单调性的图形语言或直观语言转化为数学 语言,用定义证明函数的单调性。
三、《函数单调性》 教学过程:
在下一页用图表说明。
《函数单调性》 教学过程
第四篇:函数单调性教学案例分析
“函数的单调性”案例分析 连江一中数学组 李锋
数学概念的教学是培养学生创新精神和实践能力的一个很好的切入点,重视数学概念的发生、发展、形成的过程的体验,让学生进行深入的思考和全方位的探索。对于提高学生学习数学的兴趣,培养学生创新精神和实践能力将是十分有利的。现以《函数的单调性》教学实例来进行分析:
一、案例
课题:函数的单调性(第一课时)
二、实施过程(注:课堂实录已经简化)
1.问题引入
师:我们观察某自来水厂在一天24小时内,水压Y随时间X的的变化情况。不妨设其函数解析式:y=f(x);x[0,24]
师: “在哪些时间段内,水压在逐渐上升?在哪能些时间段内,水压在下降?”(很快得出正确答案。)
师:在某一时间段内水压在上升,实际上是水压Y的值随时间X的增大在逐渐增大,于是我说函数y=f(x)在区间[0,3]上,是单调递增函数。同理,函数y=f(x)在区间[3,9]上是单调递减函数。这就是我们要研究的函数的又一特性——函数的单调性。2.定义探究
师:在某个区间上:①函数值Y随X的增大而增大(图象从左——右,呈上升趋势),就说这个函数在这个区间上是增函数。②函数值Y随X的增大而减小(图象从左——右,呈下降趋势),就说这个函数在这个区间上是减函数。
提出问题1:请同学仔细阅读课本中函数单调性的定义,思考课本定义方法和上面定义方法是否一致?如果一致,定义中哪一句表达了该意思?
生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少. 师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!定义中只用了两个简单的不等关系,就刻划出了单调递增和单调递减的性质特征,把文字语言表达为数学语言,简单明了。
师:提出问题2:我们思考这样一个问题:定义中有哪些关键的词语或句子至关重要?能不能把它找出来。(有的同学回答不准确)
生1:我们认为在定义中,有一个词“给定区间”是定义中的关键词语.(阐述了理由)。师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.还有没有其他的关键词语?
生2:还有定义中的“任意”和“都有”也是关键词语. 生3:“属于” 也是关键词。师:能解释一下为什么吗?
生3:“属于”就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取. 师:那么“任意”和“都有”又如何理解?
生4:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).
师:能不能构造一个反例来说明“任意” 和“都有”呢?
(让学生思考,但有些学生仍有困难,我设计了三个判断题)提出问题3:判断下列命题的真假:
①函数y=x2 在(-∞,0)上是减函数,在[0,+∞]上是增函数,所以函数 y=x2 在定义域R上是增函数或是减函数。
②已知函数f(x)=x2(-2≤x≤2)。取x1=-2,x2=1,则x1
③若函数y=1/x在(-∞,0)单调递减,在(0,+∞)也单调递减,则该函数在定义域内单调递减。
(三个问题的提出,引起很大凡响,学生发言踊跃,互相讨论、补充,把本节课推向高潮)师:因此,要判定一个函数的增减性,主要途径就是依照定义,抓住关键,在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定。3.定义应用
提出问题4:判断函数f(x)=1/x在(0,+∞)上的单调性,并用单调性的定义加以证明。解:略
师:易知函数f(x)=1/x在(-∞,0)上也是单调递减函数,请同学归纳一下要证明一个函数在某个区间上单调性的方法和步骤? 第八组:①设量;②作差;③判断;④定论。
4.课堂小结(由学生回答)(略)
5.布置作业
(略)
三、案例分析
(一)本节课的设计思路 1.知识目标设计:
(1)在探究中,寻求函数单调性规律并形成概念。
(2)熟练运用函数单调性的概念证明函数在某个区间上的单调性。2.能力目标设计:
(1)通过对单调性概念的发生、发展的分析过程,培养学生的数学意识、逻辑思维能力;(2)通过本节课的教学探究,培养学生用数学语言代替文字语言的表达能力。提高对数学美的鉴赏能力;(3)对学生进行由“特殊”到“一般”的辩证唯物主义教育。3.教学过程设计:
针对本节课教学目标,教学过程分为三个阶段:
(1)问题引入阶段:问题的提出具有实际意义,引起学生的兴趣,锻炼学生的观察能力,又直逼主题,学生容易接受。通过图形的直观感觉,给学生函数单调性的感性认识,为突破难点做好铺垫。从而自然导入主题。
(2)定义探究阶段:本节课的中心内容,围绕三个问题的提出,对定义进行探究,层层深入,发动学生,分组讨论,积极思考,在巡视过程中,启发引导学生,及时掌握学生的动向,寻求函数单调性规律并形成概念。
(3)概念应用阶段:函数的单调性定义应用只设计了问题4,这一过程由学生来完成,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思,总结出解题的步骤和规律。
(二)本案例课堂教学的特点
1、抓住课堂教学的基本原则
(1)主体性原则:尊重学生的主体地位,发挥教师的主导作用,教师创造性地教,学生创造性地学,使教、学的主体共同参与整个教学过程。在本案例课堂教学活动过程中,教师围绕三个阶段,以问题的形式提供给学生,学生主动参与。特别是问题2、3的提出,学生产生许多疑惑,矛盾升级,老师便组织学生开展了互相交流和讨论,适时介入,和学生一起相互启发和梳理,并洞察课堂中发生地各种问题,准确地判断发生问题的原因,能动地、有效地处理这种问题,这一过程体现师生相互平等,教学相长的良好课堂氛围。
(2)探索性原则:教师努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习兴趣和创造兴趣,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。通过对问题2、3的讨论,大部分学生对单调性概念的发生、发展有了较深刻的理解,探索到函数单调性规律并形成了概念。同时培养了学生用数学语言代替文字语言的表达能力,提高对数学美的鉴赏力。这一教学过程使学生认识到看似简单的定义中有很多值得去推敲,去研究的东西,通过对问题的分析、总结,把包含在概念中的复杂和隐蔽的内涵,层层剥离,进行多层面的展开,从而使教学由表及里,深入清晰地揭示出概念的本质。因为学生理解程度的差异,老师提出问题4,这是本节课的亮点,简单的三个判断题,再一次揭示了概念的本质。把函数单调性概念的探究推向高潮,通过反向思维使学生的思维素质得以提升,促使学生能够在获得对概念理解的同时,逐步学会学习和思考,增长经验和智慧。这一部分课堂效果非常好。
(3)实践性原则:在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参与到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际问题,使学生获得运用知识的能力。函数的单调性定义应用只设计了问题5,典型的反比例函数,这一过程由学生来完成,但学生的证明过程也存在一定问题,老师再次强调定义,对照解答的层次性,再让学生自主订正,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思、质疑,总结出解题的步骤和规律。问题5的提出起到前后呼应,加深印象、画龙点睛的作用,既是对本节课的反馈,又是引发对本节课的思考。由于时间的关系,课上讨论的并不透彻和完美,但给学生课后进一步的思考、探究留下了空间。
(4)激励性原则:要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,认识到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。
2、体现能力培养的指导思想
概念教学有利于培养学生的发现能力;有利于培养学生的创新精神;有利于培养学生的实践能力。概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物的本质属性或规律。发现是创造的一种重要形式,创造需要一种实践活动的过程。现代著名心理学家布鲁纳认为:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,学生用自己的头脑去亲自获得知识也是一种发现。在过程中发现,在发现中创新。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思考空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力和创新能力。
(三)本案例课堂教学引发的反思
1、概念教学的方法应灵活多样 中学数学教材展现在学生面前的往往是由概念到定理,法则再到例题的三步曲,这在一定程度上掩盖了数学概念和思想方法的形成,发展过程,从而也掩盖了数学发现、数学创造、数学应用所经历的思维活动过程,抽象的概念也会给学生造成厌恶的感觉。所以数学概念教学不应简单地给出定义,而应加强概念的引入和概念属性的感知,本案例的引入,从实际生活中提炼,通俗易懂,平易近人。教学时应创设情境,方法灵活多样,激发学生的学习兴趣,让学生积极参与教学活动中来,亲身体验、主动建构,使学生了解知识的发生与发展的背景和过程,使学生对数学的学习感到乐趣。为此,从引进新概念开始就要创造启发式的教学环境,揭示概念的本质属性,并用简单的文字加以表达,在对概念进行结构分析和概念的应用,形成一个生动的概念发生的过程,这一过程需分层次递进,低层次的理解是高层次理解的基础,各层次之间最好不要越级,任何急功近利的想法或做法都是不可取的。
2、正确认识和处理探究过程与时间限定的矛盾
探究活动比较费时间,教师都很重视课堂效率,而且对调控教学节奏,颇有一些办法,是不是一发现学生得到了正确的结论,就让其回答,并结束这个探究过程?由于教学时间的限定,如果探究的不够完美、透彻,或本节课的教学内容没有全部完成,那么总感到一种缺憾,所以在这个矛盾的驱使下,往往追求进度,多讲几个例题,忽略学生的经历。而新课程标准则强调让学生经历“直观感知”、“观察发现”……等思维过程来形成思维能力。这就要求我们要以学生体验、理解、掌握知识为中心,重视数学概念的构作,数学思维的建立,数学意识的形成,所以,教师应设计好每节课的内容与容量,本案例延长了概念的探究过程,重视学生的数学意识、思维品质的培养,使学生懂得数学的意义与价值。虽然只有一个例题,但非常典型,同样收到很好的效果。
落实新课程改革精神,并不是
一、两节课的事,应该体现在课堂教学的每个环节和过程,教师要更新观念,转换角色,力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。使课堂教学由知识型向能力型和实践型转化,全面提高学生数学素养。能力增强了,学习成绩自然不会差,以人为本的思想也得到了落实。
第五篇:函数单调性
函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计
北京教育学院宣武分院 彭 林
函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。
关键点1。学生 学习函数单调性的认知基础是什么?
在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。
就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。
第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。
第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。
第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。
基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。
让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的.
在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数
在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.
关键点2。为什么要用数学的符号语言定义函数的单调性概念?
对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。
所以,在教学中提出类似如下的问题是非常必要的:
右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减
对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性?
从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考?
一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点:
(1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。
用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。
在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战!
因此,在教学中可以提出如下问题2: 如何从解析式的角度说明
在上为增函数?
这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:
①在给定区间内取两个数,例如1和2,因为函数. ,所以
在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。
对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明
就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。
教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题:
判断题:
①②若函数③若函数满足f(2) 和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解 北京4中常规备课 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1: 分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为 为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ①. ②若函数 ③若函数 在区间 和(2,3)上均为增函数,则函数 在区间(1,3)上为增函 . ④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数 在区间 上是增函数的充要条件是对任意的上是增函数.,且 有. (2)研究函数的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入. (2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.