函数单调性教学案例分析

时间:2019-05-15 06:09:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数单调性教学案例分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数单调性教学案例分析》。

第一篇:函数单调性教学案例分析

“函数的单调性”案例分析 连江一中数学组 李锋

数学概念的教学是培养学生创新精神和实践能力的一个很好的切入点,重视数学概念的发生、发展、形成的过程的体验,让学生进行深入的思考和全方位的探索。对于提高学生学习数学的兴趣,培养学生创新精神和实践能力将是十分有利的。现以《函数的单调性》教学实例来进行分析:

一、案例

课题:函数的单调性(第一课时)

二、实施过程(注:课堂实录已经简化)

1.问题引入

师:我们观察某自来水厂在一天24小时内,水压Y随时间X的的变化情况。不妨设其函数解析式:y=f(x);x[0,24]

师: “在哪些时间段内,水压在逐渐上升?在哪能些时间段内,水压在下降?”(很快得出正确答案。)

师:在某一时间段内水压在上升,实际上是水压Y的值随时间X的增大在逐渐增大,于是我说函数y=f(x)在区间[0,3]上,是单调递增函数。同理,函数y=f(x)在区间[3,9]上是单调递减函数。这就是我们要研究的函数的又一特性——函数的单调性。2.定义探究

师:在某个区间上:①函数值Y随X的增大而增大(图象从左——右,呈上升趋势),就说这个函数在这个区间上是增函数。②函数值Y随X的增大而减小(图象从左——右,呈下降趋势),就说这个函数在这个区间上是减函数。

提出问题1:请同学仔细阅读课本中函数单调性的定义,思考课本定义方法和上面定义方法是否一致?如果一致,定义中哪一句表达了该意思?

生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少. 师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!定义中只用了两个简单的不等关系,就刻划出了单调递增和单调递减的性质特征,把文字语言表达为数学语言,简单明了。

师:提出问题2:我们思考这样一个问题:定义中有哪些关键的词语或句子至关重要?能不能把它找出来。(有的同学回答不准确)

生1:我们认为在定义中,有一个词“给定区间”是定义中的关键词语.(阐述了理由)。师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.还有没有其他的关键词语?

生2:还有定义中的“任意”和“都有”也是关键词语. 生3:“属于” 也是关键词。师:能解释一下为什么吗?

生3:“属于”就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取. 师:那么“任意”和“都有”又如何理解?

生4:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

师:能不能构造一个反例来说明“任意” 和“都有”呢?

(让学生思考,但有些学生仍有困难,我设计了三个判断题)提出问题3:判断下列命题的真假:

①函数y=x2 在(-∞,0)上是减函数,在[0,+∞]上是增函数,所以函数 y=x2 在定义域R上是增函数或是减函数。

②已知函数f(x)=x2(-2≤x≤2)。取x1=-2,x2=1,则x1f(x2),所以函数在区间[-2,2]上是减函数。

③若函数y=1/x在(-∞,0)单调递减,在(0,+∞)也单调递减,则该函数在定义域内单调递减。

(三个问题的提出,引起很大凡响,学生发言踊跃,互相讨论、补充,把本节课推向高潮)师:因此,要判定一个函数的增减性,主要途径就是依照定义,抓住关键,在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定。3.定义应用

提出问题4:判断函数f(x)=1/x在(0,+∞)上的单调性,并用单调性的定义加以证明。解:略

师:易知函数f(x)=1/x在(-∞,0)上也是单调递减函数,请同学归纳一下要证明一个函数在某个区间上单调性的方法和步骤? 第八组:①设量;②作差;③判断;④定论。

4.课堂小结(由学生回答)(略)

5.布置作业

(略)

三、案例分析

(一)本节课的设计思路 1.知识目标设计:

(1)在探究中,寻求函数单调性规律并形成概念。

(2)熟练运用函数单调性的概念证明函数在某个区间上的单调性。2.能力目标设计:

(1)通过对单调性概念的发生、发展的分析过程,培养学生的数学意识、逻辑思维能力;(2)通过本节课的教学探究,培养学生用数学语言代替文字语言的表达能力。提高对数学美的鉴赏能力;(3)对学生进行由“特殊”到“一般”的辩证唯物主义教育。3.教学过程设计:

针对本节课教学目标,教学过程分为三个阶段:

(1)问题引入阶段:问题的提出具有实际意义,引起学生的兴趣,锻炼学生的观察能力,又直逼主题,学生容易接受。通过图形的直观感觉,给学生函数单调性的感性认识,为突破难点做好铺垫。从而自然导入主题。

(2)定义探究阶段:本节课的中心内容,围绕三个问题的提出,对定义进行探究,层层深入,发动学生,分组讨论,积极思考,在巡视过程中,启发引导学生,及时掌握学生的动向,寻求函数单调性规律并形成概念。

(3)概念应用阶段:函数的单调性定义应用只设计了问题4,这一过程由学生来完成,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思,总结出解题的步骤和规律。

(二)本案例课堂教学的特点

1、抓住课堂教学的基本原则

(1)主体性原则:尊重学生的主体地位,发挥教师的主导作用,教师创造性地教,学生创造性地学,使教、学的主体共同参与整个教学过程。在本案例课堂教学活动过程中,教师围绕三个阶段,以问题的形式提供给学生,学生主动参与。特别是问题2、3的提出,学生产生许多疑惑,矛盾升级,老师便组织学生开展了互相交流和讨论,适时介入,和学生一起相互启发和梳理,并洞察课堂中发生地各种问题,准确地判断发生问题的原因,能动地、有效地处理这种问题,这一过程体现师生相互平等,教学相长的良好课堂氛围。

(2)探索性原则:教师努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习兴趣和创造兴趣,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。通过对问题2、3的讨论,大部分学生对单调性概念的发生、发展有了较深刻的理解,探索到函数单调性规律并形成了概念。同时培养了学生用数学语言代替文字语言的表达能力,提高对数学美的鉴赏力。这一教学过程使学生认识到看似简单的定义中有很多值得去推敲,去研究的东西,通过对问题的分析、总结,把包含在概念中的复杂和隐蔽的内涵,层层剥离,进行多层面的展开,从而使教学由表及里,深入清晰地揭示出概念的本质。因为学生理解程度的差异,老师提出问题4,这是本节课的亮点,简单的三个判断题,再一次揭示了概念的本质。把函数单调性概念的探究推向高潮,通过反向思维使学生的思维素质得以提升,促使学生能够在获得对概念理解的同时,逐步学会学习和思考,增长经验和智慧。这一部分课堂效果非常好。

(3)实践性原则:在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参与到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际问题,使学生获得运用知识的能力。函数的单调性定义应用只设计了问题5,典型的反比例函数,这一过程由学生来完成,但学生的证明过程也存在一定问题,老师再次强调定义,对照解答的层次性,再让学生自主订正,使学生自主进行学习,独立探究问题,在解决问题的过程中进行自我评判和调控,会对已有的经验进行反思、质疑,总结出解题的步骤和规律。问题5的提出起到前后呼应,加深印象、画龙点睛的作用,既是对本节课的反馈,又是引发对本节课的思考。由于时间的关系,课上讨论的并不透彻和完美,但给学生课后进一步的思考、探究留下了空间。

(4)激励性原则:要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,认识到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。

2、体现能力培养的指导思想

概念教学有利于培养学生的发现能力;有利于培养学生的创新精神;有利于培养学生的实践能力。概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物的本质属性或规律。发现是创造的一种重要形式,创造需要一种实践活动的过程。现代著名心理学家布鲁纳认为:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,学生用自己的头脑去亲自获得知识也是一种发现。在过程中发现,在发现中创新。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思考空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力和创新能力。

(三)本案例课堂教学引发的反思

1、概念教学的方法应灵活多样 中学数学教材展现在学生面前的往往是由概念到定理,法则再到例题的三步曲,这在一定程度上掩盖了数学概念和思想方法的形成,发展过程,从而也掩盖了数学发现、数学创造、数学应用所经历的思维活动过程,抽象的概念也会给学生造成厌恶的感觉。所以数学概念教学不应简单地给出定义,而应加强概念的引入和概念属性的感知,本案例的引入,从实际生活中提炼,通俗易懂,平易近人。教学时应创设情境,方法灵活多样,激发学生的学习兴趣,让学生积极参与教学活动中来,亲身体验、主动建构,使学生了解知识的发生与发展的背景和过程,使学生对数学的学习感到乐趣。为此,从引进新概念开始就要创造启发式的教学环境,揭示概念的本质属性,并用简单的文字加以表达,在对概念进行结构分析和概念的应用,形成一个生动的概念发生的过程,这一过程需分层次递进,低层次的理解是高层次理解的基础,各层次之间最好不要越级,任何急功近利的想法或做法都是不可取的。

2、正确认识和处理探究过程与时间限定的矛盾

探究活动比较费时间,教师都很重视课堂效率,而且对调控教学节奏,颇有一些办法,是不是一发现学生得到了正确的结论,就让其回答,并结束这个探究过程?由于教学时间的限定,如果探究的不够完美、透彻,或本节课的教学内容没有全部完成,那么总感到一种缺憾,所以在这个矛盾的驱使下,往往追求进度,多讲几个例题,忽略学生的经历。而新课程标准则强调让学生经历“直观感知”、“观察发现”……等思维过程来形成思维能力。这就要求我们要以学生体验、理解、掌握知识为中心,重视数学概念的构作,数学思维的建立,数学意识的形成,所以,教师应设计好每节课的内容与容量,本案例延长了概念的探究过程,重视学生的数学意识、思维品质的培养,使学生懂得数学的意义与价值。虽然只有一个例题,但非常典型,同样收到很好的效果。

落实新课程改革精神,并不是

一、两节课的事,应该体现在课堂教学的每个环节和过程,教师要更新观念,转换角色,力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。使课堂教学由知识型向能力型和实践型转化,全面提高学生数学素养。能力增强了,学习成绩自然不会差,以人为本的思想也得到了落实。

第二篇:《函数单调性》教学案例

《函数单调性》教学案例

1.【案例背景】

“函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。“课标”规定两个课时,所选案例为第一课时。

函数的单调性是函数的一条基本性质,从知识结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究基本初等函数、三角函数等内容的基础。在这之前,学生已经学过函数的定义,函数的表示,学习过一次函数,二次函数,反比例函数等,函数单调性是学生研究函数整体性质的开始,之后还有奇偶性周期性等,所以本节内容承前启后,解决有关的函数问题,这一节学好了,学生获得的知识就会对后面几节的知识产生正迁移作用。

2.【教学内容分析】

首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.

其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.3.【学情分析】

高一的学生正处于经验逻辑思维发展阶段,具备了一定的逻辑思维但要想 使学生“以一系列的行动队一系列的条件作出反应”却需要很大的努力的。函数单调性的本质是利用定量的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.

因此首先要重视学生的亲身体验:将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识。运用新知识尝试解决新 问题.其次重视学生发现的过程.充分展现学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程。充分展现在正、反两个方面探讨活动中,学生认知结构升华、发现的过程. 最后重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.

4.【教学过程】

一、创设情境,引入课题 课前布置任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题1:请同学们观察图,指出该天的气温在如何变化?(学生独立思考)

【设计意图】通过生活实例,让学生对图象的上升和下降有一个初步的感性认识,让学生感受到函数的单调性和我们的生活密切相关,进而激发学生的兴趣,引发学生进一步学习的好奇心。

生1(主动回答):0~4时,温度下降,4~14时温度上升,14~24时温度下降。问题2:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二.借助图象,直观感知

问题3:观画出y=x和yx2的函数图象,回答下面两个问题:

⑴分别指出上面两个函数的图象在哪个区间是上升的,在哪个区间是下降的?

【设计意图】顺应学生的认知规律。

(小组合作探求)

生1:一次函数y=x其定义域上是上升的,二次函数yx2是先下降后上升。师:这样回答准确吗?

生2:一次函数y=x在区间(-∞,+∞)上是“上升”的;二次函数y=x2在区间(-∞,0)上是“下降”的,(0,-∞)上是“上升”的。

⑵同学们能用数学语言把这两个函数图象“上升”或“下降”的特征描述出来吗?

【设计意图】有感性上升到理性。(给学生适当的思考时间)

这时学生们思维较为混乱,无从下手。教师及时通过“几何画板”展示y=x图象上A点的运动情况,让学生观察x,y值的变化。师(及时提问):同学们能用数学语言把y=x图象“上升”的特征描述出来吗? 生3:该函数随着x的值增大,y的值相应的增大。师(面向全体学生):大家同意生4的回答吗?

生4:老师,我有补充,应该说:该函数在区间(-∞,+∞)上随着x的值增大,y的值相应的增大。师:生5补充的很好,明确提出了函数变量在对应区间上的变化情况,那么函数yx2呢? 生5:函数yx2在区间(-∞,0)上随着x的值增大,y的值相应的减小;在区间(0,+∞)上是随着x的值增大,y的值相应的增大。

师:在数学上,我们把y随着x的增大而增大,称为增函数;把y随着x的增大而减小,称为减函数。

五、巩固概念,适当延展

练习2:证明函数f(x)x在[0,)上是增函数. 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.

六、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结

(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.

(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.课后探究:

研究函数yx1(x0)的单调性,并结合描点法画出函数的草图. x 在整个教学过程当中收获了以下几点心得:

1、概念教学就是对知识发生过程的了解,数学概念是一系列常识不断精细化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求。本案例通过“直观”到“抽象”的跨越,使学生意识到自己能力上的缺陷,从而引发认知上的不平衡,产生学习的动力。

2、概念形成困难的原因在于新旧知识结构上的矛盾(如语言形式上的差异太大,学生认知水平、抽象水平与新内容的要求落差大等),所以解决的策略应是要培植知识的生长点,搭建恰当的脚手架。为此,我循序渐进、螺旋式地设计了问题组和运用了信息技术,是学生从“形”到“数”有了清新的认识。

第三篇:函数的单调性教学案例分析

函数的单调性教学案例分析

一、内容介绍 1.教材内容分析

“函数的单调性”是《普通高中课程标准实验教科书·数学必修一》第一章第三节的内容,本节课的实质是对函数运动趋势的研究,函数的单调性既是函数的基本特征之一,这一知识也为基本初等函数的研究提供了方法。对于函数单调性的研究过程,我们需要经历从观察具体图像入手,然后进行定量分析,最后抽象出形式化的定义,这个过程中体现了数学中数形结合和归纳转化的重要数学思想方法,反映了从特殊到一般的数学思维方式,这有助于培养学生根据图认识数学问题、发展学生的思维能力,掌握学生的思想方法有重大意义。2.学生分析

本节课是在学生初中已有粗略的认识的基础上进行,即主要根据观察图像得出结论。本节课中对于函数单调性的定义,是应用数学符号将自然语言的描述提升到了形式化的定义,学生接受起来可能相对有些困难。在得出函数单调性的定义的过程中,始终要结合具体函数的图像进行,这样可以增强直观性,由具体到抽象,再由抽象到具体,方便学生的理解。在定义中要注意对自变量取值的任意性的理解,留给学生更多的思考空间。

二、教学目标 1.知识与技能

理解函数的单调性的定义,了解增函数、减函数以及单调区间等概念的形成过程。2.过程与方法

掌握用定义证明函数单调性的方法和步骤,掌握利用函数的图像去判断函数单调性,经历从直观到抽象、从图形语言到数学语言的过程。

3.情感态度与价值观

通过自主探究活动,体验数学概念形成的过程,体会从特殊到一般的过程。

三、教学重难点 1.教学重点

形成增函数和减函数的形式化定义。2.教学难点:

在概念形成的过程中,从图像的变化趋势的直观认识过渡到函数增减的数学符号语言表示;用定义证明函数的单调性。

四、教学基本流程 1.创设情境,引入概念

通过具体有实际意义函数问题,抽象出函数图像,提问:图像有什么特点?

师生互动:教师引导学生观察图像的升降变化,说出自己的看法。设计意图:通过学生的直观认识引入新课,让学生对函数的单调性产生感性认识,为引出单调性的定义打好基础,有利于定义的自然生成,也揭示了单调性最本质的东西。2.合作探究,形成概念

观察两组图像(具备增减性的函数图像),引导学生尝试归纳增函数和减函数的定义。

一般地,设函数f(x)的定义域为I:如果对于定义域内I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)是区间D上的单调递增函数。问题一:两组函数有什么特征?

问题二:你能用准确的数学符号语言表述增函数的定义吗? 学生讨论,最后由教师给出增函数的定义。由学生类比得到减函数的定义。

对定义进行适当说明:(1)x1,x2的三大特征:属于同一个区间,任意性,有大小;(2)函数的单调性是一种局部性质。

启示:以问题串的方式进行启发、引导学生自己归纳总结,找出函数在代数上的共同点,得到减函数的定义,主要是为了培养学生对图像的观察能力,以及培养学生的归纳概括能力。在总结概念的形式化定义的时候,采用相互讨论的方式,目的是可以通过合作学习的方式对基础较差的学生给予指导,培养学生互相帮助的精神。根据知识的发生发展过程,对学生能力的适当评估;引导学生自己动手得出减函数的定义和图像特征,这个过程将课堂还给学生,营造一种人人参与的氛围。

3.定义应用,概念深化

例1:结合函数图象找到函数的单调区间(注意:单调区间的写法,能否写成并集的形式,单调区间是开区间还是闭区间的问题)例2:函数单调性的证明

(总结利用定义证明函数单调性的步骤:取值、作差变形(常用方法:因式分解,有理化,配方等)、定号、下结论)4.归纳总结,提高认识

教师设置问题,引导学生讨论、交流、总结,让学生充分发表意见。(1)通过函数概念的形成过程,你们学习到了什么?

(2)增函数(减函数)的图像有什么特点?如何根据函数图像得出函数的单调区间(3)怎样利用定义证明函数的单调性? 5.布置作业(必做题与选做题,设置梯度)

五、教学方法

本节课是函数单调性的起始课,主要采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念。其中使用多媒体投影和计算机辅助教学,充分发挥直观、形象的特点,为学生提供感性的材料,有助于学生的理解和认识。

六、教学反思

新课改强调将课堂还给学生,其实对于教师的要求更加提高。要让一节课的知识点完全由学生自己总结、归纳是不太现实的,所以这需要教师在课堂中起好启发、引导作用。在引导的过程中,需要对于不同难度的问题设置不同数量的问题。如果问题较难,跨度较大,我们需要对问题多设置几个桥梁,减小问题的难度,对于这个度的把握,就需要教师站在一个更高的位置,对知识点和学生的情况有较高的熟悉程度,备课设置问题和相关环节时一定要多考虑学生所有可能出现的情况,在课堂上随时调整。

我们在课堂上的作用是引导学生,但不是牵着学生走;要严格要求学生,但是课堂也不应该过分压抑。新课程改革中我们一定要将学生放在主体地位,让学生参与和完成课堂中的活动,教师在整个授课过程中要起好启发、引导的作用,才可以让学生学会学习、体会学习的乐趣。

第四篇:函数的单调性教学案例

函数的单调性教学案例

【教材分析】

《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。【教学目标】

知识与技能:

1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。2.学会应用函数的图象理解和研究函数的单调性及其几何意义。过程与方法:

1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。情感与态度:

1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。【重点难点】

重点:函数单调性概念的理解及应用。难点:函数单调性的判定及证明。关键:增函数与减函数的概念的理解。【教法分析】

为了实现本节课的教学目标,在教法上我采取了:

1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。【学法分析】

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。【教学过程设计】

(一)问题情境

1.海宁潮,又名钱江潮,自古称之为“天下奇观”。“八月十八潮,壮观天下无”。海宁潮是一个壮观无比的自然动态奇观,当江潮从东面来时,似一条银线,“则玉城雪岭际天而来,大声如雷霆,震撼激射,吞天沃日,势极雄豪”。潮起潮落,牵动了无数人的心。

如何用函数形式来表示,起和落?

2.教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。

如何用学过的函数图象来描绘这些成语?

设计意图:创设海宁潮潮起潮落,成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发 学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

(二)温故知新

1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的? 例如:初中研究yx时,我们知道,当x<0时,函数值y随x的增大而减小,当x>0时,函数值y随x的增大而增大。

回忆初中对函数单调性的解释:

图象呈逐渐上升趋势数值y随x的增大而增大;图象呈逐渐下降趋势数值y随x的增大而减小。

函数这种性质称为函数的单调性。

设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

(三)建构概念

问题3:如何用符号化的数学语言来准确地表述函数的单调性呢?

对于区间I内的任意两个值x1,x2,当x1x2时,都有f(x1)f(x2)。

单调增函数的定义:

问题4:如何定义单调减函数呢? 2可以通过类比的方法由学生给出。

设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。让他们充分感悟数学概念符号化的建构原则。问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。

(四)理解概念

1.顾名思义,对“单调”两字加深理解

汉语大词典对“单调”的解释是:简单、重复而没有变化。2.呼应引入,解决问题情境中的问题

如:y2x1的单调增区间是(,);y3.单调性是函数的“局部”性质 如:函数y上减函数?

引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取x11,x2

1在(0,)上是减函数。x11在(0,)和(,0)上都是减函数,能否说y在定义域(,0)(0,)上xx

1)。

2设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。在学习如何证明一个函数的单调性之前,先与学生一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。

(五)运用概念

通过两例,教师要向学生说明:

1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。

2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。练习:作出函数y|x1|

1、y|x21|的图象,写出他们的单调区间。

设计意图:单调性证明是学生在函数内容中首次接触到的代数论证问题,通过本例,要让学生理解判断函数单调性与证明函数单调性的差别,掌握证明函数单调性的程序,并深入理解什么是代数证明,代数证明要做什么事。

(六)回顾总结

本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。

第五篇:《函数单调性》的教学案例

《函数单调性》的教学案例

一、教学目标:

(1)知识与技能:理解增函数、减函数的概念,初步掌握判断 函数单调性的方法;

(2方法与过程:通过观察、归纳、抽象、概括等,培养学生 从图象中发现函数的单调性,并用数学语言加以刻画的能力,领会数形结合的数学思想方法。

(3)情感态度与价值观:在学习中,体验数学的科学价值和应

用价值,培养善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点

教学重点:在图象中发现函数的单调性并形成概念;

教学难点:将函数单调性的图形语言或直观语言转化为数学 语言,用定义证明函数的单调性。

三、《函数单调性》 教学过程:

在下一页用图表说明。

《函数单调性》 教学过程

下载函数单调性教学案例分析word格式文档
下载函数单调性教学案例分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    “函数的单调性”教学案例分析初稿

    “函数的单调性”教学案例分析初稿 江西省新余市第四中学 刘金华 第Ⅰ部分:教学准备 一、教学分析: ( 1 )中学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了......

    函数单调性

    函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计 北京教育学院宣武分院 彭 林 函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍......

    函数单调性教学设计

    函数单调性教学设计 关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。 本节课是高中数学......

    函数的单调性

    函数的单调性说课稿(市级一等奖) 函数单调性说课稿 《函数的单调性》说课稿(市级一等奖) 旬阳县神河中学 詹进根 我说课的课题是《普通高中课程标准实验教科书 必修1》第二......

    函数单调性教学技巧与分析(图文).

    函数单调性教学技巧与分析(图文) 论文导读:函数单调性是函数的重要性质,教学中恰到好处的实例引入,数形的有机结合,重点实际的技巧分析,是学生学好函数单调性这一性质的关键。 关......

    函数的单调性教学设计

    函数的单调性教学设计 戴氏教育高中数学组杜剑 【教材分析】 《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及......

    函数的单调性(教学设计)

    【教学目标】 1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。 2.过程与方法:通过观察函数图象的变化趋势上......

    函数的单调性教学设计

    《函数的单调性》教学设计 设计理念 新课程背景下的数学教学既要注重逻辑推理,又要关注直觉思维的启迪,不仅要让学生学会,更要让学生会学,要让学生学习的过程成为其心灵愉悦的主......