第一篇:《函数的单调性》教学目标
教学目标、教学重点、教学难点
《函数的单调性》
教学目标: 1.知识目标 ①理解函数的单调性的概念,掌握判断或证明函数单调性的方法和步骤; ②会求函数的单调区间.2.能力目标 ①通过对函数单调性的证明及单调区间的求法的复习,培养学生应用化归转化和分类讨论的数学思想解决问题的能力.②通过本节课的复习,使学生体验和理解从特殊到一般的归纳推理的能力.③通过课堂的练习,提高学生分析问题和解决问题的能力.3.情感目标 培养学生的逻辑推理能力和创新意识,同时,培养学生对数学美的艺术体验.教学重点:证明函数的单调性以及求函数的单调区间.教学难点:函数单调区间的求法.《简单的幂函数》
教学目标:
1.了解指数是整数的幂函数的概念;能通过观察总结幂函数的变化情况和性质;2.学会利用定义证明简单函数的奇偶性,了解用函数的奇偶性画函数图象和研究函数的方法
3.培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力,引导学生发现数学中的对称美,让学生在识图和画图中获得乐趣。教学重点:幂函数的概念,奇偶函数的概念.教学难点:幂函数图像性质,研究函数奇偶性。
《正比例函数》
教学目标:知识与技能: ⑴理解正比例函数及正比例的意义;
⑵根据正比例的意义判定两个变量之间是否成正比例关系; ⑶识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。
过程与方法: ⑴通过现实生活中的具体事例引入正比例关系通过画图像的操作 实践,体验“描点法”; ⑵经历利用正比例函数图像直观分析正比例函数基本性质的过程,体会数形结合的思想方法和研究函数的方法
情感态度与价值观: 积极参与数学活动,对其产生好奇心和求知欲.形成合 作交流、独立思考的学习习惯.
教学重点: 理解正比例和正比例函数的意义
教学难点:
判定两个变量之间是否存在正比例的关系
《体积和体积单位》
☆【教学目标】
1.让学生初步建立起空间大小的概念,知道“体积”的含义,发展学生的空间观念。2.让学生通过观察、操作、实验体会并理解体积的含义,认识常用的体积单位:立方米、立方分米、立方毫米。
3.初步掌握计量物体的体积的方法,能选择恰当的体积单位估算常见物体的体积。4.培养学生的实验能力、观察能力以及合作学习的能力,扩展学生的思维,进一步发展学生的空间观念。
【教学重点】使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。【教学难点】帮助学生建立1立方米、1立方分米、1立方厘米的表象,能正确应用体积单位估算常见物体的体积。
☆ 【教学目标】
1、通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。
2、使学生知道计量物体的体积,就要看它所含体积单位的个数。
3、使学生初步了解体积单位与长度单位、面积单位的区别和联系。
4、通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。
【教学重点】使学生感知物体的体积,掌握体积和体积单位的知识。
【教学难点】使学生建立体积是1立方米、1立方分米、1立方厘米的空间观念,能正确应用体积单位估算常见物体的体积。
《轴对称与坐标变化》
教学目标 【知识目标】:
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。【能力目标】: 1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。【情感目标】 1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知
欲,能积极参与数学学习活动。3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。
教学重点: 经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点: 由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
《倍的认识》
☆教学目的:
1、初步建立“倍”的概念,理解“几倍”与“几个几”的联系。
2、培养学生观察、推理、迁移能力及语言表达能力。
3、培养学生善于动脑的良好学习习惯和对数学的学习兴趣。
4、培养他们的创新意识和实践操作能力。
教学重点:初步建立“倍”的概念。理解和掌握:“一个数是另一个数的几倍”的含义 ☆教学目标:
1、基本目标
(1)学生紧密联系生活实际,通过操作,把“倍”的概念与学生已有的认识基础“份”联系起来,理解“倍”的含义,建立“倍”的概念。
(2)学会分析一个数是另一个数的几倍的实际问题的数量关系。(3)学生在学习过程中体会数学知识之间的内在联系,发展观察、比较、抽象、概括和合情推理能力。(4)学生在情境中探究解题的过程,体会探究带来的成功体验。
2、发展目标
(1)学生充分体验数学与日常生活的密切关系,培养生活中的数感。(2)培养学生积极探究、大胆尝试的自主学习能力和同学间协作互助的精神。
(3)学生进一步体会数学与现实生活的联系,培养学生认真观察、善于思考的良好学习习惯,增强学习数学的兴趣和信心。
教学重点:建立“倍“的概念。
教学难点:理解“一个数是另一数的几倍”的含义和计算方法。
第二篇:函数单调性
函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计
北京教育学院宣武分院 彭 林
函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。
关键点1。学生 学习函数单调性的认知基础是什么?
在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。
就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。
第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。
第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。
第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。
基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。
让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的.
在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数
在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.
关键点2。为什么要用数学的符号语言定义函数的单调性概念?
对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。
所以,在教学中提出类似如下的问题是非常必要的:
右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减
对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性?
从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考?
一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点:
(1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。
用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。
在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战!
因此,在教学中可以提出如下问题2: 如何从解析式的角度说明
在上为增函数?
这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:
①在给定区间内取两个数,例如1和2,因为函数. ,所以
在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。
对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明
就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。
教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题:
判断题:
①②若函数③若函数满足f(2) 和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解 北京4中常规备课 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1: 分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为 为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ①. ②若函数 ③若函数 在区间 和(2,3)上均为增函数,则函数 在区间(1,3)上为增函 . ④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数 在区间 上是增函数的充要条件是对任意的上是增函数.,且 有. (2)研究函数的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入. (2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔. 函数单调性教学设计 关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。 本节课是高中数学新课程标准必修1的第2章函数里的函数基本性质中介绍的第一个性质。它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数各类函数的单调性的基础,而且函数单调性在解决函数变化趋势、值域、最值、不等式等许多问题中有着广泛的应用。对整个高中数学教学起着重要的奠基作用。研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。下面我就这部分内容的习题教学提出一些不成熟的做法。 教学目标: (1)在知识方面,通过习题训练,使学生能加深对函数单调性概念的理解,进一步掌握判断并证明函数的单调性方法、学会应用函数的单调性解决相关问题。 (2)在能力方面,培养学生归纳、抽象以及推理的能力,提高学生创新的意识,并渗透数形结合的思想。 (3)在价值观和情感教育方面,让学生在解题的过程中体验数学美,培养学生乐于求索的精神,提高学生的数学修养,使其养成科学、严谨的研究态度。教学重点和难点: 本节课的教学重点是函数单调性的判定、证明及应用。其中的教学难点是函数单调性的应用和复合函数单调性的理解。教法和学法: 在教法上采用传统的讲练结合。在具体实施上,将采用计算机辅助教学的手段,为了贴切地服务于教学目标,课件的制作是为了能更好的讲练习题,提高课堂效率,用是PowerPoint软件。而学生在学习过程中不仅要训练知识技能,还要达到思维的训练,因此这节课要以学生为主体,给学生充足的活动空间。作为教师,我要做好启发和规范地指导,引领学生大胆地探索,并培养其严谨的数学品质。 教学过程设计: 大概分为复习回顾、例题讲解、规律小结、巩固练习四个版块,最后布置作业。下面为每部分的具体构思。 1、复习分为概念回顾和基础练习两部分,预计费时7到8分钟左右,其中概念为(1)函数单调性和单调区间的定义以及用定义证明函数单调性的步骤,(2)怎么判断函数单调性及单调区间——可以用定义法,也可以从图象上观察。形式主要由学生口答。基础练习部分选择了5道小题目,课件形式给出,请学生口答,内容涉及单调性的理解,一次函数、二次函数的单调性,最后一题让学生们画出图象,观察图象的“升降”写出单调区间,渗透数形结合的思想,都是小题目,难度小,用时少,但紧扣概念,也让学生迅速热身,无形中抓住了学生的课堂注意力。 2、例题选择方面: 关于例 1、试判断函数f(x)变式:讨论函数f(x)x(1x1)的单调性并证明; x21ax(1x1)的单调性。x21选择这个题目是为了让学生更好地掌握定义法证明函数单调性的方法和基本步骤,变式的选择是为培养学生分情况讨论的意识和能力,讲解过程中要注意证明的规范性,进一步培养学生严谨、规范的科学态度和品质。 关于例 2、求函数yx21的值域。x2函数单调性的一个很重要的应用是求函数的值域或最值,选择这道题,教会学生利用单调性来求函数值域的方法。让学生体会利用单调性求值域时的简捷有效。丰富学生的知识体系。 关于例 3、已知函数f(x)是定义在(0,)上的增函数,且f()f(x)f(y) xy(1)求f(1)的值 (2)若f(3)1,解不等式f(x5)2 这是一道抽象函数的题目,对于求出f(1)、f(9)分别是0和2用的是赋值法,这是抽象函数中常用的方法,不等式变为f(x5)f(9),应用函数单调性,将抽象函数函数值的大小关系,转化为自变量之间的大小关系,即x59,提醒学生注意函数定义域! x50选择这个抽象函数的例子,目的就是让学生体会并掌握怎么样利用单调性转化函数和自变量的大小关系。 关于例 4、已知f(x)是R上的减函数,g(x)x24x,求函数h(x)f(g(x))的单调增区间。 最终的那个函数明显是个复合函数,函数g(x)图象的对称轴是x2,开口向下,在[2,)上递减,又f(x)也递减,所以[2,)是个增区间。 本题小结:两个函数单调性相同则复合后是增,相反则复合后是减。 3、关于这部分的课堂小结: 我们可以应用函数的单调性求函数值域、解不等式,以及证明一些代数命题。 4、关于巩固练习题目方面的选择: 这部分选两题,类型在例题中已出现,其中第一个要先证明函数的单调性,再求值域。而第二题则先要判断单调性,再进行证明,确定了单调性之后再应用到三角形的问题中,使学生在解题的过程中体会在一些代数不等式证明中如何应用函数单调性的。 这部分让学生自己做,用投影仪和板书结合,规范其书写和论证。 5、关于作业布置方面: 结合本节课的讲解内容,为进一步巩固教学成果,在作业题型选择上,本人力求做到紧扣和深化上课内容。一共有三大题,第一题是求单调区间,其中要用图形,数形结合;第二题要利用例4的小结“两个函数单调性相同则复合后是增,相反则复合后是减。”;第三题是抽象函数题,与课上的例3类型一样,让学生课后练习巩固。 以上是我对这部分习题教学方面的一些思考,希望得到专家的指正! 《函数单调性》教学案例 1.【案例背景】 “函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。“课标”规定两个课时,所选案例为第一课时。 函数的单调性是函数的一条基本性质,从知识结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究基本初等函数、三角函数等内容的基础。在这之前,学生已经学过函数的定义,函数的表示,学习过一次函数,二次函数,反比例函数等,函数单调性是学生研究函数整体性质的开始,之后还有奇偶性周期性等,所以本节内容承前启后,解决有关的函数问题,这一节学好了,学生获得的知识就会对后面几节的知识产生正迁移作用。 2.【教学内容分析】 首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础. 其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.3.【学情分析】 高一的学生正处于经验逻辑思维发展阶段,具备了一定的逻辑思维但要想 使学生“以一系列的行动队一系列的条件作出反应”却需要很大的努力的。函数单调性的本质是利用定量的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达. 因此首先要重视学生的亲身体验:将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识。运用新知识尝试解决新 问题.其次重视学生发现的过程.充分展现学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程。充分展现在正、反两个方面探讨活动中,学生认知结构升华、发现的过程. 最后重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义. 4.【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题1:请同学们观察图,指出该天的气温在如何变化?(学生独立思考) 【设计意图】通过生活实例,让学生对图象的上升和下降有一个初步的感性认识,让学生感受到函数的单调性和我们的生活密切相关,进而激发学生的兴趣,引发学生进一步学习的好奇心。 生1(主动回答):0~4时,温度下降,4~14时温度上升,14~24时温度下降。问题2:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二.借助图象,直观感知 问题3:观画出y=x和yx2的函数图象,回答下面两个问题: ⑴分别指出上面两个函数的图象在哪个区间是上升的,在哪个区间是下降的? 【设计意图】顺应学生的认知规律。 (小组合作探求) 生1:一次函数y=x其定义域上是上升的,二次函数yx2是先下降后上升。师:这样回答准确吗? 生2:一次函数y=x在区间(-∞,+∞)上是“上升”的;二次函数y=x2在区间(-∞,0)上是“下降”的,(0,-∞)上是“上升”的。 ⑵同学们能用数学语言把这两个函数图象“上升”或“下降”的特征描述出来吗? 【设计意图】有感性上升到理性。(给学生适当的思考时间) 这时学生们思维较为混乱,无从下手。教师及时通过“几何画板”展示y=x图象上A点的运动情况,让学生观察x,y值的变化。师(及时提问):同学们能用数学语言把y=x图象“上升”的特征描述出来吗? 生3:该函数随着x的值增大,y的值相应的增大。师(面向全体学生):大家同意生4的回答吗? 生4:老师,我有补充,应该说:该函数在区间(-∞,+∞)上随着x的值增大,y的值相应的增大。师:生5补充的很好,明确提出了函数变量在对应区间上的变化情况,那么函数yx2呢? 生5:函数yx2在区间(-∞,0)上随着x的值增大,y的值相应的减小;在区间(0,+∞)上是随着x的值增大,y的值相应的增大。 师:在数学上,我们把y随着x的增大而增大,称为增函数;把y随着x的增大而减小,称为减函数。 五、巩固概念,适当延展 练习2:证明函数f(x)x在[0,)上是增函数. 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 六、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论. (3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.课后探究: 研究函数yx1(x0)的单调性,并结合描点法画出函数的草图. x 在整个教学过程当中收获了以下几点心得: 1、概念教学就是对知识发生过程的了解,数学概念是一系列常识不断精细化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求。本案例通过“直观”到“抽象”的跨越,使学生意识到自己能力上的缺陷,从而引发认知上的不平衡,产生学习的动力。 2、概念形成困难的原因在于新旧知识结构上的矛盾(如语言形式上的差异太大,学生认知水平、抽象水平与新内容的要求落差大等),所以解决的策略应是要培植知识的生长点,搭建恰当的脚手架。为此,我循序渐进、螺旋式地设计了问题组和运用了信息技术,是学生从“形”到“数”有了清新的认识。 函数单调性的教学目标 一、知识与技能: 1、理解增函数、减函数的概念及函数单调性的定义; 2、会根据函数的图像和单调性定义来判断函数的单调性; 3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数。 二、方法与过程: 1、通过对函数单调性定义的探究,结合数形结合的数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力; 2、通过对函数单调性的证明,提高学生的推理论证能力。 三、情感态度与价值观: 1、通过函数单调性定义的探究过程,让学生养成细心观察、认真分析、严谨论证的良好思维习惯。 2、让学生体会从具体到抽象、从特殊到一般的数学概念形成之美。第三篇:函数单调性教学设计
第四篇:《函数单调性》教学案例
第五篇:函数单调性的教学目标